首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two tryptophan pyrolysis products, Trp-P-1 and Trp-P-2 were assayed in the SOS-chromotest using PQ 37 (uvr A) and PQ 35 (uvr+) E. coli K12 strains, in the presence of S9 fraction from Aroclor-induced rats. Both compounds were able to induce the expression of SOS functions in uvr A bacteria, in the following order: Trp-P-1 less than Trp-P-2 less than aflatoxin B1, at low concentrations (less than 125 ng/assay). In this range, the induction of SOS functions was significantly decreased in the uvr+ strain. This implies that the uvr gene product plays an important role in the repair of genotoxic damage induced by Trp-P-1 and Trp-P-2. At higher concentrations (125-500 ng/assay), Trp-P-1 became more efficient in inducing SOS functions than Trp-P-2 and excision repair was less efficient than at low concentration.  相似文献   

2.
S V Vasil'eva  T E Gorb  I A Rapoport 《Genetika》1983,19(12):1952-1957
The development of "SOS" inducible functions in lysogenic and non-lysogenic strains of Escherichia coli tif-1 sfiA11 (lambda) at nonpermissive temperature of 42 degrees C was strongly suppressed by para-aminobenzoic acid (PABA). The rate of prophage lambda induction decreased 400 times, as compared to the control level; the efficiency of W-reactivation of UV-irradiated phage lambda decreased 37.5 to 16%. PABA also inhibited to some extent (1.5 times) the process of inducible recombination on the RecF pathway. The processes of spontaneous lambda induction and W-reactivation, as well as spontaneous recombination on RecBC and RecF pathways, were not influenced by PABA. The above data are in accordance with previous studies of PABA action when the manifestation of "SOS" functions was induced by chemical mutagens. The action of PABA has been tentatively interpreted on the basis of negative control of "SOS" repair pathway.  相似文献   

3.
4.
RecA is essential for recombination, DNA repair and SOS induction in Escherichia coli . ATP hydrolysis is known to be important for RecA's roles in recombination and DNA repair. In vitro reactions modelling SOS induction minimally require ssDNA and non-hydrolyzable ATP analogues. This predicts that ATP hydrolysis will not be required for SOS induction in vivo . The requirement of ATP binding and hydrolysis for SOS induction in vivo is tested here through the study of recA4159 (K72A) and recA2201 (K72R). RecA4159 is thought to have reduced affinity for ATP. RecA2201 binds, but does not hydrolyse ATP. Neither mutant was able to induce SOS expression after UV irradiation. RecA2201, unlike RecA4159, could form filaments on DNA and storage structures as measured with RecA–GFP. RecA2201 was able to form hybrid filaments and storage structures and was either recessive or dominant to RecA+, depending on the ratio of the two proteins. RecA4159 was unable to enter RecA+ filaments on DNA or storage structures and was recessive to RecA+. It is concluded that ATP hydrolysis is essential for SOS induction. It is proposed that ATP binding is essential for storage structure formation and ability to interact with other RecA proteins in a filament.  相似文献   

5.
6.
Suppressors of recF (srfA) were found by selection for resistance to mitomycin C and UV irradiation in a recB21 recC22 sbcB15 recF143 strain. srfA mutations map in recA and are dominant to srfA+. They suppress both the DNA repair and the recombination deficiencies due to recF mutations. Therefore, RecA protein which is altered by the srfA mutation can allow genetic recombination to proceed in the absence of recB, recC, and recF functions. recF is also required for induction of the SOS response after UV damage. We propose that recF+ normally functions to allow the expression of two recA activities, one that is required for the RecF pathway of recombination and another that is required for SOS induction. The two RecA activities are different and are separable by mutation since srfA mutations permit recombination to proceed but have not caused a dramatic increase in SOS induction in recF mutants. According to this hypothesis, one role for recF in DNA repair and recombination is to modulate RecA activities to allow RecA to participate in these recF-dependent processes.  相似文献   

7.
S Boiteux  O Huisman    J Laval 《The EMBO journal》1984,3(11):2569-2573
The induction by methylating agents of the SOS function sfiA was measured by means of a sfiA::lac operon fusion in Escherichia coli mutants defective in alkylation repair. The sfiA operon was turned on at a 10-fold lower concentration of methylmethane sulfonate or dimethyl sulfate in tagA strains, lacking specific 3-methyladenine-DNA glycosylase, than in wild-type strains. In contrast, the induction of sfiA by u.v. light was not affected by a tagA mutation. We confirm that tagA strains specifically accumulate 3-methyladenine in their DNA. We conclude that the persistence of 3-methyladenine in E. coli DNA most likely induces the SOS functions. Results on in vitro DNA synthesis further suggest that this induction is due to an unscheduled arrest of DNA synthesis at this lesion.  相似文献   

8.
Regulation of the SOS response analyzed by RecA protein amplification.   总被引:1,自引:1,他引:0  
A split UV light dose procedure was used in Escherichia coli to induce an SOS function, RecA protein amplification, which was measured by an immunoradiometric assay. The SOS system was partially induced after the first UV irradiation, and the inducing effects of subsequent identical UV doses were quantified. Variations in the inducing effects of successive UV doses were related to modulations of the SOS signal level during SOS induction. A reduction in the level of SOS signal was found after 20 min in the wild-type strain, hypothesized to result from negative control of repair functions. A few DNA repair mutants were tested by the same procedure; the uvrA, recF, and umuC genes were involved in SOS induction control, but we found differences in their respective kinetics of expression. On the contrary, in a recB mutant, only a slight effect was obtained on this control.  相似文献   

9.
The SOS system   总被引:2,自引:0,他引:2  
R d'Ari 《Biochimie》1985,67(3-4):343-347
In the bacterium Escherichia coli DNA damaging treatments such as ultraviolet or ionizing radiation induce a set of functions called collectively the SOS response, reviewed here. The regulation of the SOS response involves a repressor, the LexA protein, and an inducer, the RecA protein. After DNA damage an effector molecule is produced--possibly single stranded DNA--which activates the RecA protein to a form capable of catalysing proteolytic cleavage of LexA. The repressors of certain temperate prophages are cleaved under the same conditions, resulting in lysogenic induction. SOS functions are involved in DNA repair and mutagenesis, in cell division inhibition, in recovery of normal physiological conditions after the DNA damage is repaired, and possibly in cell death when DNA damage is too extensive. The SOS response also includes several chromosomal genes of unknown function, a number of plasmid encoded genes (bacteriocins, mutagenesis), and lysogenic induction of certain prophages. DNA damaging treatments seem to induce DNA repair and mutagenic activities and proviral development in many species, including mammalian cells. In general, substances which are genotoxic to higher eukaryotes induce the SOS response in bacteria. This correlation is the basis of the numerous bacterial tests for genotoxicity and carcinogenicity.  相似文献   

10.
Thymineless death (TLD) is the rapid loss of viability in bacterial, yeast, and human cells starved of thymine. TLD is the mode of action of common anticancer drugs and some antibiotics. TLD in Escherichia coli is accompanied by blocked replication and chromosomal DNA loss and recent work identified activities of recombination protein RecA and the SOS DNA-damage response as causes of TLD. Here, we examine the basis of hypersensitivity to thymine deprivation (hyper-TLD) in mutants that lack the UvrD helicase, which opposes RecA action and participates in some DNA repair mechanisms, RecBCD exonuclease, which degrades double-stranded linear DNA and works with RecA in double-strand-break repair and SOS induction, and RuvABC Holliday-junction resolvase. We report that hyper-TLD in uvrD cells is partly RecA dependent and cannot be attributed to accumulation of intermediates in mismatch repair or nucleotide-excision repair. These data imply that both its known role in opposing RecA and an additional as-yet-unknown function of UvrD promote TLD resistance. The hyper-TLD of ruvABC cells requires RecA but not RecQ or RecJ. The hyper-TLD of recB cells requires neither RecA nor RecQ, implying that neither recombination nor SOS induction causes hyper-TLD in recB cells, and RecQ is not the sole source of double-strand ends (DSEs) during TLD, as previously proposed; models are suggested. These results define pathways by which cells resist TLD and suggest strategies for combating TLD resistance during chemotherapies.  相似文献   

11.
In contrast to earlier reports (Mohn et al., 1980; Glickman, 1982), we show that E. coli dam- cells are able to mutate following MMS treatment. Since the mutagenicity of MMS has been regarded as largely dependent on induction of the SOS functions, E. coli strains bearing the recA::lacZ or umuC::lacZ fusions were used to determine the ability of MMS to induce the SOS functions in the various dam+ and dam- strains. The mutagenicity of MMS was also tested in several of these strains. The results show that (i) there is no direct correlation between SOS-inducing ability and mutagenicity potency of MMS; and (ii) most of the premutagenic lesions induced by MMS are removed from DNA of dam+ or dam- cells by the mismatch repair system. The role of strand breaks in repair of mismatches induced by alkylating agents is discussed.  相似文献   

12.
The inducible SOS response for DNA repair and mutagenesis in the bacterium Bacillus subtilis resembles the extensively characterized SOS system of Escherichia coli. In this report, we demonstrate that the cellular repressor of the E. coli SOS system, the LexA protein, is specifically cleaved in B. subtilis following exposure of the cells to DNA-damaging treatments that induce the SOS response. The in vivo cleavage of LexA is dependent upon the functions of the E. coli RecA protein homolog in B. subtilis (B. subtilis RecA) and results in the same two cleavage fragments as produced in E. coli cells following the induction of the SOS response. We also show that a mutant form of the E. coli RecA protein (RecA430) can partially substitute for the nonfunctional cellular RecA protein in the B. subtilis recA4 mutant, in a manner consistent with its known activities and deficiencies in E. coli. RecA430 protein, which has impaired repressor cleaving (LexA, UmuD, and bacteriophage lambda cI) functions in E.coli, partially restores genetic exchange to B. subtilis recA4 strains but, unlike wild-type E. coli RecA protein, is not capable of inducing SOS functions (expression of DNA damage-inducible [din::Tn917-lacZ] operons or RecA synthesis) in B. subtilis in response to DNA-damaging agents or those functions that normally accompany the development of physiological competence. Our results provide support for the existence of a cellular repressor in B. subtilis that is functionally homologous to the E. coli LexA repressor and suggest that the mechanism by which B. subtilis RecA protein (like RecA of E. coli) becomes activated to promote the induction of the SOS response is also conserved.  相似文献   

13.
The recF and priA genes have roles in DNA repair and homologous recombination. Mutations in these genes also cause decreases in cell viability and alterations in UV-inducible sulAp–lacZ (SOS) expression. To find out if the two genes are in the same or different pathways for viability and SOS expression, the phenotypes of the double mutant strains were studied. The recF priA double mutant showed a lower viability and SOS expression level than either of the single mutants. In the case of cell viability, recF missense mutations decreased viability of a priA2 :: kan strain two to fivefold whereas recF null priA2 :: kan double mutants were not viable at all. dnaC809 , a mutation that suppresses the UV-sensitive (UVS) and Rec phenotypes of priA2 :: kan , restored cell viability, but not UV-inducible SOS expression, to a priA recF strain. Since recF is epistatic with recO and recR ( recOR ) for UV resistance, recOR mutations were also tested with priA2 :: kan . No overlap was found between recOR and priA for viability and SOS expression. It is concluded that priA and recF have two different overlapping functions in viability and SOS expression that are distinguishable by the effects of dnaC809 . The role of recF in a priA2 :: kan strain in cell viability is a new function for recF and unlike recF  's other roles in DNA repair and recombination, is independent of recOR . A new role for priA in UV-inducible SOS expression in a recF mutant is also defined.  相似文献   

14.
C Lesca  C Petit  M Defais 《Biochimie》1991,73(4):407-409
The SOS response is induced in E coli following treatments that interfere with DNA replication. The response is under the control of the recA and the lexA genes. Strains defective in LexA repressor constitutively express SOS proteins. However, SOS repair does not reach its maximum level in these strains. Instead, an activation of RecA protein and de novo protein synthesis are required for full repair. We have analyzed by 2-dimensional gel electrophoresis the induction of proteins after UV irradiation of lexA(Def) bacteria. Proteins which might participate in SOS repair are induced under these conditions.  相似文献   

15.
Chromosomal DNA is exposed to continuous damage and repair. Cells contain a number of proteins and specific DNA repair systems that help maintain its correct structure. The SOS response was the first DNA repair system described in Escherichia coli induced upon treatment of bacteria with DNA damaging agents arrest DNA replication and cell division. Induction of the SOS response involves more than forty independent SOS genes, most of which encode proteins engaged in protection, repair, replication, mutagenesis and metabolism of DNA. Under normal growth conditions the SOS genes are expressed at a basal level, which increases distinctly upon induction of the SOS response. The SOS-response has been found in many bacterial species (e.g., Salmonella typhimurium, Caulobacter crescentus, Mycobacterium tuberculosis), but not in eukaryotic cells. However, species from all kingdoms contain some SOS-like proteins taking part in DNA repair that exhibit amino acid homology and enzymatic activities related to those found in E. coli. but are not organized in an SOS system. This paper presents a brief up-to-date review describing the discovery of the SOS system, the physiology of SOS induction, methods for its determination, and the role of some SOS-induced genes.  相似文献   

16.
We analyzed the Bacillus subtilis SOS response using Escherichia coli LexA protein as a probe to measure the kinetics of SOS activation and DNA repair in wild-type and DNA repair-deficient strains. By examining the effects of DNA-damaging agents that produce the SOS inducing signal in E. coli by three distinct pathways, we obtained evidence that the nature of the SOS inducing signal has been conserved in B. subtilis. In particular, we used the B. subtilis DNA polymerase III inhibitor, 6-(p-hydroxyphenylazo)-uracil, to show that DNA replication is required to generate the SOS inducing signal following UV irradiation. We also present evidence that single-stranded gaps, generated by excision repair, serve as part of the UV inducing signal. By assaying the SOS response in B. subtilis dinA, dinB, and dinC mutants, we identified distinct deficiencies in SOS activation and DNA repair that suggest roles for the corresponding gene products in the SOS response.  相似文献   

17.
DNA损伤修复(SOS反应)是细菌适应环境、抵抗外界压力和修复自身损伤的重要机制.为了解SOS反应的过程,全面揭示细菌生存机制,本研究对DNA损伤修复的过程、调节及适应性变化进行文献综述.结果 表明,内源和外源的诸多压力都可以激活SOS反应,抗生素是激活该反应的主要因素.RecA在感知外界压力和系统启动过程中发挥重要作...  相似文献   

18.
Inducibility of error-prone DNA repair in yeast?   总被引:3,自引:0,他引:3  
Whereas some experimental evidence suggests that mutagenesis in yeast after treatment with DNA-damaging agents involves inducible functions, a general-acting error-prone repair activity analogous to the SOS system of Escherichia coli has not yet been demonstrated. The current literature on the problem of inducibility of mutagenic repair in yeast is reviewed with emphasis on the differences in the experimental procedures applied.  相似文献   

19.
The genotoxic effect of 8-methoxypsoralen damages (monoadducts and crosslinks) on plasmid DNA was studied. pBR322 DNA was treated with several concentrations of 8-methoxypsoralen plus fixed UVA light irradiation. After transformation into E. coli cells with different repair capacities (uvrA, recA and wild-type), plasmid survival and mutagenesis in ampicillin- and tetracycline-resistant genes were analysed. Results showed that crosslinks were extremely lethal in all 3 strains; indeed, it seemed that they were not repaired even in proficient bacteria. Monoadducts were also found to be lethal although they were removed to some extent by the excision-repair pathway (uvrA-dependent). Damaged plasmid DNA appeared to induce mutagenic repair, but only in the wild-type strain. In order to study the influence of the SOS response on plasmid recovery, preirradiation of the host cells was also performed. Preirradiation of the uvrA or wild-type strains significantly increased plasmid recovery. Consistent with the expectations of SOS repair, no effect was observed in preirradiated recA cells. Plasmid recovery in the excision-deficient strain was mainly achieved by the mutagenic repair of some fraction of the lesions, probably monoadducts. The greatest increase in plasmid recovery was found in the wild-type strain. This likely involved the repair of monoadducts and some fraction of the crosslinks. We conclude that repair in preirradiated repair-proficient cells is carried out mainly by an error-free pathway, suggesting enhancement of the excision repair promoted by the induction of SOS functions.  相似文献   

20.
The activated form of the RecA protein (RecA) is known to be involved in the reactivation and mutagenesis of UV-irradiated bacteriophage lambda and in the expression of the SOS response in Escherichia coli K-12. The expression of the SOS response requires cleavage of the LexA repressor by RecA and the subsequent expression of LexA-controlled genes. The evidence presented here suggests that RecA induces the expression of a gene(s) that is not under LexA control and that is also necessary for maximal repair and mutagenesis of damaged phage. This conclusion is based on the chloramphenicol sensitivity of RecA -dependent repair and mutagenesis of damaged bacteriophage lambda in lexA(Def) hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号