首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The suprachiasmatic nucleus (SCN) of the hypothalamus is implicated in the timing of a wide variety of circadian processes. Since the environmental light-dark cycle is the main zeitgeber for many of the rhythms, photic information may have a synchronizing effect on the endogenous clock of the SCN by inducing periodic changes in the biological activity of certain groups of neurons. By studying the brains obtained at autopsy of human subjects, marked diurnal oscillations were observed in the neuropeptide content of the SCN. Vasopressin, for example, one of the most abundant peptides in the human SCN, exhibited a diurnal rhythm, with low values at night and peak values during the early morning. However, with advancing age, these diurnal fluctuations deteriorated, leading to a disrupted cycle with a reduced amplitude in elderly people. These findings suggest that the synthesis of some peptides in the human SCN exhibits an endogenous circadian rhythmicity, and that the temporal organization of these rhythms becomes progressively disturbed in senescence. (Chronobiology International, 17(3), 245-259, 2000)  相似文献   

2.
In order for any organism to function properly, it is crucial that it be table to control the timing of its biological functions. An internal biological clock, located, in mammals, in the suprachiasmatic nucleus of the hypothalamus (SCN), therefore carefully guards this temporal homeostasis by delivering its message of time throughout the body. In view of the large variety of body functions (behavioral, physiological, and endocrine) as well as the large variety in their preferred time of main activity along the light:dark cycle, it seems logical to envision different means of time distribution by the SCN. In the present review, we propose that even though it presents a unimodal circadian rhythm of general electrical and metabolic activity, the SCN seems to use several sorts of output connections that are active at different times along the light: dark cycle to control the rhythmic expression of different body functions. Although the SCN is suggested to use diffusion of synchronizing factors in the rhythmic control of behavioral functions, it also needs neuronal connections for the control of endocrine functions. The distribution of the time-of-day message to neuroendocrine systems is either directly onto endocrine neurons or via intermediate neurons located in specific SCN targets. In addition, the SCN uses its connections with the autonomic nervous system for spreading its time-of-day message, either by setting the sensitivity of endocrine glands (i.e., thyroid, adrenal, ovary) or by directly controlling an endocrine output (i.e., melatonin synthesis). Moreover, the SCN seems to use different neurotransmitters released at different times along the light: dark cycle for each of the different connection types presented. Clearly, the temporal homeostasis of endocrine functions results from a diverse set of biological clock outputs.  相似文献   

3.
《Chronobiology international》2013,30(10):1289-1299
The central circadian clock of the mammalian brain resides in the suprachiasmatic nucleus (SCN) of the hypothalamus. At the molecular level, the circadian clockwork of the SCN constitutes a self-sustained autoregulatory feedback mechanism reflected by the rhythmic expression of clock genes. However, recent studies have shown the presence of extrahypothalamic oscillators in other areas of the brain including the cerebellum. In the present study, the authors unravel the cerebellar molecular clock by analyzing clock gene expression in the cerebellum of the rat by use of radiochemical in situ hybridization and quantitative real-time polymerase chain reaction. The authors here show that all core clock genes, i.e., Per1, Per2, Per3, Cry1, Cry2, Clock, Arntl, and Nr1d1, as well as the clock-controlled gene Dbp, are expressed in the granular and Purkinje cell layers of the cerebellar cortex. Among these genes, Per1, Per2, Per3, Cry1, Arntl, Nr1d1, and Dbp were found to exhibit circadian rhythms in a sequential temporal manner similar to that of the SCN, but with several hours of delay. The results of lesion studies indicate that the molecular oscillatory profiles of Per1, Per2, and Cry1 in the cerebellum are controlled, though possibly indirectly, by the central clock of the SCN. These data support the presence of a circadian oscillator in the cortex of the rat cerebellum. (Author correspondence: )  相似文献   

4.
ABSTRACT

Background: Propofol anesthesia triggers phase-advances of circadian rhythms controlled by the suprachiasmatic nuclei (SCN), the master clock. Besides, inhalational anesthesia has been associated with a subsequent reduction of Per2 mRNA levels in the whole brain of rodents. The acute effects of propofol anesthesia per se on the SCN molecular clockwork remain unclear. Here we aim to study the expression of Per1 and Per2 clock genes in the SCN of rats exposed to constant darkness after a single dose of propofol. Methods: Thirty 2-months old rats were randomly divided into 2 groups receiving a single dose of either 120 mg/kg propofol 1% (n=15), or intralipid® 10% (n=15) in late day (projected circadian time (CT) 10, i.e., 10h after the expected time of lights on). Thereafter, rat brains were sampled in darkness 1h, 2h or 3h after the treatment (projected CT11, CT12 or CT13). Expression of Per1 and Per2 mRNA was analyzed by in situ hybridization in SCN coronal sections. Results: Per1 expression was affected by time and treatment. Per1 expression in the SCN after propofol treatment decreased at CT11 and CT12 when compared to the vehicle group. For Per2 expression, we observed only a treatment effect. Observed in dark conditions without hypothermia or/and concomitant surgery, such down-regulation of clock genes Per is only correlated to propofol treatment. This may explain “jet-lag-like” symptoms described by patients after anesthesia. Conclusion: We show here for the first time that short-term propofol anesthesia leads to a transient down-regulation of Per1 and Per2 expression in the SCN.  相似文献   

5.
The free-running period is regarded to be an exclusive feature of the endogenous circadian clock. Changes during aging in the free-running period may therefore reflect age-related changes in the internal organization of this clock. However, the literature on alterations in the free-running period in aging is not unequivocal. In the present study, with various confounding factors kept to a minimum, it was found that the free-running periods for active wakefulness, body temperature, and drinking behavior were significantly shorter (by 12-17 min) in old than in young rats. In addition, it was found that the day-to-day stability of the different sleep states was reduced in old rats, whereas that of the drinking rhythm was enhanced. Transient cycles were not observed, nor were there any age-related differences in daily totals of the various sleep-wake states. The amplitudes of the circadian rhythms of active wakefulness, quiet sleep, and temperature were reduced, whereas those of paradoxical sleep and quiet wakefulness remained unchanged.  相似文献   

6.
Plano SA  Agostino PV  Golombek DA 《FEBS letters》2007,581(28):5500-5504
Nocturnal light pulses induce phase shifts in circadian rhythms and activate cFos expression in the suprachiasmatic nuclei (SCN). We have studied the role of nitric oxide (NO) in the intercellular communication within the dorsal and ventral portions of the SCN in Syrian hamsters. Administration of the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide blocked photic phase advances in a dose-dependent manner and inhibited light-induced cFos-ir, without affecting light-induced circadian phase delays. These results suggest that NO may act as an intercellular messenger in the SCN, mediating light-induced phase advances.  相似文献   

7.
The circadian master clocks in the brains of mammals and insects are compared in respect to location, organization and function. They show astonishing similarities. Both clocks are anatomically and functionally connected to the optic system and possess multiple output pathways allowing synchronization with the environmental light-dark cycles as well as the control of diverse endocrine, autonomic and behavioral functions. Both circadian master clocks are composed of multiple neurons, which are organized in populations with different morphology, physiology and neurotransmitter content and appear to subserve different functions. In the hamster and in the cockroach, the master clock consists of a core region that gets input from the eyes, and a shell region from which the majority of output projections originate. Communication between core and shell, between all other populations of clock neurons as well as between the master clocks of both brain hemispheres is a prerequisite of normal rhythmic function. Phenomena like rhythm splitting and internal desynchronization can be observed under constant light conditions and are caused by the uncoupling of the master clocks of both brain hemispheres.  相似文献   

8.
An increased understanding of the factors affecting behavioral and neurological responses to alcohol and alcohol physiology is necessary given the tremendous toll alcohol abuse and alcoholism exert on individuals and society. At the behavioral and molecular levels, the response to alcohol appears remarkably conserved from Drosophila to humans, suggesting that investigations across model species can provide insight into the identification of common modulatory factors. We investigated the interaction between the circadian clock and alcohol sensitivity, alcohol tolerance, and alcohol absorbance in Drosophila melanogaster. Using a loss-of-righting reflex (LoRR) assay, we found that flies exhibit a circadian rhythm in the LoRR, with the greatest sensitivity to alcohol occurring from mid to late night, corresponding to the flies' inactive phase. As predicted, a circadian rhythm in the LoRR was absent in circadian mutant flies and under conditions in which the circadian clock was nonfunctional. Circadian modulation of the response to alcohol was not due to circadian regulation of alcohol absorbance. Similar to other animals, Drosophila develop acute and chronic tolerance to alcohol upon repeat exposures. We found that the circadian clock did not modulate the development of acute alcohol tolerance measured as the difference in sensitivity to alcohol between naïve and pre-exposed flies. Thus, the circadian clock modulates some, but not all, of the behavioral responses to alcohol exposure, suggesting that specific mechanisms underlie the observed circadian modulation of LoRR rather than global cellular circadian regulation. This study provides valuable new insights in our understanding of the circadian modulation of alcohol-induced behaviors that ultimately could facilitate preventative measures in combating alcohol abuse and alcoholism. (Author correspondence: )  相似文献   

9.
Several reports support the existence of multiple peripheral oscillators in fish, which may be able to modulate the rhythmic functions developed by those tissues hosting them. Thus, a circadian oscillator has been proposed to be located within fish liver. In this vertebrate group, the role played by the circadian system in regulating metabolic processes in liver is mostly unknown. We, therefore investigated the liver of rainbow trout (Oncorhynchus mykiss) as a potential element participating in the regulation of circadian rhythms in fish by hosting a functional circadian oscillator. The presence and expression pattern of main components of the circadian molecular machinery (clock1a, bmal1, per1 and rev-erbβ-like) were assessed. Furthermore, the role of environmental cues such as light and food, and their interaction in order to modulate the circadian oscillator was also assessed by exposing animals to constant conditions (absence of light for 48 h, and/or a 4 days fasting period). Our results demonstrate the existence of a functional circadian oscillator within trout liver, as demonstrated by significant rhythms of all clock genes assessed, independently of the environmental conditions studied. In addition, the daily profile of mRNA abundance of clock genes is influenced by both light (mainly clock1a and per1) and food (rev-erbβ-like), which is indicative of an interaction between both synchronizers. Our results point to rev-erbβ-like as possible mediator between the influence of light and food on the circadian oscillator within trout liver, since its daily profile is influenced by both light and food, thus affecting that of bmal1.  相似文献   

10.
The suprachiasmatic nuclei (SCN) generate the circadian rhythm of many hormones. The hormone leptin is a metabolic signal that informs the brain about fat and energy stores of the body. We investigated whether the rhythm of leptin hormone release in Syrian hamsters is directly controlled by the SCN. Three experiments were performed: in the first, hamsters were SCN‐lesioned; in the second, hamsters were exposed to different feeding regimes; and in the third, hamsters were adrenalectomized and implanted with cortisol capsules to maintain constant glucocorticoid release. Blood samples were collected before and after the experiments at different clock times and examined for leptin levels by enzyme‐linked immunosorbant assay (ELISA). Different feeding regimes and constant glucocorticoid release did not alter the rhythm of leptin release; whereas, SCN lesions abolished the rhythm. The results of the present study suggest the rhythm in leptin release in Syrian hamsters may be controlled by the SCN.  相似文献   

11.
Discoveries first published in 1986 did not fit the de rigueur working hypothesis that the clocks governing tide-associated rhythms had a fundamental period of 12.4 h, a value equal to the average interval between successive tides on most coastlines of the world. To explain the results a dual-clock schema was fashioned that envisioned two clocks, strongly coupled together 180° antiphase, each running at a basic rate of 24.8 h (the interval of a lunar day), as the driving agents of tide-associated rhythms (details are given in the text). This elaboration has been named the circalunidian-clock hypothesis, a hypocorism used in some armchair ruminations back in 1973. In the decade since 1986, a goodly amount of evidence has been garnered that is consistent with this hypothesis—suggesting that first-call divination appears to have been visionary. Acceptance of this hypothesis leads to further cerebration that a 24.8-h clock, its circa periods in constant conditions, and other properties—which fully overlap with our perception of the circadian clock that drives daily rhythms—may indicate that circadian and circalunidan timepieces are not different entities. The known properties of both daily and lunar clock-types are compared and contrasted, and, with the exception of one feature (for which there is at least a philosophical explanation), it is concluded that the same clock that drives tidal rhythms could also motor daily rhythms, i.e., there may be no such thing as a 12.4-h horologue.  相似文献   

12.
Discoveries first published in 1986 did not fit the de rigueur working hypothesis that the clocks governing tide-associated rhythms had a fundamental period of 12.4 h, a value equal to the average interval between successive tides on most coastlines of the world. To explain the results a dual-clock schema was fashioned that envisioned two clocks, strongly coupled together 180° antiphase, each running at a basic rate of 24.8 h (the interval of a lunar day), as the driving agents of tide-associated rhythms (details are given in the text). This elaboration has been named the circalunidian-clock hypothesis, a hypocorism used in some armchair ruminations back in 1973. In the decade since 1986, a goodly amount of evidence has been garnered that is consistent with this hypothesis—suggesting that first-call divination appears to have been visionary. Acceptance of this hypothesis leads to further cerebration that a 24.8-h clock, its circa periods in constant conditions, and other properties—which fully overlap with our perception of the circadian clock that drives daily rhythms—may indicate that circadian and circalunidan timepieces are not different entities. The known properties of both daily and lunar clock-types are compared and contrasted, and, with the exception of one feature (for which there is at least a philosophical explanation), it is concluded that the same clock that drives tidal rhythms could also motor daily rhythms, i.e., there may be no such thing as a 12.4-h horologue.  相似文献   

13.
Summary Desert iguanas, Dipsosaurus dorsalis, displaying freerunning circadian locomotor rhythms in conditions of constant darkness and temperature received electrolytic lesions to the hypothalamus. The locomotor activity of those lizards (N = 9) which sustained 80% or more damage to the suprachiasmatic nucleus (SCN) became arrhythmic whereas all animals that sustained less than 35% damage to the SCN remained rhythmic, even though they sustained significant damage to nearby regions of the hypothalamus and preoptic area. These results suggest strongly that the SCN plays a role in the regulation of circadian rhythms in the desert iguana. Taken together with other evidence, they support the view that this structure is homologous to the mammalian SCN, which acts as a pacemaker in the circadian system.Abbreviations SCN suprachiasmatic nucleus - freerunning circadian period  相似文献   

14.
This study investigated the impact of sleep deprivation on the human circadian system. Plasma melatonin and cortisol levels and leukocyte expression levels of 12 genes were examined over 48?h (sleep vs. no-sleep nights) in 12 young males (mean?±?SD: 23?±?5 yrs). During one night of total sleep deprivation, BMAL1 expression was suppressed, the heat shock gene HSPA1B expression was induced, and the amplitude of the melatonin rhythm increased, whereas other high-amplitude clock gene rhythms (e.g., PER1-3, REV-ERBα) remained unaffected. These data suggest that the core clock mechanism in peripheral oscillators is compromised during acute sleep deprivation.  相似文献   

15.
GABA is the main neurotransmitter of the hypothalamic suprachiasmatic nucleus (SCN) and plays a key role in the function of this master circadian pacemaker. Despite the evidence that disturbances of biological rhythms are common during aging, little is known about the GABAergic network in the SCN of the aging brain. We here provide a brief overview of the GABAergic structures and the role of GABA in the SCN. We also review some age‐related changes of the GABAergic system occurring in the brain outside the SCN. Finally, we present preliminary data on the GABAergic system within the SCN comparing young and aging mice. In particular, our study on age‐related changes in the SCN focused on the daily expression of the α3 subunit of the GABAA receptor and on the density of GABAergic axon terminals. Interestingly, our preliminary findings point to alterations of the GABAergic network in the biological clock during senescence.  相似文献   

16.
The suprachiasmatic nucleus (SCN) of the hypothalamus is implicatedin the timing of a wide variety of circadian processes. Since the environmentallight-dark cycle is the main zeitgeber for many of the rhythms, photic informationmay have a synchronizing effect on the endogenous clock of the SCN by inducingperiodic changes in the biological activity of certain groups of neurons.By studying the brains obtained at autopsy of human subjects, marked diurnaloscillations were observed in the neuropeptide content of the SCN. Vasopressin,for example, one of the most abundant peptides in the human SCN, exhibiteda diurnal rhythm, with low values at night and peak values during the earlymorning. However, with advancing age, these diurnal fluctuations deteriorated,leading to a disrupted cycle with a reduced amplitude in elderly people. Thesefindings suggest that the synthesis of some peptides in the human SCN exhibitsan endogenous circadian rhythmicity, and that the temporal organization ofthese rhythms becomes progressively disturbed in senescence. (ChronobiologyInternational, 17(3), 245–259, 2000)  相似文献   

17.
Abstract

Human erythrocytes, white and resealed erythrocyte ghosts, and hemolysates were analysed for the occurrence of circadian and ultradian rhythms in vitro. Although the experimental conditions were extensively varied, we did not find any indication for the existence of rhythmicity. These results are at variance with the reports by others.  相似文献   

18.
Destruction of the hypothalamic suprachiasmatic nucleus (SCN) disrupts circadian behavior. Transplanting SCN tissue from fetal donors into SCN-lesioned recipients can restore circadian behavior to the arhythmic hosts. In the transplantation model employing fetal hamster donors and SCN-lesioned hamsters as hosts, the period of the restored circadian behavior is hamster-typical. However, when fetal rat anterior hypothalamic tissue containing the SCN is implanted into SCN-lesioned rats, the period of the restored circadian rhythm is only rarely typical of that of the intact rat. The use of an anterior hypothalamic heterograft model provides new approaches to donor specificity of restored circadian behavior and with the aid of species-specific markers, provides a means for assessing connectivity between the graft and the host. Using an antibody that stains rat and mouse neuronal tissue but not hamster neurons, it has been demonstrated that rat and mouse anterior hypothalamic heterografts containing the SCN send numerous processes into the host (hamster) neuropil surrounding the graft, consistent with graft efferents reported in other hypothalamic transplantation models in which graft and host tissue can be differentiated (i.e., Brattleboro rat and hypogonadal mouse). Moreover, SCN neurons within anterior hypothalamic grafts send an appropriately restricted set of efferent projections to the host brain which may participate in the functional recovery of circadian locomotor activity.  相似文献   

19.
Restricted feeding (RF) schedules are potent zeitgebers capable of entraining metabolic and hormonal rhythms in peripheral oscillators in anticipation of food. Behaviorally, this manifests in the form of food anticipatory activity (FAA) in the hours preceding food availability. Circadian rhythms of FAA are thought to be controlled by a food-entrainable oscillator (FEO) outside of the suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals. Although evidence suggests that the FEO and the SCN are capable of interacting functionally under RF conditions, the genetic basis of these interactions remains to be defined. In this study, using dexras1-deficient (dexras1?/?) mice, the authors examined whether Dexras1, a modulator of multiple inputs to the SCN, plays a role in regulating the effects of RF on activity rhythms and gene expression in the SCN. Daytime RF under 12L:12D or constant darkness (DD) resulted in potentiated (but less stable) FAA expression in dexras1?/? mice compared with wild-type (WT) controls. Under these conditions, the magnitude and phase of the SCN-driven activity component were greatly perturbed in the mutants. Restoration to ad libitum (AL) feeding revealed a stable phase displacement of the SCN-driven activity component of dexras1?/? mice by ~2?h in advance of the expected time. RF in the late night/early morning induced a long-lasting increase in the period of the SCN-driven activity component in the mutants but not the WT. At the molecular level, daytime RF advanced the rhythm of PER1, PER2, and pERK expression in the mutant SCN without having any effect in the WT. Collectively, these results indicate that the absence of Dexras1 sensitizes the SCN to perturbations resulting from restricted feeding. (Author correspondence: )  相似文献   

20.
Summary Avian pancreatic polypeptide (APP)-like, molluscan cardioexcitatory peptide (FMRF)-like and neuropeptide Y (NPY)-like immunoreactivities were studied in a secondary visual pathway in rat brain. The cell bodies of this pathway are located in the lateral geniculate nucleus and its terminal plexus is found in the suprachiasmatic hypothalamic nucleus (SCN). The neurons and terminal plexus demonstrated by antiserum to each peptide are identical, and immunoreactivity is blocked by preabsorption of each antiserum with a low concentration of the antigen against which it was raised. Immunoreactivity is also blocked by preabsorption of each antiserum with either NPY or APP. In contrast, APP- and NPY-like immunoreactivities are blocked only partially when these antisera are preabsorbed with concentrations of FMRF as high as 100 M. Since NPY is the only one of these peptides that has been isolated from mammalian brain, we conclude that NPY is the endogenous CNS peptide produced by neurons of the lateral geniculate-SCN projection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号