首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Release of sugars from lignocellulosic biomass is inefficient because lignin, an aromatic polymer, blocks access of enzymes to the sugar polymers. Pretreatments remove lignin and disrupt its structure, thereby enhancing sugar release. In previous work, enzymatically generated peracetic acid was used to pretreat aspen wood. This pretreatment removed 45% of the lignin and the subsequent saccharification released 97% of the sugars remaining after pretreatment. In this paper, the amount of enzyme needed is reduced tenfold using first, an improved enzyme variant that makes twice as much peracetic acid and second, a two-phase reaction to generate the peracetic acid, which allows enzyme reuse. In addition, the eight pretreatment cycles are reduced to only one by increasing the volume of peracetic acid solution and increasing the temperature to 60 °C and the reaction time to 6 h. For the pretreatment step, the weight ratio of peracetic acid to wood determines the amount of lignin removed.  相似文献   

2.
本研究尝试将氨基磺酸应用于甘蔗渣预处理,探究其作为酸预处理试剂对甘蔗渣成分和酶解的影响。氨基磺酸预处理最优条件为浓度3%,温度121℃,预处理1 h。在该条件下,甘蔗渣的固体回收率为64.45%,半纤维素和木质素去除率分别为70.81%和25.10%,纤维素损失率仅7.56%。与硫酸、盐酸预处理相比,氨基磺酸的半纤维素和木质素去除率不如硫酸、盐酸预处理,但固体回收率更高,纤维素损失率低,能保留更多纤维素有效成分。进一步酶解显示,氨基磺酸预处理的纤维素转化率高于硫酸、盐酸预处理。氨基磺酸作为一种新的酸预处理试剂,在木质纤维素降解上有良好应用前景。  相似文献   

3.
In this study, raw corn stover was subjected to dilute acid pretreatments over a range of severities under conditions similar to those identified by the National Renewable Energy Laboratory (NREL) in their techno-economic analysis of biochemical conversion of corn stover to ethanol. The pretreated corn stover then underwent enzymatic hydrolysis with yields above 70?% at moderate enzyme loading conditions. The enzyme exhausted lignin residues were characterized by (31)P NMR spectroscopy and functional moieties quantified and correlated to enzymatic hydrolysis yields. Results from this study indicated that both xylan solubilization and lignin degradation are important for improving the enzyme accessibility and digestibility of dilute acid pretreated corn stover. At lower pretreatment temperatures, there is a good correlation between xylan solubilization and cellulose accessibility. At higher pretreatment temperatures, lignin degradation correlated better with cellulose accessibility, represented by the increase in phenolic groups. During acid pretreatment, the ratio of syringyl/guaiacyl functional groups also gradually changed from less than 1 to greater than 1 with the increase in pretreatment temperature. This implies that more syringyl units are released from lignin depolymerization of aryl ether linkages than guaiacyl units. The condensed phenolic units are also correlated with the increase in pretreatment temperature up to 180?°C, beyond which point condensation reactions may overtake the hydrolysis of aryl ether linkages as the dominant reactions of lignin, thus leading to decreased cellulose accessibility.  相似文献   

4.
Improving plant characteristics for better environmental resilience and more cost-effective transformation to fuels and chemicals is one of the focus areas in biomass feedstock development. In order to bridge lignin engineering and conversion technologies, this study aimed to fractionate and characterize lignin streams from wild-type and engineered switchgrass using three different pretreatment methods, i.e., dilute sulfuric acid (DA), ammonium hydroxide (AH), and aqueous ionic liquid (IL). Results demonstrate the low lignin content and high S/G ratio switchgrass mutant (4CL) was more susceptible to pretreatment and subsequently more digestible by enzymes as compared to wild-type switchgrass and AtLOV1 mutant. In addition, when compared to DA and AH pretreatment, aqueous IL (cholinium lysinate) was demostrated to be an efficient lignin solvent, as indicated by the high (> 80%) lignin solubility and reduced lignin molecular weight. FTIR and differential scanning calorimetry measurements suggest that pretreatment chemistry greatly influenced the structural and compositional changes and thermal properties of the pretreated switchgrass and recovered lignin-rich streams. The comparative data obtained from this work deepen our understanding of how lignin modification impacts the fractionation and properties of biomass feedstocks.  相似文献   

5.
Newsprint was pretreated with acetic-nitric acid reagent tosolubilize and remove the lignin component and improveits conversion to methane in anaerobic digestion. Aceticacid itself cannot dissolve lignin even at a concentrationas high as 80% at elevated temperature (in a boilingwater bath). In order to effectively dissolve significantamounts of lignin, nitric acid must also be added. At anacetic acid concentration of 35% with 2% nitric acid,about 80% of lignin was removed from newsprint(resulting in a weight loss of about 40%). Hydrochloricacid may partially but not completely replace the nitricacid. The methane yield from treated newsprintbioconversion increased nearly three times over that ofuntreated newsprint in a 60-day test. Treated newsprintgenerated about 75% as much methane as office paper inthe same 60-day test. Acid pretreatment producednewsprint with the same cellulose content (as apercentage of volatile solids) as office paper. Despitethese promising results, however, the cellulose/lignin ratioof newsprint was increased from 1.6 to only 9.9 by acidpretreatment, compared to 22.9 for office paper. Since thelignin was not completely removed, the cellulose-ligninassociation is considered to be the major limiting factoron long-term anaerobic digestion of both untreated andtreated newsprint. An additional limiting factor todevelopment of a practical pretreatment method based onthis approach, efficient recovery of acids following ligninsolubilization, was not pursued in this research.  相似文献   

6.
Steam explosion of Eucalyptus grandis has been carried out under various pretreatment conditions (200-210 degrees C, 2-5 min) after impregnation of the wood chips with 0.087 and 0.175% (w/w) H2SO4. This study, arranged as a 2(3) factorial design, indicated that pretreatment temperature is the most critical variable affecting the yield of steam-treated fractions. Pretreatment of 0.175% (w/w) H2SO4-impregnated chips at 210 degrees C for 2 min was the best condition for hemicellulose recovery (mostly as xylose) in the water soluble fraction, reaching almost 70% of the corresponding xylose theoretical yield. By contrast, lower pretreatment temperatures of 200 degrees C were enough to yield steam-treated substrates from which a 90% cellulose conversion was obtained in 48 h, using low enzyme loadings of a Celluclast 1.5 1 plus Novozym 188 mixture (Novo Nordisk). Release of water-soluble chromophores was monitored by UV spectroscopy and their concentration increased with pretreatment severity. The yield of alkali-soluble lignin increased at higher levels of acid impregnation and pretreatment temperatures. Thermoanalysis of these lignin fractions indicated a pattern of lignin fragmentation towards greater pretreatment severities but lignin condensation prevailed at the most drastic pretreatment conditions.  相似文献   

7.
In this work an evaluation was made of a wide variety of single and multiple pretreatment methods for enhancing the rate of enzymatic hydrolysis of wheat straw. A multiple pretreatment consisted of a physical pretreatment followed by a chemical pretreatment. The structural features of wheat straw, including the specific surface area, crystallinity index, and lignin content, were measured to understand the mechanism of the enhancement in the hydrolysis rate upon pretrement. It has been found that, in general, multiple pretreatments were not promising, since the hydrolysis rates rarely exceeded those achieved by single pretreatments. Ballmilling pretreatment was found to be effective in increasing the specific surface area and decreasing the crystallinity index. Treatment with ethylene glycol was highly effective in increasing the specific surface area, in addition to a high degree of delignification. Peracetic acid pretreatment was highly effective in delignifying substrate. Among multiple pretreatments, those involving peracetic acid treatment generally had lower crystallinity indices and lignin content values. The relationship between the hydrolysis rate and the set of structural features indicated that an increase in surface area and a decrease in the crystallinity and lignin content enhance the hydrolysis; the specific surface area is the most influential of the structural features, followed by the lignin content.  相似文献   

8.
Biomass contains cellulose, xylan and lignin in a complex interwoven structure that hinders enzymatic hydrolysis of the cellulose. To separate these components in yellow poplar biomass, we sequentially pretreated with dilute sulfuric acid and enzymatically-generated peracetic acid. In the first step, the dilute acid with microwave heating (140°C, 5 min) hydrolyzed 90% of xylan. The xylose yield in hydrolysate after dilute acid pretreatment was 83.1%. In the second step, peracetic acid (60°C, 6 h) removed up to 80% of lignin. This sequential pretreatment fractionated biomass into xylan and lignin, leaving a solid residue enriched in cellulose (~80%). The sequential pretreatment enhanced enzymatic digestibility of the cellulase by removal of the other components in biomass. The glucose yield after enzymatic hydrolysis was 90.5% at a low cellulase loading (5 FPU/g of glucan), which is 1.6 and 18 times higher than for dilute acid-pretreated biomass and raw biomass, respectively. This novel sequential pretreatment with dilute acid and peracetic acid efficiently separates the three major components of yellow poplar biomass, and reduces the amount of cellulase needed.  相似文献   

9.
木质纤维素生物质是地球上最丰富的可再生生物资源.随着化石能源的消耗及环境的污染,以取代石化燃料为目标的由生物质向生物燃料的转化受到了广泛的关注.木质纤维素有很强的天然抗降解屏障,需先通过物理、化学及微生物等手段进行预处理,进而以更低的成本和更高的效率转化为生物燃料及其他高附加值产品.本文在总结酸碱等传统预处理方法优缺点...  相似文献   

10.
Various ionic liquids have been identified as effective pretreatment solvents that can enhance the cellulose digestibility of lignocellulose by removing lignin, one of the main factors contributing to the recalcitrant nature of lignocellulose. 1-Butyl-3-methylimidazolium methylsulfate ([BMiM]MeSO(4)) is a potential delignification reagent, hence its application as a pretreatment solvent for sugarcane bagasse (SB) was investigated. The study also evaluated the benefit of an acid catalyst (i.e., H(2) SO(4)) and the effect of pretreatment conditions, which varied within a time and temperature range of 0-240 min and 50-150°C, respectively. The use of an acid catalyst contributed to a more digestible solid and a higher degree of delignification. However, the [BMiM]MeSO(4)-H(2) SO(4) combination failed to produce a fully digestible solid, as a maximum cellulose digestibility of 77% (w/w) was obtained at the optimum pretreatment condition of 125°C for 120 min. Furthermore, up to half of the lignin content could be extracted during pretreatment, while simultaneously extensive, sometimes complete, removal of xylan, the presence of which, also hampers cellulose digestibility. Hence, [BMiM]MeSO(4) has been identified an effective pretreatment solvent for SB as the application thereof both significantly improved digestibility, and simultaneously removed two of the main factors contributing to the recalcitrant nature of lignocellulose. As xylan and lignin have potential value as precursor chemicals, the existing process may in future be extended toward substrate fractionation, a biorefinery concept where value is added to all feedstock constituents.  相似文献   

11.
The enzymatic saccharification of three different feedstocks, rice straw, bagasse and silvergrass, which had been pretreated with different dilute acid concentrations, was studied to verify how enzymatic saccharification was affected by the lignin composition of the raw materials. There was a quantitatively inverse correlation between lignin content and enzymatic digestibility after pretreatment with 1%, 2% and 4% sulfuric acid. The lignin accounted for about 18.8–21.8% of pretreated rice straw, which was less than the 23.1–26.5% of pretreated bagasse and the 21.5–24.1% of pretreated silvergrass. The maximum glucose yield achieved, under an enzyme loading 6.5 FPU g?1 DM for 72 h, was close to 0.8 g glucose/g glucan from the enzymatic hydrolysis of the pretreated rice straw; this was twice that from bagasse and silvergrass. A decrease in initial rate of glucose production was observed in all cases when the raw materials underwent enzymatic saccharification with 4% sulfuric acid pretreatment. It is suggested that the higher acid concentration led to an inhibition of β-glucosidase activity. Fourier transform infrared (FTIR) spectroscopy further indicated the chemical properties of the rice straw and silvergrass become more hydrophilic after pretreatment using 2% of sulfuric acid, but the pretreated bagasse tended to become more hydrophobic. The hydrophilic nature of the pretreated solid residues may increase the inhibitive effects of lignin on the cellulase and this could become very important for raw materials such as silvergrass that contain more lignin.  相似文献   

12.
Dilute acid as well as water only (hydrothermal) pretreatments often lead to a significant hemicellulose loss to soluble furans and insoluble degradation products, collectively termed as chars and/or pseudo‐lignin. In order to understand the factors contributing to reducing sugar yields from pretreated biomass and the possible influence of hemicellulose derived pseudo‐lignin on cellulose conversion at the moderate to low enzyme loadings necessary for favorable economics, dilute acid pretreatment of Avicel cellulose alone and mixed with beechwood xylan or xylose was performed at various severities. Following pretreatment, the solids were enzymatically hydrolyzed and characterized for chemical composition and physical properties by NMR, FT‐IR, and SEM imaging. It was found that hemicelluloses (xylan) derived‐pseudo‐lignin was formed at even moderate severities and that these insoluble degradation products can significantly retard cellulose hydrolysis. Furthermore, although low severity (CSF ~ 1.94) dilute acid pretreatment of a xylan–Avicel mixture hydrolyzed most of the xylan (98%) and produced negligible amounts of pseudo‐lignin, enzymatic conversion of cellulose dropped significantly (>25%) compared to cellulose pretreated alone at the same conditions. The drop in cellulose conversion was higher than realized for cellulase inhibition by xylooligomers reported previously. Plausible mechanisms are discussed to explain the observed reductions in cellulose conversions. Biotechnol. Bioeng. 2013; 110: 737–753. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
不同玉米秸秆部位的成分组成及分布对预处理和酶解影响显著。研究表明:韧皮部与髓芯的成分相近,但叶子的差异较大,其木聚糖和总糖的质量分数最高,分别为29.48%和66.15%,而木质素的质量分数最低,因而叶子更容易预处理。玉米秸秆在稀酸预处理过程中可回收96.9%葡聚糖和50.0%~70.0%木聚糖,其中50.0%~60.0%木聚糖水解成木糖溶出;不同部位的木聚糖损失率与初始的木聚糖含量正相关;经稀酸预处理后,叶子中葡聚糖的质量分数最高,达72.40%,叶子和髓芯易于被纤维素酶水解生成葡萄糖,而韧皮部困难。不同部位的酶解得率与自身的葡聚糖含量正相关,与酸不溶木质素含量负相关,同时受原料的物理结构、葡聚糖和木质素大分子的化学组成等影响。  相似文献   

14.
A standard two-step dilute sulfuric acid pretreatment was performed on Loblolly pine to enhance the overall efficiency of enzymatic deconstruction of woody biomass to monomeric sugars. The structure of milled wood lignin and cellulose isolated from the untreated and acid-treated biomass was studied in detail. Solid-state 13C NMR spectroscopy coupled with line shape analyses has been employed to elucidate cellulose crystallinity and ultrastructure. The results indicate an increase in the degree of crystallinity and reduced relative proportion of less ordered cellulose allomorphs following the acid pretreatment. This increase was attributed to a preferential degradation of amorphous cellulose and less ordered crystalline forms during the high temperature pretreatment. Milled wood lignin structural elucidation by quantitative 13C and 31P NMR reveals an increase in the degree of condensation of lignin due to the pretreatment. The increase in degree of condensation is accompanied by a decrease in β-O-4 linkages which were fragmented and recondensed during the high temperature acid-catalyzed reactions.  相似文献   

15.
A renewable raw material, rice straw is pretreated for biorefinery usage. Solution-state two-dimensional (2D) 1H-13 C hetero-nuclear single quantum coherence (HSQC) nuclear magnetic resonance (NMR) spectroscopy, was used to analyze 13 cultivars of rice straw before and after dilute acid pretreatment, to characterize general changes in the lignin and polysaccharide components. Intensities of most (15 of 16) peaks related to lignin aromatic regions, such as p-coumarate, guaiacyl, syringyl, p-hydroxyphenyl, and cinnamyl alcohol, and methoxyl, increased or remained unchanged after pretreatment. In contrast, intensities of most (11 of 13) peaks related to lignin aliphatic linkages or ferulate decreased. Decreased heterogeneity in the intensities of three peaks related to cellulose components in acid-insoluble residues resulted in similar glucose yield (0.45–0.59 g/g-dry biomass). Starch-derived components showed positive correlations (r = 0.71 to 0.96) with glucose, 5-hydroxymethylfurfural (5-HMF), and formate concentrations in the liquid hydrolysates, and negative correlations (r = –0.95 to –0.97) with xylose concentration and acid-insoluble residue yield. These results showed the fate of lignin and polysaccharide components by pretreatment, suggesting that lignin aromatic regions and cellulose components were retained in the acid insoluble residues and starch-derived components were transformed into glucose, 5-HMF, and formate in the liquid hydrolysate.  相似文献   

16.
木质素高值转化对于提升生物炼制经济性,促进社会经济绿色发展具有重要意义。然而,木质素结构复杂且不均一,其高值化利用仍存在技术壁垒,使得木质素应用尚未形成规模。文中首先综述了当前生物炼制过程中木质素高值转化面临的主要挑战。然后通过比较不同预处理技术对木质素分离、性质及其利用的主要影响,详细阐述了基于生物炼制理念发展的新型组合预处理技术。其次,针对木质素本征结构特性导致其利用效率低等问题,进一步详述了溶剂分级、膜分级、梯度沉淀分级等分级利用策略对克服木质素不均一性,改善其可加工性能的重要影响。再次,针对木质素利用策略,系统比较了木质素热化学转化和生物转化,结合生物质预处理及木质素分级,阐述了以生物炼制理念进行木质素高值转化的新策略。最后,总结了木质素利用过程中存在的挑战性问题,展望了木质素高效分离、分级及转化过程发展的新策略和新趋势。  相似文献   

17.
Adsorption of cellulase on solids resulting from pretreatment of poplar wood by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid (DA), flowthrough (FT), lime, and sulfur dioxide (SO2) and pure Avicel glucan was measured at 4°C, as were adsorption and desorption of cellulase and adsorption of β‐glucosidase for lignin left after enzymatic digestion of the solids from these pretreatments. From this, Langmuir adsorption parameters, cellulose accessibility to cellulase, and the effectiveness of cellulase adsorbed on poplar solids were estimated, and the effect of delignification on cellulase effectiveness was determined. Furthermore, Avicel hydrolysis inhibition by enzymatic and acid lignin of poplar solids was studied. Flowthrough pretreated solids showed the highest maximum cellulase adsorption capacity (σsolids = 195 mg/g solid) followed by dilute acid (σsolids = 170.0 mg/g solid) and lime pretreated solids (σsolids = 150.8 mg/g solid), whereas controlled pH pretreated solids had the lowest (σsolids = 56 mg/g solid). Lime pretreated solids also had the highest cellulose accessibility (σcellulose = 241 mg/g cellulose) followed by FT and DA. AFEX lignin had the lowest cellulase adsorption capacity (σlignin = 57 mg/g lignin) followed by dilute acid lignin (σlignin = 74 mg/g lignin). AFEX lignin also had the lowest β‐glucosidase capacity (σlignin = 66.6 mg/g lignin), while lignin from SO2lignin = 320 mg/g lignin) followed by dilute acid had the highest (301 mg/g lignin). Furthermore, SO2 followed by dilute acid pretreated solids gave the highest cellulase effectiveness, but delignification enhanced cellulase effectiveness more for high pH than low pH pretreatments, suggesting that lignin impedes access of enzymes to xylan more than to glucan, which in turn affects glucan accessibility. In addition, lignin from enzymatic digestion of AFEX and dilute acid pretreated solids inhibited Avicel hydrolysis less than ARP and flowthrough lignin, whereas acid lignin from unpretreated poplar inhibited enzymes the most. Irreversible binding of cellulase to lignin varied with pretreatment type and desorption method. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

18.
The effectiveness of sulfuric acid (H(2)SO(4)), sodium hydroxide (NaOH), hydrogen peroxide (H(2)O(2)), and ozone pretreatments for conversion of cotton stalks to ethanol was investigated. Ground cotton stalks at a solid loading of 10% (w/v) were pretreated with H(2)SO(4), NaOH, and H(2)O(2) at concentrations of 0.5%, 1%, and 2% (w/v). Treatment temperatures of 90 degrees C and 121 degrees C at 15 psi were investigated for residence times of 30, 60, and 90 min. Ozone pretreatment was performed at 4 degrees C with constant sparging of stalks in water. Solids from H(2)SO(4), NaOH, and H(2)O(2) pretreatments (at 2%, 60 min, 121 degrees C/15 psi) showed significant lignin degradation and/or high sugar availability and hence were hydrolyzed by Celluclast 1.5L and Novozym 188 at 50 degrees C. Sulfuric acid pretreatment resulted in the highest xylan reduction (95.23% for 2% acid, 90 min, 121 degrees C/15 psi) but the lowest cellulose to glucose conversion during hydrolysis (23.85%). Sodium hydroxide pretreatment resulted in the highest level of delignification (65.63% for 2% NaOH, 90 min, 121 degrees C/15 psi) and cellulose conversion (60.8%). Hydrogen peroxide pretreatment resulted in significantly lower (p相似文献   

19.
It is important to develop efficient and economically feasible pretreatment methods for lignocellulosic biomass, to increase annual biomass production. A number of pretreatment methods were introduced to promote subsequent enzymatic hydrolysis of biomass for green energy processes. Pretreatment with steam explosion removes the only xylan at high severity but increases lignin content. In this study, corn stover soaked in choline chloride solution before the steam explosion is economically feasible as it reduced cost. Enzymatic hydrolysis of de-lignified corn stover is enhanced by combinatorial pretreatments of steam explosion and choline chloride. Corn stover pretreated with choline chloride at the ratio of 1:2.2 (w/w), 1.0 MPa, 184 °C, for 15 min efficiently expelled 84.7% lignin and 78.9% xylan. The residual solid comprised of 74.59% glucan and 7.51% xylan was changed to 84.2% glucose and 78.3% xylose with enzyme stacking of 10FPU/g. This single-step pretreatment had ∼ 4.5 and 6.4 times higher glucose yield than SE-pretreated and untreated corn stover, respectively. Furthermore, SEM, XRD and FTIR indicated the porosity, crystalline changes, methoxy bond-cleavage respectively due to the lignin and hemicellulose expulsion. Thus, the released acetic acid during this process introduced this novel strategy, which significantly builds the viability of biomass in short pretreatment time.  相似文献   

20.
The ability of the yeast, Sporobolomyces roseus, isolated from leafy material, to modify lignin derived from beechwood pulping was examined by FTIR and 13C NMR spectroscopy, which revealed oxidative cleavage of the Calpha-Cbeta linkages between lignin units. Using veratryl alcohol as a model substrate confirmed that Sp. roseus could oxidize veratryl alcohol into veratric acid. This yeast might be suitable for the pretreatment of lignocellulosic materials and/or for biotransformation of technical lignins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号