首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim  Sujung  Cho  Yunae  Sohn  Ahrum  Kim  Dong-Wook 《Plasmonics (Norwell, Mass.)》2017,12(2):405-410

We present the optical characteristics of 10-μm-thick crystalline Si wafers with an Ag heptamer nanocluster (NC) array, using a finite-difference time-domain method. The anti-reflection properties of the Ag NC array were more pronounced at long wavelengths, with respect to a monomer array, resulting in significantly enhanced optical absorption in the underlying Si wafer. The scattering cross-section spectra of the NC on the Si wafer exhibited one broad peak with a kink, whereas those in air showed two broad peaks and a sharp Fano dip between them. The high refractive index Si wafer weakened the near-field coupling between particles in the NCs, which modified the optical cross-sections of the Ag NC more drastically than those of the Ag monomer. Therefore, the implementation of the NC nanoantennae for Si-based optoelectronic devices requires careful consideration of the substrate effects.

  相似文献   

2.
Y Yang  W Li  H Qi  Q Zhang  J Chen  Y Wang  B Wang  S Wang  C Yu 《Analytical biochemistry》2012,430(1):48-52
In the current work, we report a label-free fluorescence turn-on approach for the sensitive and selective sensing of Ag(+). A cationic perylene derivative, compound A, was used as the fluorescence probe. Compound A monomer is strongly fluorescent, and the fluorescence can be efficiently quenched through self-aggregation (self-assembly). A cytosine (C)-rich oligonucleotide, oligo-C, was employed. In the absence of Ag(+), oligo-C induced strong compound A aggregation due to electrostatic interactions in aqueous media, and very weak fluorescence signal was detected. However, in the presence of Ag(+), the specific interactions between oligo-C and Ag(+) induced hairpin structure formation of oligo-C through C-Ag(+)-C bonding interactions. Oligo-C binding to compound A aggregates was weakened; therefore, compound A monomer could be released and detected. The intensity of the fluorescence signal was directly related to the amount of Ag(+) added to the assay solution. Our method is highly sensitive-a limit of detection of 5nM was obtained-and also very selective. Ag(+) detection in complex sample mixtures was also demonstrated.  相似文献   

3.
A new, crystalline 5'-thiol modifier phosphoramidite monomer (3), suitable for DNA synthesis, has been prepared. This monomer has been built into an oligonucleotide using the standard protocol. After cleavage, purification and removal of the trityl group with Ag(+), a free 5'-thiol terminal oligonucleotide (15) has been obtained which was subsequently coupled to a cysteine derivative via a disulfide bridge to afford conjugate 16.  相似文献   

4.
M161Ag is a 43-kDa surface lipoprotein of Mycoplasma fermentans, serving as a potent cytokine inducer for monocytes/macrophages, maturing dendritic cells (DCs), and activating host complement on affected cells. It possesses a unique N-terminal lipo-amino acid, S:-diacylglyceryl cysteine. The 2-kDa macrophage-activating lipopeptide-2 (MALP-2), recently identified as a ligand for Toll-like receptor 2 (TLR2), is derived from M161Ag. In this study, we identified structural motifs sustaining the functions of M161Ag using wild-type and unlipidated rM161Ag with (SP(+)) or without signal peptides (SP(-)). Because the SP(+) rM161Ag formed dimers via 25Cys, we obtained a monomeric form by mutagenesis (SP(+)C25S). Only wild type accelerated maturation of human DCs as determined by the CD83/86 criteria, suggesting the importance of the N-terminal fatty acids for this function. Wild-type and the SP(+) form of monomer induced secretion of TNF-alpha and IL-12 p40 by human monocytes and DCs. Either lipid or signal peptide at the N-terminal portion of monomer was required for expression of this function. In contrast, murine macrophages produced TNF-alpha in response to wild type, but not to any recombinant form of M161Ag, suggesting the species-dependent response to rM161Ag. Wild-type and both monomeric and dimeric SP(+) forms possessed the ability to activate complement via the alternative pathway. Again, the hydrophobic portion was associated with this function. These results, together with the finding that macrophages from TLR2-deficient mice did not produce TNF-alpha in response to M161Ag, infer that the N-terminal hydrophobic structure of M161Ag is important for TLR2-mediated cell activation and complement activation.  相似文献   

5.
The rise of multidrug-resistant and totally drug-resistant tuberculosis and the association with an increasing number of HIV-positive patients developing tuberculosis emphasize the necessity to find new antitubercular targets and drugs. The antigen 85 (Ag85) complex from Mycobacterium tuberculosis plays important roles in the biosynthesis of major components of the mycobacterial cell envelope. For this reason, Ag85 has emerged as an attractive drug target. Recently, ebselen was identified as an effective inhibitor of the Ag85 complex through covalent modification of a cysteine residue proximal to the Ag85 active site and is therefore a covalent, allosteric inhibitor. To expand the understanding of this process, we have solved the x-ray crystal structures of Ag85C covalently modified with ebselen and other thiol-reactive compounds, p-chloromercuribenzoic acid and iodoacetamide, as well as the structure of a cysteine to glycine mutant. All four structures confirm that chemical modification or mutation at this particular cysteine residue leads to the disruption of the active site hydrogen-bonded network essential for Ag85 catalysis. We also describe x-ray crystal structures of Ag85C single mutants within the catalytic triad and show that a mutation of any one of these three residues promotes the same conformational change observed in the cysteine-modified forms. These results provide evidence for active site dynamics that may afford new strategies for the development of selective and potent Ag85 inhibitors.  相似文献   

6.
Triggering of T cell activation via CD4 dimers   总被引:1,自引:0,他引:1  
The onset of activation in Th cells is triggered by localized co-engagement of TCRs and the coreceptor CD4. A CD4 crystal suggested that CD4 may form dimers in some circumstances. In this study, we use live-cell fluorescence resonance energy transfer imaging to demonstrate that CD4 dimers are present at a basal level on the cell surface and accumulate at the synapse. Mechanistically, we reveal two conditions under which dimers are highly relevant. First, CD4 dimers are more proficient in mediating prolonged cell contacts with APCs in the presence or absence of Ag. This is consistent with a model whereby the dimer functions to increase T-APC avidity. Second, we show that dimer mutations result in an increased level of an inactive lckTyr(505) bound to the CD4 molecule relative to dimer-competent CD4. We also find a consistent defect in signaling onset in these cells. This supports a role for CD4 dimerization in maintaining active signaling machinery. We suggest that modulation of the dimer/monomer ratio may permit tuning of activation thresholds during initial engagement.  相似文献   

7.
The dynamics and structure of Serratia marcescens endonuclease and its neighboring solvent are investigated by molecular dynamics (MD). Comparisons are made with structural and biochemical experiments. The dimer form is physiologic and functions more processively than the monomer. We previously found a channel formed by connected clusters of waters from the active site to the dimer interface. Here, we show that dimerization clearly changes correlations in the water structure and dynamics in the active site not seen in the monomer. Our results indicate that water at the active sites of the dimer is less affected compared with bulk solvent than in the monomer where it has much slower characteristic relaxation times. Given that water is a required participant in the reaction, this gives a clear advantage to dimerization in the absence of an apparent ability to use both active sites simultaneously.  相似文献   

8.
A new, thin film, biofouling resistant, nanofiltration (NF) membrane was fabricated with two key characteristics, viz. a low rate of silver (Ag) release and long-lasting antibacterial properties. In the new approach, nanoparticles were embedded completely in a polymeric thin-film layer. A comparison was made between the new thin-film composite (TFC), NF membrane and thin-film nanocomposite (TFN), and antibacterial NF membranes. Both types of NF membrane were fabricated by interfacial polymerization on a polysulphone sublayer using m-phenylenediamine and trimesoyl chloride as an amine monomer and an acid chloride monomer, respectively. Energy dispersive X-ray (EDX) microanalysis demonstrated the presence of Ag nanoparticles. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the cross-sectional and surface morphological properties of the NF membranes. Permeability and salt rejection were tested using a dead-end filtration cell. Ag leaching from the membranes was measured using inductively coupled mass spectrometry (ICP–MS). Morphological studies showed that the TFC NF membranes had better thin-film formation (a more compact structure and a smoother surface) than TFN NF membranes. Performance experiments on TFC NF membranes revealed that permeability was good, without sacrificing salt rejection. The antibacterial properties of the fabricated membranes were tested using the disk diffusion method and viable plate counts. The antibiofouling properties of the membranes were examined by measuring the quantity of bacterial cells released from the biofilm formed (as a function of the amount of biofilm present). A more sensitive surface was observed compared to that of a typical antibacterial NF membrane. The Ag leaching rates were low, which will likely result in long-lasting antibacterial and biofouling resistant properties.  相似文献   

9.
Vibrio cholerae hemolysin (HlyA) is a pore-forming toxin that exists in two stable forms: a hemolytically active water-soluble monomer with a native molecular weight of 65,000 and a hemolytically inactive SDS-stable heptamer with the configuration of a transmembrane diffusion channel. Transformation of the monomer into the oligomer is spontaneous but very slow in the absence of interaction with specific membrane components like cholesterol and sphingolipids. In this report, we show that mild disruption of the native tertiary structure of HlyA by 1.75 M urea triggered rapid and quantitative conversion of the monomer to an oligomer. Furthermore, the HlyA monomer when unfolded in 8 M urea refolded and reconstituted on renaturation into the oligomer biochemically and functionally similar to the heptamer formed in target lipid bilayer, suggesting that the HlyA polypeptide had a strong propensity to adopt the oligomer as the stable native state in preference to the monomer. On the basis of our results, we propose that (a) the hemolytically active HlyA monomer represents a quasi-stable conformation corresponding to a local free energy minimum and the transmembrane heptameric pore represents a stable conformation corresponding to an absolute free energy minimum and (b) any perturbation of the native tertiary structure of the HlyA monomer causing relaxation of conformational constraints tends to promote self-assembly to the oligomer with membrane components playing at most an accessory role.  相似文献   

10.
胡蜂抗原5的研究进展   总被引:2,自引:0,他引:2  
胡蜂抗原 5 (Ag5 )是胡蜂毒液中的一种主要变应原 ,对胡蜂过敏病人有变态反应作用。它一般由约 2 0 4个氨基酸残基组成 ,分子量约为 2 3kDa。不同的抗原 5之间有抗原交叉反应活性 ,且活性大小不同。它的cDNA已被克隆 ,并以融合蛋白的形式在大肠杆菌中进行表达。但Ag5的生物功能至今还不清楚。由于Ag5有抗原交叉反应活性 ,因此可将其用于免疫治疗。此外 ,Ag5还可用于植物病虫害防治  相似文献   

11.
The immunogenicity and antigenicity of synthetic peptides (SP) derived from the sequences of a cell surface Ag of Streptococcus mutans were investigated in macaque monkeys. Immunization with the free peptides of 11, 17, and 21 residues failed to elicit serum antibodies or T cell responses. However, immunization with the SP17 and SP21 linked to tetanus toxoid (TT) as a carrier elicited serum antibodies and proliferative responses of lymphocytes, not only to the SP but also to the native streptococcal Ag. In vivo recall of SP-TT immunized monkeys with suboptimal doses of the native streptococcal Ag resulted in a significant increase in antibodies, both to the SP and the streptococcal Ag, confirming that the SP shares antigenic epitopes with the native Ag. B and T cell epitopes were then determined and a B cell epitope was found in residues 8-13, whereas an overlapping T cell epitope was located in residues 7-15. The T cell epitope has an amino-terminal leucine and carboxy-terminal glycine and alanine added to residues 8-13 of the B cell epitope. In spite of the B and T cell epitopes being expressed in SP17 (residues 1-15), the monomer failed to induce serum antibodies without a carrier. However, immunization with a dimer of SP17 elicited both serum antibodies and proliferative responses of lymphocytes without a carrier. The results suggest that the monomeric SP17 is not immunogenic and needs to be dimerised in order to elicit antibodies and T cell responses, both to the SP and to the streptococcal Ag.  相似文献   

12.
The effect of procaine hydrochloride, an anesthetic known to alter membrane structure, on the induced formation of alkaline phosphatase, a periplasmic enzyme, in Escherichia coli was investigated. Procaine hydrochloride specifically arrested the appearance of active alkaline phosphatase while permitting the induction of another enzyme, beta-galactosidase, which is internally localized. Evidence has been obtained to show that procaine hydrochloride does not arrest synthesis of inactive monomer subunits of the enzyme, indicating that the drug interferes in the conversion of monomer subunits to an active dimer enzyme.  相似文献   

13.
Helicases are thought to function as oligomers (generally dimers or hexamers). Here we demonstrate that although Escherichia coli DNA helicase II (UvrD) is capable of dimerization as evidenced by a positive interaction in the yeast two-hybrid system, gel filtration chromatography, and equilibrium sedimentation ultracentrifugation (Kd = 3.4 microM), the protein is active in vivo and in vitro as a monomer. A mutant lacking the C-terminal 40 amino acids (UvrDDelta40C) failed to dimerize and yet was as active as the wild-type protein in ATP hydrolysis and helicase assays. In addition, the uvrDDelta40C allele fully complemented the loss of helicase II in both methyl-directed mismatch repair and excision repair of pyrimidine dimers. Biochemical inhibition experiments using wild-type UvrD and inactive UvrD point mutants provided further evidence for a functional monomer. This investigation provides the first direct demonstration of an active monomeric helicase, and a model for DNA unwinding by a monomer is presented.  相似文献   

14.
The N-carboxyanhydride of δ-benzyl L -α-aminoadipate polymerizes when initiated by strong base through an “active monomer” mechanism. This is shown by the isolation of 6-oxo-L -pipecolic acid from the product mixture, since this byproduct could only arise from an “active monomer” pathway. This study also specifies conditions for preparing high molecular weight poly(δ-benzyl L -α-aminoadipate) in high yield.  相似文献   

15.
The enzyme β-galactosidase from Bacillus megaterium, strain KM has been purified by affinity chromatography. The enzyme was found to have a dimeric subunit structure, with the monomer having a molecular weight of 120,000. The Keq of the monomer-dimer equilibrium was strongly shifted towards dissociation in the isolated state. Inclusion of 5% sucrose in the buffer (and maintenance of the temperature at 5 °) minimized this dissociation. Molecularly homogeneous monomer and dimer could be prepared on sucrose gradients. The dimer was determined to have an S20,w of 8, while the monomer had an S20,w of 3. The amino acid composition was found to be similar to that of the E. coli β-galactosidase although significant differences occur. The activity of the monomer was studied by both urea-denaturation experiments and by immobilization of the monomer on Sepharose-4B. The monomer, bound to Sepharose-4B, was found to be inactive but still capable of binding the inhibitor thio-methyl galactoside. Activity was reconstituted by adding free monomer, in 8 M urea, to the Sepharose-bound monomer, followed by removal of the urea by dialysis. In addition, free monomers from E. coli β-galactosidase were found to form active hybrids with Sepharose-bound B. megaterium β-galactosidase monomers. We conclude on the basis of these studies that the free monomer is inactive, and that the dimer is the active species, in marked contrast to E. coli β-galactosidase where only the tetrameric form is active.  相似文献   

16.
Each subunit of the liver alcohol dehydrogenase dimer contains one catalytic and one structural Zn(II) atom. Enzyme with the catalytic metal atoms selectively removed is inactive but can be partly reactivated in the presence of Ag(I) ions. Reactivation results from Ag(1) ions entering the empty metal-binding site in the catalytic center. The specific activity of this silver enzyme reached 24% of the native enzyme. Atomic absorption analysis gave equal amounts of Ag(I) and Zn(II), corresponding to one mole of each metal per monomer. Metal-directed affinity labelling using bromo-imidazolyl propionate showed that the properties of the silver-reactivated enzyme were distinct from those of the native enzyme.  相似文献   

17.
The monomer form of BK virus (BKV) tumor antigen (T Ag) was immunoprecipitated from extracts of BKV-transformed cells and had a molecular weight of approximately 113,000. This compared with 97,000 for the molecular weight of either BKV or simian virus 40 (SV40) T Ag from lytically infected cells. The SV40 and BKV T Ag's from productively infected cells were compared by examining their methionine-labeled tryptic peptides. Out of a total of 20 SV40-and 21 BKV-specific peptides, there were seven pairs of similar peptides on the basis of ion-exchange chromatography, These coeluting peptides contained approximately 25 to 30% of the total methionine radioactivity. Similar results were obtained when the tryptic peptides of SV40 T Ag from lytically infected cells were compared with those of BKV T Ag from virally transformed cells.  相似文献   

18.
Factors affecting the oligomeric structure of yeast external invertase   总被引:4,自引:0,他引:4  
It has been assumed that yeast external invertase is a dimer, with each subunit composed of a 60-kDa polypeptide chain. We now present evidence that at its optimal pH of 5.0, the predominant form of external invertase is an octamer with an average size of 8 X 10(5) Da. During ultracentrifugation the octamer dissociated to lower molecular weight forms, including a hexamer, tetramer, and dimer. All forms of the enzyme were shown to possess identical specific activities and to contain a similar carbohydrate to protein ratio. Although the monomer subunits (1 X 10(5) Da) were heterogenous in carbohydrate content, each subunit possessed nine oligosaccharide chains. When stained for protein and enzyme activity following sodium dodecyl sulfate-polyacrylamide gel electrophoresis, only the oligomeric form of the enzyme appeared to be active. Thus, on partially inactivating invertase with 4 M guanidine hydrochloride both octamer and monomer were evident on the gels but only the former was active. Similarly, incubating at pH 2.5 in the presence of sodium dodecyl sulfate yielded only inactive monomer. The monomer, unlike the active oligomeric aggregate, was unable to hydrolyze sucrose after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Consistent with the in vitro studies, freshly prepared yeast lysate was shown to contain the octameric species of external invertase as the major active form of this enzyme. From these studies and others which employed deglycosylated invertase, it is concluded that the carbohydrate component of external invertase contributes not only to stabilizing enzyme activity, but also to maintaining its oligomeric structure.  相似文献   

19.
The tetramer is the most important form for acetylcholinesterase in physiological conditions, i.e., in the neuromuscular junction and the nervous system. It is important to study the diffusion of acetylcholine to the active sites of the tetrameric enzyme to understand the overall signal transduction process in these cellular components. Crystallographic studies revealed two different forms of tetramers, suggesting a flexible tetramer model for acetylcholinesterase. Using a recently developed finite element solver for the steady-state Smoluchowski equation, we have calculated the reaction rate for three mouse acetylcholinesterase tetramers using these two crystal structures and an intermediate structure as templates. Our results show that the reaction rates differ for different individual active sites in the compact tetramer crystal structure, and the rates are similar for different individual active sites in the other crystal structure and the intermediate structure. In the limit of zero salt, the reaction rates per active site for the tetramers are the same as that for the monomer, whereas at higher ionic strength, the rates per active site for the tetramers are approximately 67%-75% of the rate for the monomer. By analyzing the effect of electrostatic forces on ACh diffusion, we find that electrostatic forces play an even more important role for the tetramers than for the monomer. This study also shows that the finite element solver is well suited for solving the diffusion problem within complicated geometries.  相似文献   

20.
Processing and presentation by Ag-specific B cells is initiated by Ag binding to the B cell Ag receptor (BCR). Cross-linking of the BCR by Ag results in a rapid targeting of the BCR and bound Ag to the MHC class II peptide loading compartment (IIPLC). This accelerated delivery of Ag may be essential in vivo during periods of rapid Ag-driven B cell expansion and T cell-dependent selection. Here, we use both immunoelectron microscopy and a nondisruptive protein chemical polymerization method to define the intracellular pathway of the targeting of Ags by the BCR. We show that following cross-linking, the BCR is rapidly transported through transferrin receptor-containing early endosomes to a LAMP-1+, beta-hexosaminadase+, multivesicular compartment that is an active site of peptide-class II complex assembly, containing both class II-invariant chain complexes in the process of invariant chain proteolytic removal as well as mature peptide-class II complexes. The BCR enters the class II-containing compartment as an intact mIg/Igalpha/Igbeta complex bound to Ag. The pathway by which the BCR targets Ag to the IIPLC appears not to be identical to that by which Ags taken up by fluid phase pinocytosis traffick, suggesting that the accelerated BCR pathway may be specialized and potentially independently regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号