首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During development, neurons migrate to the cortex radially from periventricular germinative zones as well as tangentially from ganglionic eminences. The vast majority of cortical neurons settle radially in the cortical plate. Neuronal migration requires an exquisite regulation of leading edge extension, nuclear translocation (nucleokinesis), and retraction of trailing processes. During the past few years, several genes and proteins have been identified that are implicated in neuronal migration. Many have been characterized by reference to known mechanisms of neuronal and non-neuronal cell migration in culture; however, probably the most interesting have been identified by gene inactivation or modification in mice and by positional cloning of brain malformation genes in humans and mice. Although it is impossible to provide a fully integrated view, some patterns clearly emerge and are the subject of this article. Specific emphasis is placed on three aspects: first, the role of the actin treadmill, with cyclic formation of filopodial and lamellipodial extensions, in relation to surface events that occur at the leading edge of radially migrating neurons; second, the regulation of microtubule dynamics, which seems to play a key role in nucleokinesis; and third, the mechanisms by which the extracellular protein Reelin regulates neuronal positioning at the end of migration.  相似文献   

2.
Mutations in the genes that encode filamin-1, Lis1 and doublecortin are responsible for X-linked lissencephaly in man, whereas mutations in the genes that encode Cdk5, its activator p35 and the reelin-signaling pathway disturb migration and architectonic development in mice. To understand the action of genes that control neuronal migration and the phenotype of corresponding defects, it might be as important to consider the positioning of the nucleus as it is to consider the guidance of the leading process.  相似文献   

3.
Haplo-insufficiency of human Lis1 causes lissencephaly. Reduced Lis1 activity in both humans and mice results in a neuronal migration defect. Here we show that Drosophila Lis1 is highly expressed in the nervous system. Lis1 is essential for neuroblast proliferation and axonal transport, as shown by a mosaic analysis using a Lis1 null mutation. Moreover, it is cell-autonomously required for dendritic growth, branching and maturation. Analogous mosaic analysis shows that neurons containing a mutated cytoplasmic-dynein heavy chain (Dhc64C) exhibit phenotypes similar to Lis1 mutants. These results implicate Lis1 as a regulator of the microtubule cytoskeleton and show that it is important for diverse physiological functions in the nervous system.  相似文献   

4.
Lissencephaly, which means 'smooth cortex', is caused by defective neuronal migration during development of the cerebral cortex and has devastating clinical consequences. 'Classical' lissencephaly seems to reflect mutations in regulators of the microtubule cytoskeleton, whereas 'cobblestone' lissencephaly is caused by mutations in genes needed for the integrity of the basal lamina of the central nervous system. Reelin, which is mutated in a third type of lissencephaly, may represent a unifying link because it encodes an extracellular protein that regulates neuronal migration and may also regulate the microtubule cytoskeleton.  相似文献   

5.
Humans with mutations in either DCX or LIS1 display nearly identical neuronal migration defects, known as lissencephaly. To define subcellular mechanisms, we have combined in vitro neuronal migration assays with retroviral transduction. Overexpression of wild-type Dcx or Lis1, but not patient-related mutant versions, increased migration rates. Dcx overexpression rescued the migration defect in Lis1+/- neurons. Lis1 localized predominantly to the centrosome, and after disruption of microtubules, redistributed to the perinuclear region. Dcx outlined microtubules extending from the perinuclear "cage" to the centrosome. Lis1+/- neurons displayed increased and more variable separation between the nucleus and the preceding centrosome during migration. Dynein inhibition resulted in similar defects in both nucleus-centrosome (N-C) coupling and neuronal migration. These N-C coupling defects were rescued by Dcx overexpression, and Dcx was found to complex with dynein. These data indicate Lis1 and Dcx function with dynein to mediate N-C coupling during migration, and suggest defects in this coupling may contribute to migration defects in lissencephaly.  相似文献   

6.
Nucleokinesis in neuronal migration   总被引:4,自引:0,他引:4  
Tsai LH  Gleeson JG 《Neuron》2005,46(3):383-388
Neuronal migration is a critical phase of nervous system development and can be divided into two distinct phases: extension of the leading process and movement of the cell body and nucleus (nucleokinesis). Nucleokinesis appears to require many of the same cytoskeletal and signaling molecules used in cell mitosis. Converging studies suggest it requires cytoplasmic dynein, cell polarity genes, and microtubule-associated proteins that coordinate microtubule remodeling. These coordinate first the positioning of the centrosome (microtubule organizing center) in the leading process in front of the nucleus and then the movement of the nucleus towards the centrosome. The positioning of the centrosome and the dynamic regulation that couples and uncouples the nucleus underlies directed migration of neurons.  相似文献   

7.
The embryonal carcinoma P19 cells provide a model to study neuronal differentiation. Cells that are exposed to retinoic acid become mature neurons within a few days with a pronounced axonal and dendritic polarity. Notably, an accelerated rate of neurite extension characterizes densely but not sparsely plated cells. DNA microarray experiments show maximal differences in gene expression of the dense compared to sparse plated cultures at 18 h after plating. The differentially expressed genes are enriched by functions of cell adhesion and cytoskeletal regulation. Doublecortin, Lis1, Reelin, Map2 and dozens of proteins that regulate cytoskeleton dynamics increase in concordance with a rapid neurite extension. A brief elevation in intracellular cAMP via PKA is sufficient to instigate the phenotype of accelerated neurite extension with no effect on P19 cell fate. Furthermore, we show that the cAMP dependent changes in the expression of cytoskeleton regulators such as doublecortin are restricted to a short time window prior to the establishment of functional neurons. We propose that the wave of gene expression of cytoskeletal regulators that is accompanied by accelerated neurite extension acts in remodeling young developing neurons in the CNS.  相似文献   

8.
Ndel1 and Nde1 are homologous and evolutionarily conserved proteins, with critical roles in cell division, neuronal migration, and other physiological phenomena. These functions are dependent on their interactions with the retrograde microtubule motor dynein and with its regulator Lis1--a product of the causal gene for isolated lissencephaly sequence (ILS) and Miller-Dieker lissencephaly. The molecular basis of the interactions of Ndel1 and Nde1 with Lis1 is not known. Here, we present a crystallographic study of two fragments of the coiled-coil domain of Ndel1, one of which reveals contiguous high-quality electron density for residues 10-166, the longest such structure reported by X-ray diffraction at high resolution. Together with complementary solution studies, our structures reveal how the Ndel1 coiled coil forms a stable parallel homodimer and suggest mechanisms by which the Lis1-interacting domain can be regulated to maintain a conformation in which two supercoiled alpha helices cooperatively bind to a Lis1 homodimer.  相似文献   

9.
Regulation of cytoplasmic dynein and microtubule dynamics is crucial for both mitotic cell division and neuronal migration. NDEL1 was identified as a protein interacting with LIS1, the protein product of a gene mutated in the lissencephaly. To elucidate NDEL1 function in vivo, we generated null and hypomorphic alleles of Ndel1 in mice by targeted gene disruption. Ndel1(-/-) mice were embryonic lethal at the peri-implantation stage like null mutants of Lis1 and cytoplasmic dynein heavy chain. In addition, Ndel1(-/-) blastocysts failed to grow in culture and exhibited a cell proliferation defect in inner cell mass. Although Ndel1(+/-) mice displayed no obvious phenotypes, further reduction of NDEL1 by making null/hypomorph compound heterozygotes (Ndel1(cko/-)) resulted in histological defects consistent with mild neuronal migration defects. Double Lis1(cko/+)-Ndel1(+/-) mice or Lis1(+/-)-Ndel1(+/-) mice displayed more severe neuronal migration defects than Lis1(cko/+)-Ndel1(+/)(+) mice or Lis1(+/-)-Ndel1(+/+) mice, respectively. We demonstrated distinct abnormalities in microtubule organization and similar defects in the distribution of beta-COP-positive vesicles (to assess dynein function) between Ndel1 or Lis1-null MEFs, as well as similar neuronal migration defects in Ndel1- or Lis1-null granule cells. Rescue of these defects in mouse embryonic fibroblasts and granule cells by overexpressing LIS1, NDEL1, or NDE1 suggest that NDEL1, LIS1, and NDE1 act in a common pathway to regulate dynein but each has distinct roles in the regulation of microtubule organization and neuronal migration.  相似文献   

10.
Neuronal migration, like the migration of many cell types, requires an extensive rearrangement of cell shape, mediated by changes in the cytoskeleton. The genetic analysis of human brain malformations has identified several biochemical players in this process, including doublecortin (DCX) and LIS1, mutations of which cause a profound migratory disturbance known as lissencephaly ('smooth brain') in humans. Studies in mice have identified additional molecules such as Cdk5, P35, Reelin, Disabled and members of the LDL superfamily of receptors. Understanding the cell biology of these molecules has been a challenge, and it is not known whether they function in related biochemical pathways or in very distinct processes. The last year has seen rapid advances in the biochemical analysis of several such molecules. This analysis has revealed roles for some of these molecules in cytoskeletal regulation and has shown an unexpected conservation of the genetic pathways that regulate neuronal migration in humans and nuclear movement in simple eukaryotic organisms.  相似文献   

11.
Whereas total loss of Lis1 is lethal, disruption of one allele of the Lis1 gene results in brain abnormalities, indicating that developing neurons are particularly sensitive to a reduction in Lis1 dosage. Here we show that Lis1 is enriched in neurons relative to levels in other cell types, and that Lis1 interacts with the microtubule motor cytoplasmic dynein. Production of more Lis1 in non-neuronal cells increases retrograde movement of cytoplasmic dynein and leads to peripheral accumulation of microtubules. These changes may reflect neuron-like dynein behaviours induced by abundant Lis1. Lis1 deficiency produces the opposite phenotype. Our results indicate that abundance of Lis1 in neurons may stimulate specific dynein functions that function in neuronal migration and axon growth.  相似文献   

12.
Doublecortin (Dcx) is a microtubule-associated protein that is mutated in X-linked lissencephaly (X-LIS), a neuronal migration disorder associated with epilepsy and mental retardation. Although Dcx can bind ubiquitously to microtubules in nonneuronal cells, Dcx is highly enriched in the leading processes of migrating neurons and the growth cone region of differentiating neurons. We present evidence that Dcx/microtubule interactions are negatively controlled by Protein Kinase A (PKA) and the MARK/PAR-1 family of protein kinases. In addition to a consensus MARK site, we identified a serine within a novel sequence that is crucial for the PKA- and MARK-dependent regulation of Dcx's microtubule binding activity in vitro. This serine is mutated in two families affected by X-LIS. Immunostaining neurons with an antibody that recognizes phosphorylated substrates of MARK supports the conclusion that Dcx localization and function are regulated at the leading edge of migrating cells by a balance of kinase and phosphatase activity.  相似文献   

13.
14.
Pawlisz AS  Feng Y 《PLoS biology》2011,9(10):e1001172
Radial glial cells (RGCs) are distinctive neural stem cells with an extraordinary slender bipolar morphology and dual functions as precursors and migration scaffolds for cortical neurons. Here we show a novel mechanism by which the Lis1-Nde1 complex maintains RGC functions through stabilizing the dystrophin/dystroglycan glycoprotein complex (DGC). A direct interaction between Nde1 and utrophin/dystrophin allows for the assembly of a multi-protein complex that links the cytoskeleton to the extracellular matrix of RGCs to stabilize their lateral membrane, cell-cell adhesion, and radial morphology. Lis1-Nde1 mutations destabilized the DGC and resulted in deformed, disjointed RGCs and disrupted basal lamina. Besides impaired RGC self-renewal and neuronal migration arrests, Lis1-Nde1 deficiencies also led to neuronal over-migration. Additional to phenotypic resemblances of Lis1-Nde1 with DGC, strong synergistic interactions were found between Nde1 and dystroglycan in RGCs. As functional insufficiencies of LIS1, NDE1, and dystroglycan all cause lissencephaly syndromes, our data demonstrated that a three-dimensional regulation of RGC's cytoarchitecture by the Lis1-Nde1-DGC complex determines the number and spatial organization of cortical neurons as well as the size and shape of the cerebral cortex.  相似文献   

15.
T Sapir  M Elbaum    O Reiner 《The EMBO journal》1997,16(23):6977-6984
Forming the structure of the human brain involves extensive neuronal migration, a process dependent on cytoskeletal rearrangement. Neuronal migration is believed to be disrupted in patients exhibiting the developmental brain malformation lissencephaly. Previous studies have shown that LIS1, the defective gene found in patients with lissencephaly, is a subunit of the platelet-activating factor acetylhydrolase. Our results indicated that LIS1 has an additional function. By interacting with tubulin it suppresses microtubule dynamics. We detected LIS1 interaction with microtubules by immunostaining and co-assembly. LIS1-tubulin interactions were assayed by co-immunoprecipitation and by surface plasmon resonance changes. Microtubule dynamic measurements in vitro indicated that physiological concentrations of LIS1 indeed reduced microtubule catastrophe events, thereby resulting in a net increase in the maximum length of the microtubules. Furthermore, the LIS1 protein concentration in the brain, measured by quantitative Western blots, is high and is approximately one-fifth of the concentration of brain tubulin. Our new findings show that LIS1 is a protein exhibiting several cellular interactions, and the interaction with the cytoskeleton may prove to be the mode of transducing a signal generated by platelet-activating factor. We postulate that the LIS1-cytoskeletal interaction is important for neuronal migration, a process that is defective in lissencephaly patients.  相似文献   

16.
17.
The large extracellular matrix protein Reelin is produced by Cajal-Retzius neurons in specific regions of the developing brain, where it controls neuronal migration and positioning. Genetic evidence suggests that interpretation of the Reelin signal by migrating neurons involves two neuronal cell surface proteins, the very low density lipoprotein receptor (VLDLR) and the apoE receptor 2 (ApoER2) as well as a cytosolic adaptor protein, Disabled-1 (Dab1). We show that Reelin binds directly and specifically to the ectodomains of VLDLR and ApoER2 in vitro and that blockade of VLDLR and ApoER2 correlates with loss of Reelin-induced tyrosine phosphorylation of Disabled-1 in cultured primary embryonic neurons. Furthermore, mice that lack either Reelin or both VLDLR and ApoER2 exhibit hyperphosphorylation of the microtubule-stabilizing protein tau. Taken together, these findings suggest that Reelin acts via VLDLR and ApoER2 to regulate Disabled-1 tyrosine phosphorylation and microtubule function in neurons.  相似文献   

18.
Following terminal mitosis, neuronal precursor cells leave their site of origin and migrate towards their definitive site of residency. In order to establish the intricate cytoarchitecture described in the adult human brain, neuronal migration must be finely regulated. In humans, brain malformations can result from neuronal migration defects. The spectrum of migration disorder severity extends from few heterotopic neurons, as observed in periventricular heterotopia, to a complete cortical disorganization, as observed in cases of lissencephaly. Recently, specific migration disorders have been linked to mutations/deletions in the doublecortin, filamin-1, LIS1 and reelin genes. These proteins act at different levels of the signaling cascades transducing extracellular guiding cues into cytoskeletal reorganization. Here, we summarize the data concerning these four molecules and speculate on their functions and interaction partners during neuronal development.  相似文献   

19.
Human brain malformations, such as Miller-Dieker syndrome (MDS) or isolated lissencephaly sequence (ILS) may result from abnormal neuronal migration during brain development. MDS and ILS patients have a hemizygous deletion or mutation in the LIS1 gene (PAFAH1B1), therefore, the LIS1 encoded protein (Lis1) may play a role in neuronal migration. Lis1 is a subunit of a brain platelet-activating factor acetylhydrolase (PAFAH1B) where it forms a heterotrimeric complex with two hydrolase subunits, referred to as 29 kDa (PAFAH1B3) and 30 kDa (PAFAH1B2). In order to determine whether this heterotrimer is required for the developmental functions of PAFAH1B, we examined the binding properties of 29 and 30 kDa subunits to mutant Lis1 proteins. The results defined the critical regions of Lis1 for PAFAH1B complex formation and demonstrated that all human LIS1 mutations examined resulted in abolished or reduced capacity of Lis1 to interact with the 29 and 30 kDa subunits, suggesting that the PAFAH1B complex participates in the process of neuronal migration.  相似文献   

20.
Lissencephaly is a devastating neurological disorder due to defective neuronal migration. LIS1 (or PAFAH1B1), the gene mutated in lissencephaly patients and its binding protein NDEL1 were found to regulate cytoplasmic dynein function and localization. LIS1 and NDEL1 also play a pivotal role on a microtubule regulation and determination of cell polarity. For example, LIS1 is required for the precise control of mitotic spindle orientation in both neuroepithelial stem cells and radial glial progenitor cells. On the other hand, NDEL1 is essential for mitotic entry as an effector molecule of Aurora-A kinase. In addition, an atypical protein kinase C (aPKC)-Aurora-A-NDEL1 pathway is critical for the regulation of microtubule organization during neurite extension. These findings suggest that physiological functions of LIS1 and NDEL1 in neurons have been ascribed for proteins fundamentally required for cell cycle progression and control. In turn, cell cycle regulators may exert other functions during neurogenesis in a direct or an indirect fashion. Thus far, only a handful of cell cycle regulators have been shown to play physiological cell-cycle-independent roles in neurons. Further identification of such proteins and elucidation of their underlying mechanisms of action will likely reveal novel concepts and/or patterns that provide a clear link between their seemingly distinct cell cycle and neuronal functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号