首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myelin from developing rat brains was separated on a discontinuous sucrose gradient into subfractions of two different densities, i.e. light and heavy myelin. Electron photomicrographs showed that heavy myelin consisted primarily of large compacted multilamellar structures with a distinct intraperiod line characteristic of myelin in situ. Light myelin, on the other hand, was composed of small vesicles having a unilamellar structure. Similar to whole myelin, both membrane subfractions were highly enriched in 2′,3′-cyclic nucleotide-3′-phosphohydrolase. The specific activity of the enzyme, however, showed no developmental trend. Both subfractions contained all of the four major proteins characteristic of the whole myelin membrane. There were, however, quantitative differences in the relative distribution of these proteins between light and heavy myelin. Basic protein accounted for 55 % and proteolipid protein for 46 % of the total myelin proteins of light and heavy myelin, respectively. DM-20 (Agrawal, H. C., Burton, R. M., Fishman, M. A., Mitchell, R. F. and Prensky, A. L. (1972) J. Neurochem. 19, 2083–2089) exhibited a developmental “switch” between light and heavy myelin. Light myelin appeared to contain more DM-20 in 15- to 20-day-old rat brain, whereas the concentration of this protein was higher in heavy myelin at subsequent ages studied.  相似文献   

2.
The acylation of proteolipid protein (PLP) was examined in myelin and myelin subfractions from rat brain during the active period of myelination. Proteolipid protein and DM-20 in myelin and myelin subfractions were readily acylated in developing rat brain 22 hours after intracerebral injection of [3H]palmitic acid. No differences in the relative specific activity of PLP in myelin from 9-, 15-, and 30-day-old rat brains was observed; however, the relative specific activity of PLP in the heavy myelin subfraction tended to be higher than that in the light myelin subfraction. The acylation of PLP was confirmed by fluorography of immuno-stained cellulose nitrate sheets, clearly establishing that the acylated protein is in fact the oligodendroglial cell- and myelin-specific protein, PLP. Since PLP is acylated in the 9-day-old animal, when little compact myelin is present, it is possible that the acylation of PLP is a prerequisite for the incorporation of this protein into the myelin membrane.  相似文献   

3.
A discontinuous sucrose gradient was used to separate adult rat brain myelin into light, medium and heavy subfractions. Basic proteins decreased sharply, proteolipid potein changed very little, and high molecular weight proteins increased from the light to the heavy fraction. The concentration of monosialoganglioside GM1 was the highest in the middle fraction. The amount of carbohydrate in the major myelin-associated glycoprotein per mg total myelin protein increased 3.5-fold from the light to the heavy fraction. 2′,3′-Cyclic nucleotide 3′-phosphohydrolase, which is related to myelin or the oligodendroglial membrane, and acetylcholinesterase, which is in neural membranes such as the axolemma, both increased between the light and the heavy fraction, although their relative distributions among the three fractions were different. The glycoprotein and 2′,3′-cyclic nucleotide 3′-phosphohydrolase had similar distributions suggesting that they were concentrated in similar locations, possibly in the loose myelin and oligodendroglial plasma membrane. Electron microscopic examination of the subfractions was consistent with this interpretation.  相似文献   

4.
Myelin isolated from goldfish brain shows a multilamellar structure with a major dense line and two intraperiod lines. Sodium dodecyl sulfate gel electrophoresis revealed that the protein profile of goldfish brain myelin is distinctly different from that of rat brain myelin. No protein migrating to the position of proteolipid protein or DM-20 was seen in goldfish myelin. Goldfish acclimated to 5 degrees, 15 degrees, and 30 degrees C showed no qualitative differences in myelin proteins. The 13.5 kD protein in goldfish brain myelin and brain homogenate was intensely immunostained with the antiserum to human basic protein by the immunoblot technique. In contrast, none of the proteins of goldfish myelin were immunostained with antiproteolipid protein serum; however, both proteolipid protein and DM-20 of rat brain myelin were immunostained. The significance of the synthesis of myelin proteins by astrocytes in the goldfish brain is discussed.  相似文献   

5.
Abstract: The rat optic nerve and tract (representing a relatively homogeneous part of the CNS) were utilised for a detailed examination of the protein and glycoprotein composition of developing myelin membranes. Animals aged from 5 days through to adulthood were used. Myelin fractions could first be isolated from the nerve 8 days after birth and the yield increased until 60 days of age, before declining slightly to the adult level; a similar (but possibly slightly delayed) pattern was apparent for the optic tract. The homogeneity of optic nerve myelin (compared with that from brain and spinal cord) was demonstrated by zonal centrifugation on continuous sucrose-density gradients; myelin from both 20-day and adult animals exhibited narrow, Gaussian-like distributions, with 19–22% of the total myelin at the population modes. During development, the myelin density profile was shifted to a denser region of the sucrose gradients. Micro-polyacrylamide gel electrophoretic analyses of "light" and "heavy" myelin subfractions from both optic nerve and tract indicated that the gross developmental changes in protein composition were similar to those previously described for myelin prepared from larger CNS areas, particularly the forebrain. The glycoprotein components of the myelin fractions were stained directly on micro-gels using fluorescein isothiocyanate-labelled concanavalin A. The relative proportion of the major high-molecular-weight glycoprotein decreased rapidly during the early phases of myelination. A number of lower-molecular-weight glycoproteins were also apparent; the proportions of these varied during development and in light and heavy myelin subfractions, but definitive data are not available to determine whether they are components of the myelin sheath or of contaminating membranes.  相似文献   

6.
Proteolipid protein (PLP) and DM-20 were intensely labeled after immunoprecipitation of total cellular proteins and myelin proteins labeled with [35S]methionine in nerve slices. These results provided evidence that PLP and DM-20 are incorporated into the myelin membrane following their synthesis in Schwann cells. In contrast, PLP and DM-20 were not fatty acylated after incubation of the nerve slices with [3H]palmitic acid, however, PO glycoprotein and 24kDa protein were heavily fatty acylated. The lack of fatty acylation of PLP and DM-20 in the peripheral nervous system suggests that fatty acyltransferase responsible for their acylation is absent or non-functional in the peripheral nervous system.  相似文献   

7.
Polypeptide composition and endogenous phosphorylation were investigated in the subfractions of rat brain myelin isolated by either discontinuous or continuous sucrose density gradient centrifugation of myelin. Similarly, a myelin-like membrane fraction (SN4) was also studied. Observations were made that strongly indicated the presence of a calcium-stimulated protein kinase in a highly purified myelin preparation and which exclusively phosphorylated myelin basic proteins of the membrane preparation. Adenosine cyclic 3',5'-phosphate (cAMP) stimulated kinase on the other hand was found to be considerably enriched in the myelin-like membrane fraction. Although this latter enzyme is also capable of phosphorylating the basic proteins, its effect was at least 5 times weaker compared to the calcium-stimulated myelin protein kinase. Within the gradient subfractions there appeared a close relation between the amount of basic proteins and their calcium-stimulated phosphorylation; a similar relationship, however, was not obtained in the case of cAMP-dependent phosphorylation of myelin basic proteins. The former (i.e., Ca2+-stimulated phosphorylation) was found to require a protein factor that functionally resembled calmodulin. The results thus raises an interesting possibility of the presence of calmodulin-like proteins and a calcium-stimulated protein kinase in adult myelin membrane from mammalian brain, both of which have been hitherto unrecognized constituents of myelin membranes.  相似文献   

8.
Myelin prepared from brain tissue of the developing rat (15 days post partum) can be separated into several subfractions. These are (1) ;myelin-like' and ;purified myelin', by the technique of Davison and co-workers (Agrawal et al., 1970b) and (2) ;membrane fraction,' ;light myelin' and ;heavy myelin' by the discontinuous-sucrose-gradient procedure described in the present paper. ;Myelin-like' and ;membrane-fraction' subfractions appear to be similar in chemical properties, but different in detailed morphology by electron microscopy. Both fractions are related to myelin, on the basis of demonstrable myelin basic protein by polyacrylamide-gel electrophoresis in sodium dodecyl sulphate and the presence of a myelin-marker enzyme, 2':3'-cyclic nucleotide 3'-phosphohydrolase. These two fractions have a low lipid content (17% for ;myelin-like' and 40% for ;membrane-fraction' subfractions) compared with myelin (67-72%). No cerebroside was detected in these two fractions, whereas cerebrosides are a major component of myelin itself. The administration of [2,3-(3)H]tryptophan to young rats results in more rapid incorporation into proteins of the ;myelin-like' and ;membrane-fraction' subfractions when compared with incorporation into myelin. Data are presented which are consistent with a precursor-product relationship for conversion of ;myelin-like' and ;membrane-fraction' subfractions into myelin.  相似文献   

9.
—Myelin preparations from the whole brains of 16-day-old rats and from cortical regions and brainstem, respectively, of 40-day-old rats were separated into light, medium and heavy subfractions on a discontinuous sucrose gradient by a procedure previously used for whole adult rat brain (Matthieu, et al., 1973). The total dry weight of myelin recovered from the 16-day-old rats was only 2·4mg/g fresh brain in comparison to 20 mg from adult brains. In 16-day-old rat brains, the percentage of the total myelin protein in the light fraction was higher than that found in adult brains; the percentage in the medium fraction was only one-third that in adults; while the percentage in the heavy fraction was about the same at both ages. The heavy fraction from the 16-day-old rats contained less basic protein and proteolipid than the light fraction, and the levels of the 2′3′-cyclic nucleotide 3′-phosphohydrolase (CNP) and glycoprotein were less than half those in the light and medium fractions. Double labelling experiments with radioactive fucose indicated that the major labelled glycoprotein in the heavy and medium fractions had a slightly higher apparent mol. wt than that in the light fraction. Electron microscopy showed much readily identifiable, compact myelin in the light and medium fractions from the 16-day-old rats, whereas the heavy fraction contained more single membranous structures and much less multilamellar myelin. The yield of myelin/g fresh wt from brainstem of 40-day-old rats was 4-fold higher than from cortical regions, and the percentage recovered in the light fraction was greater in the brainstem. In both regions basic proteins decreased from the light to the heavy fraction, whereas high mol. wt proteins, the glycoprotein and CNP increased. The biochemical and morphological results suggest that in both 16-day-old and young adult rats the light fraction is enriched multilamellar, compact myelin. In contrast, the heavy fraction at both ages is enriched in loose, uncompacted myelin and myelin-related membranes, although the heavy fraction from 16-day-old rats also may be substantially contaminated with membranes which are unrelated to myelin.  相似文献   

10.
Myelin from subcortical normal-appearing white matter of control and multiple sclerosis (MS) brains was isolated and subsequently subfractionated on discontinuous sucrose gradients. Three following myelin subfractions were obtained: light myelin (buoyant density ? 0.625 M), medium myelin (0.625 M > buoyant density ? 0.7 M), and heavy myelin (buoyant density > 0.7 M). The yield of total myelin (the sum of all three subfractions) recovered from MS specimens was about 30% lower than that from the white matter of the control brains. Furthermore, MS myelin was deficient in the light subfraction and was enriched in the heavy subfraction. No abnormality in lipid composition of MS subfractions was observed. On the other hand, myelin particles isolated from the MS tissue were depleted in basic protein. The results are interpreted as an evidence for a rather diffused pathological process in MS white matter.  相似文献   

11.
The present study has examined the effects of maternal protein and protein-calorie deficiency during lactation on the development of CNS myelin subfractions in rat offspring. The offspring of both the protein and protein-calorie deficient rats had decreased brain and body weights, as well as delayed CNS myelination. Delayed active CNS myelination was demonstrated by the fact that 53-day-old nutritionally stressed pups incorporated significantly more [3H]leucine and [14C]glucose into all myelin subfractions than age-matched controls. Delayed myelination was also supported by the tremendous accretion of myelin proteins in the nutritionally deprived pups between 25 and 53 days of age. Despite the delayed active synthesis of myelin, the myelin deficit persisted in the offspring of protein deficient rats. These offspring had a deficiency of light + medium myelin throughout the study. At 17 days, both groups of nutritionally stressed rats had an excess of the high molecular weight proteins in heavy myelin. Heavy myelin from 17 day offspring of protein-calorie deficient rats had a deficiency of basic proteins, while that from the offspring of protein deficient rats had a deficiency of proteolipid protein. The protein composition of all myelin subfractions was normal at 53 days.  相似文献   

12.
13.
Purified myelin, isolated from rat brain, was subfractionated into light, medium and heavy myelin. The metabolism of [3H] leucine in myelin subfractions was studied at intervals from 1 to 24 hours and from 18 hours to 85 days after the injection of 12-day-old rats. The metabolism of [14C] glucose in myelin subfractions was also examined during the 85 day interval. In addition, the development of each of these subfractions, as reflected by protein accretion, was determined.Between 13 and 97 days of age, the amount of the three myelin subfractions increased 10- to 44-fold. At 13 days of age the heavy subfraction accounted for the greatest percentage of myelin protein. However, beyond 13 days, light myelin predominated.The total 3H-radioactivity in the light, medium and heavy subfractions increased throughout most of the 85 day interval examined. The 3H specific radioactivity (3H dpm/μgram protein) of light myelin peaked at 12 hours after injection. The specific radioactivity of both 3H and 14C (14C dpm/μgram lipid) in light myelin declined beyond the initial time point in the long term (18 hour – 85 day) study. In contrast, the specific radioactivity of both 3H and 14C peaked in the medium and heavy subfractions at 4 days after injection of radioactive precursor.The possible existence of a membranous precursor to myelin is discussed.  相似文献   

14.
The localization and activity of the enzyme UDP-galactose-hydroxy fatty acid-containing ceramide galactosyltransferase is described in rat brain myelin subfractions during development. Other lipid-synthesizing enzymes, such as cerebroside sulphotransferase, UDP-glucose-ceramide glucosyltransferase and CDP-choline-1,2-diacylglycerol cholinephosphotransferase, were also studied for comparison in myelin subfractions and microsomal membranes. The purified myelin was subfractionated by isopycnic sucrose-density-gradient centrifugation. Four myelin subfractions, three floating respectively on 0.55 M- (light-myelin fraction), 0.75 M- (heavy-myelin fraction) and 0.85 M-sucrose (membrane fraction), and a pellet, were isolated and purified. At all ages, 70--75% of the total myelin proteins was found in the heavy-myelin fraction, whereas 2--5% of the protein was recovered in the light-myelin fraction, and about 7--12% in the membrane fraction. Most of the galactosyltransferase was associated with the heavy-myelin and membrane fractions. Other lipid-synthesizing enzymes studied appeared not to associate with purified myelin or myelin subfractions, but were enriched in the microsomal-membrane fraction. During development, the specific activity of the microsomal galactosyltransferase reached a maximum when the animals were about 20 days old and then declined. By contrast the specific activity of the galactosyltransferase in the heavy-myelin and membrane fractions was 3--4 times higher than that of the microsomal membranes in 16-day-old animals. The specific activity of the enzyme in the heavy-myelin fraction sharply declined with age. Chemical and enzymic analyses of the heavy-myelin and membrane myelin subfractions at various ages showed that the membrane fraction contained more proteins in relation to lipids than the heavy-myelin fraction. The membrane fraction was also enriched in phospholipids compared with cholesterol and contrined equivalent amounts of 2':3'-cyclic nucleotide 3'-phosphohydrolase compared with heavy- and light-myelin fractions. The membrane fraction was deficient in myelin basic protein and proteolipid protein and enriched in high-molecular-weight proteins. The specific localization of galactosyltransferase in heavy-myelin and membrane fractions at an early age when myelination is just beginning suggests that it may have some role in the myelination process.  相似文献   

15.
Forebrain and brain stem slices prepared from adult rats were incubated with pooled normal human serum. Following the incubation, the tissue was homogenized and the fraction floating on 0.32 M sucrose as well as two myelin subfractions (light and heavy) were isolated. Addition of serum into the incubation medium increased generation of the floating fraction by the cerebral slices. Changes in the myelin membrane were also observed. Thus, myelin isolated from forebrain slices revealed pronounced increase in the buoyant density of its particles and loss of basic protein. Furthermore, in spite of the intensive washing employed during the isolation procedure, some serum proteins were found firmly attached to the membraneous fractions. The demonstration of the myelin alterations in the living cerebral tissue exposed to serum during incubation may contribute to understanding the pathogenesis of multiple sclerosis.  相似文献   

16.
17.
Both proteolipid proteins (PLP) and DM-20 were found to be present by the immunoblot technique in myelin isolated from quaking mouse brain; however, the relative concentration of these proteins in myelin from quaking brain was substantially reduced when compared to the control. Brain slices from littermate control and quaking mice were incubated with [3H]palmitic acid to determine the incorporation of fatty acid into myelin proteolipid proteins. Fluorography of gels containing myelin proteins from control and quaking mice brain revealed that both PLP and DM-20 were acylated. The incorporation of [3H]palmitic acid into quaking myelin PLP and DM-20 was reduced by 75% and 20% respectively of those in control brain. The significance of differential acylation of quaking myelin PLP and DM-20 is discussed with respect to availability of non-acylated pools of proteolipid proteins and the activities of acylating enzymes.  相似文献   

18.
The question of developmental relationships amongst myelin-related membranes in subfractions of myelinating mouse brain (15 days) was investigated by a time-staggered double isotope protocol using [3H]leucine and [14C]leucine. Preliminary results are interpreted and discussed in the context of a mathematical conceptualization of pulse-labeling kinetic analyses of myelin proteins in subcellular membrane compartments. Differences in ratio of the two leucine labels among proteins of myelin-containing subfractions are interpreted as confirming metabolic differences relating to various stages of development rather than precursor-product relationships. The incorporation into myelin of 14K, 17K, and 18.5K basic proteins (MBPs) occurs with relatively short delay times, following their synthesis (less than 5 min), and seems to occur simultaneously into all compartments. The 21.5K MBP and the proteolipid protein, on the other hand, require 10-14 min and 14-20 min, respectively. A scheme is presented to illustrate the probable assignment of subfractions to various myelin "compartments" during myelination, and to serve as a working hypothesis for studies on precursor-product relationships.  相似文献   

19.
Effect of Reactive Oxygen Species on Myelin Membrane Proteins   总被引:5,自引:0,他引:5  
Fresh myelin, isolated from brainstems of adult rats, was incubated in the presence of Cu2+ and H2O2. Electrophoretic analysis of the reisolated myelin membrane revealed a gradual loss of the protein moiety from the characteristic pattern and an increase in aggregated material appearing at the origin of the gel. The aggregation of proteins was time-dependent and was concomitant with the accumulation of lipid peroxidation products reactive with thiobarbituric acid. Furthermore, during the course of incubation, there was a gradual decrease in the amount of recovered light myelin and a quantitatively similar increase in heavier myelin subfractions. The aggregation of proteins seems not to be directly related to the buoyant densities of myelin fragments. The peroxidative damage to the myelin proteins may be an important contributor to pathochemistry of myelin sheath, in particular, and in general it implies the susceptibility of the protein moiety of cell membranes to oxygen-induced deterioration.  相似文献   

20.
Abstract— Quaking mutants in mice are known to be affected by an arrest of myelinogenesis and to have a purified myelin which is more dense than that of controls. Their myelin has been shown to demonstrate a striking decrease in proteolipid protein, a lesser decrease in the small myelin basic protein and changes in glycoproteins comprising reduction in the major peak and shift of this peak towards a higher apparent molecular weight. The possibility that these findings might reflect merely contamination of myelin with other membranes was tested by subfractionation. Light myelin (floats on 0.62 m -sucrose) is generally accepted as more compact and mature than the heavier subfraction (floating on 0.85 m -sucrose). The changes previously found were present in both subfractions and even more marked in the light myelin. These results indicate that the anomalies of myelin proteins and glycoproteins were not caused by contaminants and are present in compact myelin as well as in membranes which are transitional between the glial plasma membrane and the myelin sheath. Therefore, we suggest that the Quaking mutation results in dysmyelination rather than hypomyelination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号