首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
DNA adenine methyltransferase (Dam methylase) has been crosslinked with its cofactor S-adenosyl methionine (AdoMet) by UV irradiation. About 3% of the enzyme was radioactively labelled after the crosslinking reaction performed either with (methyl-3H)-AdoMet or with (carboxy-14C)-AdoMet. Radiolabelled peptides were purified after trypsinolysis by high performance liquid chromatography in two steps. They could not be sequenced due to radiolysis. Therefore we performed the same experiment using non-radioactive AdoMet and were able to identify the peptide modified by the crosslinking reaction by comparison of the separation profiles obtained from two analytical control experiments performed with 3H-AdoMet and Dam methylase without crosslink, respectively. This approach was possible due to the high reproducibility of the chromatography profiles. In these three experiments only one radioactively labelled peptide was present in the tryptic digestions of the crosslinked enzyme. Its sequence was found to be XA-GGK, corresponding to amino acids 10-14 of Dam methylase. The non-identified amino acid in the first sequence cycle should be a tryptophan, which is presumably modified by the crosslinking reaction. The importance of this region near the N-terminus for the structure and function of the enzyme was also demonstrated by proteolysis and site-directed mutagenesis experiments.  相似文献   

2.
The turnover of DNA-adenine-methylase of E. coli strongly decreases when the temperature is lowered. This has allowed us to study the binding of Dam methylase on 14 bp DNA fragments at 0 degrees C by gel retardation in the presence of Ado-Met, but without methylation taking place. The enzyme can bind non-specific DNA with low affinity. Binding to the specific sequence occurs in the absence of S-adenosyl-methionine (Ado-Met), but is activated by the presence of the methyl donor. The two competitive inhibitors of Ado-Met, sinefungin and S-adenosyl-homocysteine, can neither activate this binding to DNA by themselves, nor inhibit this activation by Ado-Met. This suggests that Ado-Met could bind to Dam methylase in two different environments. In one of them, it could play the role of an allosteric effector which would reinforce the affinity of the enzyme for the GATC site. The analogues can not compete for such binding. In the other environment Ado-Met would be in the catalytic site and could be exchanged by its analogues. We have also visualized conformational changes in Dam methylase induced by the simultaneous binding of Ado-Met and the specific target sequence of the enzyme, by an anomaly of migration and partial resistance to proteolytic treatment of the ternary complex Ado-Met/Dam methylase/GATC.  相似文献   

3.
W Guschlbauer 《Gene》1988,74(1):211-214
Previous comparison of the amino acid sequences of the GATC-methylating Escherichia coli Dam methyltransferase (MTase) with those of other adenine MTases (M.EcoRV, M.DpnII and T4Dam) localized four conserved regions. Regions III and IV have similarities with many other MTases. The sequence DPPY (or NPPY) is always present in region IV. It was suggested to be the AdoMet binding site. Publication of the nucleotide and amino acid sequences of M.CviBIII, M.DpnA and MutH give further credence to this assignment: M.DpnA, which also methylates GATC, has strong similarities with regions III and IV; M.CviBIII, a cytosine methylase, has a characteristic NPPY sequence in region IV, and only limited resemblance in region III; MutH, the GATC-specific endonuclease in DNA mismatch repair, has significant similarities uniquely in region III. The presently available evidence suggests that region III is the GAT(C) binding site and region IV is the AdoMet binding site. This hypothesis is strengthened by recent genetic findings.  相似文献   

4.
The role of the preserved sequences of Dam methylase.   总被引:5,自引:3,他引:2       下载免费PDF全文
We have undertaken a site directed mutational analysis of two of the preserved regions in the amino acid sequence of Dam methylase in order to characterize their role. Mutations in region IV (sequence DPPY) abolish catalytic activity and greatly affect AdoMet crosslinking. Mutants in region III display a lowered specific activity with an unchanged AdoMet crosslinking capacity. We have also made a series of deletions both at the N and C terminal parts of the protein, which have been found to provide inactive enzyme. We discuss the significance of these results for the understanding of the functional properties of the enzyme.  相似文献   

5.
A gene from the periodontal organism Porphyromonas gingivalis has been identified as encoding a DNA methylase. The gene, referred to as pgiIM, has been sequenced and found to contain a reading frame of 864 basepairs. The putative amino acid sequence of the encoded methylase was 288 amino acids, and shared 47% and 31% homology with the Streptococcus pneumoniae DpnII and E. coli Dam methylases, respectively. The activity and specificity of the pgi methylase (M.PgiI) was confirmed by cloning the gene into a dam- strain of E. coli (JM110) and performing a restriction analysis on the isolated DNA with enzymes whose activities depended upon the methylation state of the DNA. The data indicated that M.PgiI, like DpnII and Dam, methylated the adenine residue within the sequence 5'-GATC-3'.  相似文献   

6.
The restriction endonuclease from Escherichia coli K is a multifunctional protein which efficiently methylates heteroduplex DNA (one strand modified and one strand unmodified) in the presence of S-adenosylmethionine (AdoMet), ATP, and Mg2+. The methylase activity is catalytic, and seems to modify different heteroduplex host specificity sites for E. coli K with equal efficiency. In the methylase reaction, both AdoMet and ATP (or its imido analog) act as allosteric effectors, but AdoMet also serves as a methyl donor. Preincubation of the enzyme with AdoMet eliminates the lag period observed in DNA methylation. The rate of enzyme activation was determined using the AdoMet analog Sinefungin. The result are consistent with the hypothesis that the early steps of AdoMet binding and enzyme activation are common to both restriction and modification reactions.  相似文献   

7.
The Mr 38,050 monomeric EcoRI DNA methylase is part of a bacterial restriction-modification system. The methylase transfers the methyl group from S-adenosylmethionine (AdoMet) to the second adenine in the double-stranded DNA sequence 5'-GAATTC-3'. We have used the radiolabeled photoaffinity analog 8-azido-S-adenosylmethionine (8-N3-AdoMet) to identify peptides at the AdoMet binding site in the binary methylase-cofactor analog complex. The dissociation constants in the absence of DNA for the analog and AdoMet are 12.9 and 4.8 microM, respectively. The apparent kcat and Km values, obtained with the double-stranded DNA substrate 5'-CGCGAATTCGCG-3', are 5.0 s-1 and 0.710 microM (8-N3-AdoMet) and 4.3 s-1 and 0.335 microM (AdoMet). Photolabeling by 8-N3-AdoMet occurs upon irradiation with ultraviolet light and is inhibited by AdoMet. Digestion of the adducted methylase with subtilisin generated several radiolabeled peptides. Peptide sequencing from independent photolabeling experiments revealed two radiolabeled peptides containing amino acids 206-212 and 213-221. Instability of the adducted peptides precluded assignment of modified amino acids.  相似文献   

8.
5-Fluorocytosine in DNA is a mechanism-based inhibitor of HhaI methylase   总被引:14,自引:0,他引:14  
5-Fluorodeoxycytidine (FdCyd) was incorporated into a synthetic DNA polymer containing the GCGC recognition sequence of HhaI methylase to give a polymer with about 80% FdCyd. In the absence of AdoMet, poly(FdC-dG) bound competitively with respect to poly(dG-dC) (Ki = 3 nM). In the presence of AdoMet, the analogue caused a time-dependent, first-order (k = 0.05 min-1) inactivation of the enzyme. There is an ordered mechanism of binding in which enzyme first binds to poly(FdC-dG), then binds to AdoMet, and subsequently forms stable, inactive complexes. The complexes did not dissociate over the course of 3 days and were stable to heat (95 degrees C) in the presence of 1% SDS. Gel filtration of a complex formed with HhaI methylase, poly(FdC-dG), and [methyl-3H] AdoMet gave a peak of radioactivity eluting near the void volume. Digestion of the DNA in the complex resulted in a reduction of the molecular weight to the size of the methylase, and the radioactivity in this peak was shown to be associated with protein. These data indicate that the complexes contain covalently bound HhaI methylase, poly(FdC-dG), and methyl groups and that 5-fluorodeoxycytidine is a mechanism-based inactivator of the methylase. By analogy with other pyrimidine-modifying enzymes and recent studies on the mechanism of HhaI methylase (Wu & Santi, 1987), these results suggest that an enzyme nucleophile attacks FdCyd residues at C-6, activating the 5-position for one-carbon transfer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The ermC mRNA leader segment, which encodes a 19 amino acid leader peptide, MGIFSIFVISTVHYQPNKK, plays a key role in regulating expression of the ErmC methylase. The contribution of specific leader peptide amino acid residues to induction of ermC was studied using a model system in which the ErmC methylase was translationally fused to Escherichia coli beta-galactosidase as indicator gene. Codons of the ermC leader peptide were altered systematically by replacement of leader DNA segments with double-stranded DNA constructed from chemically synthesized oligonucleotides. Missense mutations that resulted in reduced efficiency of induction involved codons for amino acid residues 5 to 9 (-SIFVI-). Nonsense mutations causing termination of the leader peptide at codons 10 (-S-) or 12 (-V-) remained inducible. These findings suggest that the codons for residues 5 to 9 of the leader peptide comprise the critical region in which ribosomes stall in the presence of erythromycin.  相似文献   

10.
Yoo BC  Park GH  Okuda H  Takaku T  Kim S  Hwang WI 《Amino acids》1999,17(4):391-400
Summary Protein-arginine N-methyltransferase (protein methylase I) catalyzes methylation of arginyl residues on substrate protein posttranslationally utilizing S-adenosyl-L-methionine as the methyl donor and yields NG-methylarginine residues. Arginyl-fructose and arginyl-fructosyl-glucose from Korean red ginseng were found to inhibit protein methylase I activity in vitro. This inhibitory activity was shown to be due to arginyl moiety in the molecules, rather than that of carbohydrates. Several basic amino acids as well as polyamines were also found to inhibit protein methylase I activity. Interestingly, the intensity of the inhibitory activity was correlated with the number of amino-group in polyamines, thus, in the order of spermine > spermidine > putrescine > agmatine-sulfate, with IC50 at approximately 15 mM, 25 mM, 35 mM, and 50 mM, respectively. On the other hand, neutral amino acids or NaCI did not inhibit the enzyme activity. Lineweaver-Burk plot analysis of the protein methylase I activity in the presence of arginine and spermidine indicated that the inhibition was competitive in nature in respect to protein substrate, with the Ki values of 24.8 mM and 11.5 mM, respectively.Polyamines Abbreviations AdoMet S-adenosyl-L-methionine - PM I protein methylase I - Arg-Fru arginyl-fructose - Arg-Fru-Glu arginyl-fructosyl-glucose - PMSF phenylmethylsulfonyl fluoride - MBP myelin basic protein - hnRNP heterogeneous ribonuclear particle - TCA trichloroacetic acid - EDTA ethylenediamine tetraacetic acid  相似文献   

11.
12.
The methyltransferase enzyme (MTase), which catalyzes the transfer of a methyl group from S-adenosyl-methionine (AdoMet) to viral RNA, and generates S-adenosyl-homocysteine (AdoHcy) as a by-product, is essential for the life cycle of many significant human pathogen flaviviruses. Here we investigated inhibition of the flavivirus MTase by several AdoHcy-derivatives. Unexpectedly we found that AdoHcy itself barely inhibits the flavivirus MTase activities, even at high concentrations. AdoHcy was also shown to not inhibit virus growth in cell-culture. Binding studies confirmed that AdoHcy has a much lower binding affinity for the MTase than either the AdoMet co-factor, or the natural AdoMet analog inhibitor sinefungin (SIN). While AdoMet is a positively charged molecule, SIN is similar to AdoHcy in being uncharged, and only has an additional amine group that can make extra electrostatic contacts with the MTase. Molecular Mechanics Poisson-Boltzmann Sovation Area analysis on AdoHcy and SIN binding to the MTase suggests that the stronger binding of SIN may not be directly due to interactions of this amine group, but due to distributed differences in SIN binding resulting from its presence. The results suggest that better MTase inhibitors could be designed by using SIN as a scaffold rather than AdoHcy.  相似文献   

13.
Recombinant rat liver guanidinoacetate methyltransferase, a monomeric protein with Mr 26,000, is inactivated upon incubation with low concentrations of trypsin. Examination of the reaction products by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high-performance liquid chromatography followed by amino acid analysis and sequencing of isolated peptides reveals that the inactivation is due to the cleavage of the NH2-terminal segment after Arg20. The cleaved peptide is not tightly associated with the rest of the protein. The rate of inactivation is not affected by the presence of either S-adenosylmethionine (AdoMet) or guanidinoacetate, but a substantial retardation of inactivation is observed when both substrates are present. The cleavage at Arg20 is also slowed by cross-linking Cys15 and Cys90 by a disulfide bond. An equilibrium binding study shows that guanidinoacetate methyltransferase in the free form binds AdoMet but not guanidinoacetate. The trypsin-modified enzyme, despite having no catalytic activity, can weakly bind AdoMet and guanidinoacetate in the presence of AdoMet. Chymotrypsin rapidly hydrolyzes the peptide bond after Trp19, and elastase cleaves the bond after Ala24, leading in both cases to loss of activity. The results obtained in this study suggest that the portion of the methyltransferase around residues 19-24 is highly exposed to the solvent and flexible. The results also indicate that the NH2-terminal region is not directly involved in substrate binding but plays a role in catalysis.  相似文献   

14.
Inhibition of EcoRI DNA methylase with cofactor analogs   总被引:5,自引:0,他引:5  
Four analogs of the natural cofactor S-adenosylmethionine (AdoMet) were tested for their ability to bind and inhibit the prokaryotic enzyme, EcoRI adenine DNA methylase. The EcoRI methylase transfers the methyl group from AdoMet to the second adenine in the double-stranded DNA sequence 5'GAATTC3'. Dissociation constants (KD) of the binary methylase-analog complexes obtained in the absence of DNA with S-adenosylhomocysteine (AdoHcy), sinefungin, N-methyl-AdoMet, and N-ethylAdoMet are 225, 43, greater than 1000, and greater than 1000 microM, respectively. In the presence of a DNA substrate, all four analogs show simple competitive inhibition with respect to AdoMet. The product of the enzymic reaction, AdoHcy, is a poor inhibitor of the enzyme (KI(AdoHcy) = 9 microM; KM(AdoMet) = 0.60 microM). Two synthetic analogs, N-methyl-AdoMet and N-ethyl-AdoMet, were also shown to be poor inhibitors with KI values of 50 and greater than 1000 microM, respectively. In contrast, the naturally occurring analog sinefungin was shown to be a highly potent inhibitor (KI = 10 nM). Gel retardation assays confirm that the methylase-DNA-sinefungin complex is sequence-specific. The ternary complex is the first sequence-specific complex detected for any DNA methylase. Potential applications to structural studies of methylase-DNA interactions are discussed.  相似文献   

15.
DNA methyltransferases of the Dam family (including bacteriophage T4-encoded Dam DNA (adenine-N(6))-methyltransferase (T4Dam)) catalyze methyl group transfer from S-adenosyl-L-methionine (AdoMet), producing S-adenosyl-L-homocysteine (AdoHcy) and methylated adenine residues in palindromic GATC sequences. In this study, we describe the application of direct (i.e. no exogenous cross-linking reagents) laser UV cross-linking as a universal non-perturbing approach for studying the characteristics of T4Dam binding with substrates in the equilibrium and transient modes of interaction. UV irradiation of the enzyme.substrate complexes using an Nd(3+):yttrium aluminum garnet laser at 266 nm resulted in up to 3 and >15% yields of direct T4Dam cross-linking to DNA and AdoMet, respectively. Consequently, we were able to measure equilibrium constants and dissociation rates for enzyme.substrate complexes. In particular, we demonstrate that both reaction substrates, specific DNA and AdoMet (or product AdoHcy), stabilized the ternary complex. The improved substrate affinity for the enzyme in the ternary complex significantly reduced dissociation rates (up to 2 orders of magnitude). Several of the parameters obtained (such as dissociation rate constants for the binary T4Dam.AdoMet complex and for enzyme complexes with a nonfluorescent hemimethylated DNA duplex) were previously inaccessible by other means. However, where possible, the results of laser UV cross-linking were compared with those of fluorescence analysis. Our study suggests that rapid laser UV cross-linking efficiently complements standard DNA methyltransferase-related tools and is a method of choice to probe enzyme-substrate interactions in cases in which data cannot be acquired by other means.  相似文献   

16.
17.
Preferential binding of SeqA protein to hemimethylated oriC, the origin of Escherichia coli chromosomal replication, delays methylation by Dam methylase. Because the SeqA-oriC interaction appears to be essential in timing of chromosomal replication initiation, the biochemical functions of SeqA protein and Dam methylase at the 13-mer L, M, and R region containing 4 GATC sequences at the left end of oriC were examined. We found that SeqA protein preferentially bound hemimethylated 13-mers but not fully nor unmethylated 13-mers. Regardless of strand methylation, the binding of SeqA protein to the hemimethylated GATC sequence of 13-mer L was followed by additional binding to other hemimethylated GATC sequences of 13-mer M and R. On the other hand, Dam methylase did not discriminate binding of 13-mers in different methylation patterns and was not specific to GATC sequences. The binding specificity and higher affinity of SeqA protein over Dam methylase to the hemimethylated 13-mers along with the reported cellular abundance of this protein explains the dominant action of SeqA protein over Dam methylase to the newly replicated oriC for the sequestration of chromosomal replication. Furthermore, SeqA protein bound to hemimethylated 13-mers was not dissociated by Dam methylase, and most SeqA protein spontaneously dissociated 10 min after binding. Also, SeqA protein delayed the in vitro methylation of hemimethylated 13-mers by Dam methylase. These in vitro results suggest that the intrinsic binding instability of SeqA protein results in release of sequestrated hemimethylated oriC.  相似文献   

18.
DNA methyltransferases can be photolabeled with S-adenosyl-L-methionine (AdoMet). Specific incorporation of radioactivity has been demonstrated after photolabeling with either [methyl-3H]AdoMet or [35S]AdoMet (Som, S., and Friedman, S. (1990) J. Biol. Chem. 265, 4278-4283). The labeling is believed to occur at the AdoMet binding site. With the purpose of localizing the site responsible for [methyl-3H]AdoMet photolabeling, we cleaved the labeled EcoRII methyltransferase by chemical and enzymatic reactions and isolated the radiolabeled peptides by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and high pressure liquid chromatography. The labeled peptides were identified by amino-terminal sequencing. A common region was localized which accounted for 65-70% of the total label. This region includes a highly conserved core sequence present in all DNA (cytosine 5)-methyltransferases. One such fragment was digested further with chymotrypsin, and amino acid analysis of the resulting 3H-labeled peptide was consistent with the sequence Ala-Gly-Phe-Pro-(Cys)-Gln-Pro-Phe-Ser-Leu. However, the cysteine residue was not recovered as carboxymethylcysteine. The Pro-Cys bond was found to be protected from cleavage at cysteine residues after cyanylation. These results suggest that the cysteine residue is modified by the labeling reaction. The chymotryptic fragment was hydrolyzed enzymatically to single amino acids, and the labeled amino acid was identified as S-methylcysteine by thin layer chromatography. These results indicate that the cysteine residue is located at or close to the AdoMet binding site of EcoRII methyltransferase.  相似文献   

19.
In Klebsiella pneumoniae, a chromosomal insertion mutation was constructed in the dam gene, which encodes DNA adenine methylase (Dam), resulting in a mutant unable to methylate specific nucleotides. In some bacteria, the Dam methylase has been shown to play an important role in virulence gene regulation as well as in methyl-directed mismatch repair and the regulation of replication initiation. Disruption of the normal Dam function by either eliminating or greatly increasing expression in several organisms has been shown to cause attenuation of virulence in murine models of infection. In K. pneumoniae, a mutation-eliminating Dam function is shown here to result in only partial attenuation following intranasal and intraperitoneal infection of Balb/C mice.  相似文献   

20.
Expression of the Arabidopsis CGS1 gene, encoding the first committed enzyme of methionine biosynthesis, is feedback-regulated in response to S-adenosyl-L-methionine (AdoMet) at the mRNA level. This regulation is first preceded by temporal arrest of CGS1 translation elongation at the Ser-94 codon. AdoMet is specifically required for this translation arrest, although the mechanism by which AdoMet acts with the CGS1 nascent peptide remained elusive. We report here that the nascent peptide of CGS1 is induced to form a compact conformation within the exit tunnel of the arrested ribosome in an AdoMet-dependent manner. Cysteine residues introduced into CGS1 nascent peptide showed reduced ability to react with polyethyleneglycol maleimide in the presence of AdoMet, consistent with a shift into the ribosomal exit tunnel. Methylation protection and UV cross-link assays of 28 S rRNA revealed that induced compaction of nascent peptide is associated with specific changes in methylation protection and UV cross-link patterns in the exit tunnel wall. A 14-residue stretch of amino acid sequence, termed the MTO1 region, has been shown to act in cis for CGS1 translation arrest and mRNA degradation. This regulation is lost in the presence of mto1 mutations, which cause single amino acid alterations within MTO1. In this study, both the induced peptide compaction and exit tunnel change were found to be disrupted by mto1 mutations. These results suggest that the MTO1 region participates in the AdoMet-induced arrest of CGS1 translation by mediating changes of the nascent peptide and the exit tunnel wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号