首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Escherichia coli strains that did not have the ability to use sucrose as a sole carbon source gained this ability after receiving a cloned fragment of DNA from Agrobacterium tumefaciens. No invertase was detected in the sucrose-metabolizing E. coli, but evidence for the activity of certain enzymes, known to be produced by biotype 1 strains of Agrobacterium, were found. Evidence was found for the presence of d-glucoside 3-dehydrogenase (G3DH) and α-3-ketoglucosidase. The activity of enzyme extracts on 3-ketosucrose also indicated that 3-ketoglucose reductase, or some enzyme that acts on 3-ketoglucose, was present in the Suc+ E. coli as well. The fragment was found to complement a G3DH mutant of A. tumefaciens and was also found to confer chemotaxis towards sucrose in E. coli. Received: 13 September 1996 / Received revision: 15 January 1997 / Accepted: 24 January 1997  相似文献   

3.
An autoselection system for increasing plasmid stability in Kluyveromyces lactis, based on the blockage of the pyrimidine de novo and salvage pathways, was investigated. In a manner analogous to that used in Saccharomyces cerevisiae, a putative “fur1” mutation was selected in a uraA K. lactis strain using 5-fluorouracil and 5-fluorocytosine plates. Survival of the mutant required expression of a plasmid-borne URA3 gene regardless of the culture medium employed, verifying the efficacy of this autoselection system in K. lactis. The expression of heterologous invertase, encoded by the S. cerevisiae SUC2 gene, was studied during long-term sequential batch cultures (70 generations) in complex yeast/peptone/glucose medium. The fur1 mutant successfully retained the plasmid; invertase specific activity remained above 90% of the initial level. Furthermore, no mutation reversion was observed. In contrast, for the control non-fur1 strain, only 4% of the cells retained the plasmid after 70 generations, and invertase specific activity dropped to less than 10% of the initial level. Experiments comparing growth and activity in different media indicated the potential for improving productivity through medium enrichment using this autoselection system. Received: 1 April 1997 / Received revision: 16 August 1997 / Accepted: 11 September 1997  相似文献   

4.
A recombinant form of the sweet-tasting protein thaumatin has been produced in the filamentous fungus Aspergillus niger var. awamori. Expression cassettes containing a synthetic gene encoding thaumatin II were prepared and used to transform Aspergillus niger var. awamori strain NRRL312. Several fungal strains capable of synthesizing and secreting thaumatin into the culture medium were generated, and their production capabilities were determined, first in shake flasks and later in a laboratory fermentor. We report the expression and secretion of thaumatin in concentrations of 5–7 mg/l. This recombinant thaumatin is sweet. Received: 7 October 1997 / Received revision: 21 November 1997 / Accepted: 21 November 1997  相似文献   

5.
The function of Neurospora crassa calcineurin was investigated in N. crassa strains transformed with a construct that provides for the inducible expression of antisense RNA for the catalytic subunit of calcineurin (cna-1). Induction of antisense RNA expression was associated with reduced levels of cna-1 mRNA and of immunodetectable CNA1 protein and decreased calcineurin enzyme activity, indicating that a conditional reduction of the target function had been achieved in antisense transformants with multiple construct integrations. Induction conditions caused growth arrest which indicated that the cna-1 gene is essential for growth of N. crassa. Growth arrest was preceded by an increase in hyphal branching, changes in hyphal morphology and concomitant loss of the distinctive tip-high Ca2+ gradient typical for growing wild-type hyphae. This demonstrates a novel and specific role for calcineurin in the precise regulation of apical growth, a common form of cellular proliferation. In vitro inhibition of N. crassa calcineurin by the complex of cyclosporin A (CsA) and cyclophilin20, and increased sensitivity of the induced transformants to the calcineurin-specific drugs CsA and FK506 imply that the drugs act in N. crassa, as in T-cells and Saccharomyces cerevisiae, by inactivating calcineurin. The finding that exposure of growing wild-type mycelium to these drugs leads to a phenotype very similar to that of the cna-1 antisense mutants is consistent with this idea. Received: 18 February 1997 / Accepted: 20 April 1997  相似文献   

6.
During tetrapyrrole biosynthesis 5-aminolevulinic acid dehydratase (ALAD) catalyzes the condensation of two molecules of 5-aminolevulinic acid (ALA) to form one molecule of the pyrrole derivative porphobilinogen. In Escherichia coli, the enzyme is encoded by the gene hemB. The hemB gene was cloned from Pseudomonas aeruginosa by functional complementation of an E. coli hemB mutant. An open reading frame of 1011 bp encoding a protein of 336 amino acids (Mr = 37 008) was identified. The gene was mapped to SpeI fragment G and DpnI fragment G of the P. aeruginosa chromosome, corresponding to the 10 to 12 min region of the new map or 19 to 22 min interval of the old map. The 5′ end of the hemB mRNA was determined and the −10 and −35 regions of a potential σ70-dependent promoter were localized. No obvious regulation of the hemB gene by oxygen, nitrate, heme or iron was detected. Alignment of the amino acid sequences deduced from hemB revealed a potential metal-binding site and indicated that the enzyme is Mg2+-dependent. P. aeruginosa hemB was overexpressed in an E. coli hemB mutant using the phage T7 RNA polymerase system and its Mg2+-dependent activity was directly demonstrated. Received: 11 July 1997 / Accepted: 9 October 1997  相似文献   

7.
Nutrient cost is an important aspect in the fermentation of biomass to ethanol. With a goal of developing a cost-effective fermentation medium, several industrially available nutrient sources were evaluated for their effectiveness in the simultaneous saccharification and fermentation of pretreated poplar with Saccharomyces cerevisiae D5A. These studies showed that a low-cost medium containing 0.3% corn steep liquor and 2.5 mM MgSO4 · 7H2O was similar in performance to a nutrient-rich medium. Besides its low cost, this alternative medium consists of components that are available on a commercial scale, thereby making it industrially relevant. Received: 14 August 1996 / Received revision: 7 January 1997 / Accepted: 24 January 1997  相似文献   

8.
The mutant strain Pseudomonas fluorescens TTC1 (NCIMB 40605), derived from the naphthalene-degrading Pseudomonas fluorescens N3 (NCIMB 40530), was used for the oxidation of 1- and 2-naphthols to give different isomers of dihydroxynaphthalene. The oxidation reactions proceed through the formation of dihydrodiol intermediates, which are too unstable to be isolated, since they spontaneously eliminate water to give the fully aromatic dihydroxynaphthalenes. The high regioselectivity of the dehydration reaction was confirmed by the study of the acid-catalysed aromatization of a series of stable monosubstituted naphthalene cis-1,2-dihydrodiols. Received: 24 March 1997 / Received revision: 6 June 1997 / Accepted: 7 June 1997  相似文献   

9.
Heterologous production of bovine plasmin was studied in the industrially relevant bacterium Lactococcus lactis. Two sets of lactococcal gene expression signals were coupled to the region of the plasmin gene coding for the serine protease domain. When the promoter region of the prtP gene was used, plasmin was detected mainly intracellularly in strain BPL25 by Western blot hybridization. The intracellular presence of plasmin led to physiological stress. Expression of the plasmin gene driven by the promoter and complete signal sequence of the lactococcal usp45 gene resulted in efficient plasmin secretion in strain BPL420. Cell lysis was observed in strains producing plasmin fragments including the catalytic domain, but not in control strains, which only produced a non-catalytic region of plasmin. The plasmin produced was shown to be biologically active. Received: 2 December 1996 / Received revision: 17 March 1997 / Accepted: 27 April 1997  相似文献   

10.
The ability of Alcaligenes eutrophus to grow and produce polyhydroxyalkanoates (PHA) on plant oils was evaluated. When olive oil, corn oil, or palm oil was fed as a sole carbon source, the wild-type strain of A. eutrophus grew well and accumulated poly(3-hydroxybutyrate) homopolymer up to approximately 80% (w/w) of the cell dry weight during its stationary growth phase. In addition, a recombinant strain of A. eutrophus PHB4 (a PHA-negative mutant), harboring a PHA synthase gene from Aeromonas caviae, was revealed to produce a random copolyester of 3-hydroxybutyrate and 3-hydroxyhexanoate from these plant oils with a high cellular content (approximately 80% w/w). The mole fraction of 3-hydroxyhexanoate units was 4–5 mol% whatever the structure of the triglycerides fed. The polyesters produced by the A. eutrophus strains from olive oil were 200–400 kDa (the number-average molecular mass). The results demonstrate that renewable and inexpensive plant oils are excellent carbon sources for efficient production of PHA using A. eutrophus strains. Received: 3 September 1997 / Received revision: 10 November 1997 / Accepted: 16 November 1997  相似文献   

11.
12.
A gene library from the thermophilic eubacterium Rhodothermus marinus, strain ITI 378, was constructed in pUC18 and transformed into Escherichia coli. Of 5400 transformants, 3 were active on carboxymethylcellulose. Three plasmids conferring cellulase activity were purified and were all found to contain the same cellulase gene, celA. The open reading frame for the celA gene is 780 base pairs and encodes a protein of 260 amino acids with a calculated molecular mass of 28.8 kDa. The amino acid sequence shows homology with cellulases in glycosyl hydrolase family 12. The celA gene was overexpressed in E. coli when the pET23, T7 phage RNA polymerase system was used. The enzyme showed activity on carboxymethylcellulose and lichenan, but not on birch xylan or laminarin. The expressed enzyme had six terminal histidine residues and was purified by using a nickel nitrilotriacetate column. The enzyme had a pH optimum of 6–7 and its highest measured initial activity at 100 °C. The heat stability of the enzyme was increased by removal of the histidine residues. It then retained 75% of its activity after 8 h at 90 °C. Received: 5 August 1997 / Received revision: 6 November 1997 / Accepted: 7 November 1997  相似文献   

13.
To improve the economic competitiveness of the acetone/butanol/ethanol fermentation process, glucose/corn steep water (CSW) medium was used on a pilot scale for the production of solvents. The production of butanol by the Clostridium beijerinckii NCIMB 8052 parent strain and the solvent-hyperproducing BA101 mutant was compared. In a 20-l fermentation using 5% glucose/CSW medium,  C. beijerinckii 8052 produced 8.5 g butanol/l and 5 g acetone/l, while  C. beijerinckii BA101 produced 16 g butanol/l and 7.5 g acetone/l. Further studies were carried out on a larger scale using an optimized 6% glucose/CSW medium. In a 200-l pilot-scale fermentor,  C. beijerinckii 8052 produced 12.7 g butanol/l and 6 g acetone/l following 96 h of fermentation.  C. beijerinckii BA101 produced 17.8 g/l and 5.5 g/l butanol and acetone respectively, following 130 h of fermentation. These results represent a 40% increase in final butanol concentration by the C. beijerinckii BA101 mutant strain when compared to the 8052 parent strain. The total solvents (acetone, butanol, and ethanol) produced by C. beijerinckii NCIMB 8052 and BA101 in a 200-l fermentation were 19.2 g/l and 23.6 g/l respectively. This is the first report of pilot-scale butanol production by the solvent-hyperproducing C. beijerinckii BA101 mutant employing an inexpensive glucose/CSW medium. Received: 26 May 1998 / Received revision: 21 September 1998 / Accepted: 11 October 1998  相似文献   

14.
A cbh2 cDNA encoding Trichoderma reesei QM9414 cellobiohydrolase II, located on the expression vector whose copy number is controlled by the level of gentamicin, was successfully expressed under the control of a human cytomegalovirus promoter in the fission yeast, Schizosaccharomyces pombe. The 24-amino-acid leader peptide of the cbh2 gene was recognized by the yeast, enabling the efficient secretion of the heterologous cellobiohydrolase. The transformed S. pombe strain produced over 115 μg cellobiohydrolase proteins/ml rich medium supplemented with malt extract and 100 μg/ml gentamicin. The molecular masses of the recombinant cellobiohydrolases, secreted as two molecular species, were estimated to be 70 kDa and 72 kDa by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE). Deglycosylation treatments revealed that the recombinant enzymes were overglycosylated and scarcely susceptible to α-mannosidase. The recombinant enzymes showed no carboxymethylcellulase activity, but showed similar characteristics to those of a native enzyme purified from T. reesei in their optimum pH and temperature, pH and temperature stabilities, and V max values toward phosphoric-acid-swollen cellulose as substrate, except that their K m values were about fourfold higher than that of the native enzyme. Received: 4 August 1997 / Received revision: 13 October 1997 / Accepted: 31 October 1997  相似文献   

15.
Bacterial alginates: biosynthesis and applications   总被引:3,自引:0,他引:3  
Alginate is a copolymer of β-d-mannuronic acid and α-l-guluronic acid (GulA), linked together by 1–4 linkages. The polymer is a well-established industrial product obtained commercially by harvesting brown seaweeds. Some bacteria, mostly derived from the genus Pseudomonas and belonging to the RNA superfamily I, are also capable of producing copious amounts of this polymer as an exopolysaccharide. The molecular genetics, regulation and biochemistry of alginate biosynthesis have been particularly well characterized in the opportunistic human pathogen Pseudomonas aeruginosa, although the biochemistry of the polymerization process is still poorly understood. In the last 3 years major aspects of the molecular genetics of alginate biosynthesis in Azotobacter vinelandii have also been reported. In both organisms the immediate precursor of polymerization is GDP-mannuronic acid, and the sugar residues in this compound are polymerized into mannuronan. This uniform polymer is then further modified by acetylation at positions O-2 and/or O-3 and by epimerization of some of the residues, leading to a variable content of acetyl groups and GulA residues. In contrast, seaweed alginates are not acetylated. The nature of the epimerization steps are more complex in A. vinelandii than in P. aeruginosa, while other aspects of the biochemistry and genetics of alginate biosynthesis appear to be similar. The GulA residue content and distribution strongly affect the physicochemical properties of alginates, and the epimerization process is therefore of great interest from an applied point of view. This article presents a survey of our current knowledge of the molecular genetics and biochemistry of bacterial alginate biosynthesis, as well as of the biotechnological potential of such polymers. Received: 14 March 1997 / Received revision: 7 May 1997 / Accepted: 11 May 1997  相似文献   

16.
An efficient expression system for the previously only weakly expressed thermophilic lipase BTL2 (Bacillus thermocatenulatus lipase 2) was developed for the production of large amounts of lipase in Escherichia coli. Therefore, the gene was subcloned in the pCYTEXP1 (pT1) expression vector downstream of the temperature-inducible λ promoter PL. Three different expression vectors were constructed: (i) pT1-BTL2 containing the mature lipase gene, (ii) pT1-preBTL2 containing the prelipase gene and (iii) pT1-OmpABTL2 containing the mature lipase gene fused to the signal peptide of the OmpA protein, the major outer membrane protein of E. coli. With pT1-BTL2 and pT1-preBTL2, comparable expression levels of 7000–9000 U/g cells were obtained independently of the E. coli host. In contrast, with E. coli JM105 harbouring pT1-OmpABTL2, 660 000 soluble lipase U/g cells was produced, whereas, with E. coli DH5α and BL321, production levels of 30 000 U/g cells were achieved. However, most of the lipase remained insoluble but active after cell breakage because of the unprocessed OmpA signal peptide. A simple cholate extraction followed by proteinase K cleavage and ultrafiltration allowed the isolation of 1.15 × 106 units of 90% pure mature lipase/wet cells. Received: 29 August 1997 / Received revision: 17 November 1997 / Accepted: 18 November 1997  相似文献   

17.
A Clostridium thermocellum gene, xynX, coding for a xylanase was cloned and the complete nucleotide sequence was determined. The xylanase gene of Clostridium thermocellum consists of an ORF of 3261 nucleotide encoding a xylanase (XynX) of 1087 amino acid residues (116 kDa). Sequence analysis of XynX showed a multidomain structure that consisted of four different domains: an N-terminal thermostabilizing domain homologous to sequences found in several thermophilic enzymes, a catalytic domain homologous to family 10 glycosyl hydrolases, a duplicated cellulose-binding domain (CBD) homologous to family IX CBDs, and a triplicated S-layer homologous domain. A deletion mutant of xynX having only the catalytic region produced a mutant enzyme XynX-C which retained catalytic activity but lost thermostability. In terms of half-life at 70 °C, the thermostability of XynX-C was about six times lower than that of the other mutant enzyme, XynX-TC, produced by a mutant containing both the thermostabilizing domain and the catalytic domain. The optimum temperature of XynX-C was about 5–10 °C lower than that of XynX-TC. Received: 12 January 2000 / Received revision: 24 April 2000 / Accepted: 1 May 2000  相似文献   

18.
The biosynthesis and chemical reactions of poly(amino acid)s produced by microorganisms are reviewed. A large amount of γ-poly(glutamic acid) (PGA) has been produced by Bacillus strains. ε-Polylysine (PL) has been produced by Streptomyces albulus. As a modification of PGA and PL, pH-sensitive hydrogels have been prepared by means of γ irradiation or the addition of a crosslinking agent to an aqueous solution of PGA and PL. Received: 4 September 1996 / Received revision: 27 January 1997 / Accepted: 28 January 1997  相似文献   

19.
An efficient one-step transformation method for the dimorphic yeast Yarrowia lipolytica is described. Using cells grown overnight on agar plates, the whole process is carried out within 1 h. The transformant clones could be recovered on selective plates as early as 36–48 h after plating. The efficiency was better than 105 transformants/μg replicative plasmid DNA. Effects of cell density, dithiothreitol, heat shock, poly(ethylene glycol) 4000 concentration and the wetness of selective plates were investigated. Received: 17 February 1997 / Received revision: 4 April 1997 / Accepted: 19 April 1997  相似文献   

20.
Continuous hydrogen gas evolution by self-flocculated cells of Enterobacter aerogenes, a natural isolate HU-101 and its mutant AY-2, was performed in a packed-bed reactor under glucose-limiting conditions in a minimal medium. The flocs that formed during the continuous culture were retained even when the dilution rate was increased to 0.9 h−1. The H2 production rate increased linearly with increases in the dilution rate up to 0.67 h−1, giving maximum H2 production rates of 31 and 58 mmol l−1 h−1 in HU-101 and AY-2 respectively, at a dilution rate of more than 0.67 h−1. The molar H2 yield from glucose in AY-2 was maintained at about 1.1 at dilution rates between 0.08 h−1 and 0.67 h−1, but it decreased rapidly at dilution rates more than 0.8 h−1. Received: 27 August 1997 / Received revision: 11 November 1997 / Accepted: 14 December 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号