首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the association of calmodulin (CaM) with microtubules (MTs) in the mitotic apparatus (MA), the distributions of CaM and tubulin were examined in cells in which the normal spindle organization had been altered. A fluorescent CaM conjugate with tetramethylrhodamine isothiocyanate (CaM-TRITC) and a dichlorotriazinyl aminofluorescein conjugate with tubulin (tubulin-DTAF) were injected into cells that had been treated with the MT inhibitor nocodazole. With moderate nocodazole concentration (0.3 micrograms/ml, 37 degrees C, 4 h) in live cells, CaM-TRITC and tubulin-DTAF concentrated identically on or near the centrosomes and kinetochores. In serial sections of these cells, small MT segments were observed by transmission electron microscopy (TEM) in the regions where fluorescent protein had concentrated. When a higher drug concentration was used (3.0 micrograms/ml, 37 degrees C, 4 h), no regions of CaM-TRITC or tubulin-DTAF localization were observed, and no MTs were observed when serial sections were examined by TEM. However, following release from the high-concentration nocodazole block, CaM-TRITC colocalized with newly formed MTs at the kinetochores and centrosomes. Later in the recovery period, when chromosome-to-pole fibers had formed, CaM association with kinetochores diminished, ultimately attaining its normal pole-proximal association with kinetochore MTs in cells that progressed through mitosis. We interpret these observations as supporting the hypothesis that in the MA, CaM attains a physical association with kinetochore MTs and suggest that CaM-associated MTs may be inherently more stable.  相似文献   

2.
Summary To examine the effects exerted on the microtubule (MT) cytoskeleton by dinitrophenol/deoxyglucose (DNP/DOG) and nocodazole, live PtK1 cells were treated with the drugs and then fixed and examined by immunofluorescence staining and electronmicroscopy. DNP/DOG had little effect on interphase MTs. In mitotic cells, kinetochore and some astral fibers were clearly shortened in metaphase figures by DNP/DOG. Nocodazole rapidly broke down spindle MTs (except those in the midbody), while interphase cells showed considerable variation in the susceptibility of their MTs. Nocodazole had little effect on MTs in energy-depleted (DNP/DOG-treated) cells. When cytoplasmic MTs had all been broken down by prolonged nocodazole treatment and the cells then released from the nocodazole block into DNP/DOG, some MT reassembly occurred in the ATP-depleted state. MTs in permeabilized, extracted cells were also examined with antitubulin staining; the well-preserved interphase and mitotic arrays of MTs showed no susceptibility to nocodazole. In contrast, MTs suffered considerable breakdown by ATP, GTP and ATPS; AMPPNP had little effect. This susceptibility of extracted MT cytoskeleton to nucleotide phosphates was highly variable; some interphase cells lost all MTs, most were severely affected, but some retained extensive MT networks; mitotic spindles were diminished but structurally coherent and more stable than most interphase MT arrays.We suggest that: 1. in the living cell, ATP or nucleotide triphosphates (NTPs) are necessary for normal and nocodazole-induced MT disassembly; 2. the NTP requirement may be for phosphorylation; 3. shortening of kinetochore fibers may be modulated by compression and require ATP; 4. many of these results cannot be accomodated by the dynamic equilibrium theory of MT assembly/disassembly; 5. the use and role of ATP on isolated spindles may have to be reevaluated due to the effects ATP has on the spindle cytoskeleton of permeabilized cells.  相似文献   

3.
Microtubules (MTs) are nucleated from centrosomes and chromatin. In addition, MTs can be generated from preexiting MTs in a γ-tubulin–dependent manner in yeast, plant, and Drosophila cells, although the underlying mechanism remains unknown. Here we show the spindle-associated protein FAM29A promotes MT-dependent MT amplification and is required for efficient chromosome congression and segregation in mammalian cells. Depletion of FAM29A reduces spindle MT density. FAM29A is not involved in the nucleation of MTs from centrosomes and chromatin, but is required for a subsequent increase in MT mass in cells released from nocodazole. FAM29A interacts with the NEDD1–γ-tubulin complex and recruits this complex to the spindle, which, in turn, promotes MT polymerization. FAM29A preferentially associates with kinetochore MTs and knockdown of FAM29A reduces the number of MTs in a kinetochore fiber, activates the spindle checkpoint, and delays the mitotic progression. Our study provides a biochemical mechanism for MT-dependent MT amplification and for the maturation of kinetochore fibers in mammalian cells.  相似文献   

4.
To investigate the association of calmodulin (CaM) with microtubules (MTs) in the mitotic apparatus (MA), the distributions of both CaM and tubulin were examined in mitotic PtK1 cells in which MT subclasses had been selectively removed or altered by treatment with cold or with the MT inhibitor, nocodazole. A fluorescent CaM conjugate with tetramethylrhodamine isothiocyanate (CaM-TRITC) was microinjected into living cells, and the CaM distribution in the living cell was compared to the distribution of MTs indicated by tubulin immunofluorescence. In cells which had been treated for 2 h at 0 to 4 degrees C or with a low (0.03 micrograms/ml) dose of nocodazole, the only MTs remaining appeared to be kinetochore MTs (kMTs). The distribution of microinjected CaM-TRITC in these cells was indistinguishable from that found in untreated cells and appeared to be colocalized with the kMTs. In cells which were treated with a high (3.0 micrograms/ml) dose of nocodazole, only short MTs remained. When CaM-TRITC was injected into these cells, it formed a somewhat punctate distribution near the chromosomes and, after tubulin immunofluorescence processing, colocalized with what appeared to be remnants of kMTs. We believe that these observations support the hypothesis that CaM exists in the MA in a structural association with kMTs.  相似文献   

5.
When the spindle assembly checkpoint (SAC) cannot be satisfied, cells exit mitosis via mitotic slippage. In microtubule (MT) poisons, slippage requires cyclin B proteolysis, and it appears to be accelerated in drug concentrations that allow some MT assembly. To determine if MTs accelerate slippage, we followed mitosis in human RPE-1 cells exposed to various spindle poisons. At 37°C, the duration of mitosis in nocodazole, colcemid, or vinblastine concentrations that inhibit MT assembly varied from 20 to 30 h, revealing that different MT poisons differentially depress the cyclin B destruction rate during slippage. The duration of mitosis in Eg5 inhibitors, which induce monopolar spindles without disrupting MT dynamics, was the same as in cells lacking MTs. Thus, in the presence of numerous unattached kinetochores, MTs do not accelerate slippage. Finally, compared with cells lacking MTs, exit from mitosis is accelerated over a range of spindle poison concentrations that allow MT assembly because the SAC becomes satisfied on abnormal spindles and not because slippage is accelerated.  相似文献   

6.
The conserved protein Shugoshin (Sgo) plays a role in the maintenance of centromeric cohesion in mitosis and meiosis. Human Shugoshin (hSgo) was first identified as an overexpressed protein in breast cancers. Here we demonstrate that hSgo mediates kinetochore-driven formation of kinetochore microtubules (MTs) during bipolar spindle assembly. The regulated overexpression of full-length hSgo, or of truncated proteins containing both the conserved N-terminal coiled-coil domain and C-terminal basic domain, resulted in hSgo localization at centromere at early mitosis and was associated with aberrant nucleation and formation of bundles of kinetochore MTs. The mid-portion of hSgo, between the N- and C-terminal domains, includes both a functional domain for centromeric cohesion and a regulatory domain for spindle assembly. The cells overexpressing natural alternative splicing isoforms, which are almost completely defective for the mid-portion of the hSgo protein, showed premature centromere separation (PCS) and aberrant MT connections. These isoforms are mildly overexpressed in HEK293 cells. On the other hand, cells expressing a truncated protein, defective in the lysine-rich region of the mid-portion, arrested at mitosis due to persistent abnormal MT connections and not because of PCS. Aberrant MT connections were predominantly observed in spindle regions where chromosomes were clustered. Interestingly, we also found that hSgo is rapidly exchanged at kinetochores at early mitosis. Based on these results, we conclude that hSgo may be diffusible and have a role in proper kinetochores-MTs attachment.  相似文献   

7.
Kinetochore microtubules in PTK cells.   总被引:15,自引:7,他引:8       下载免费PDF全文
We have analyzed the fine structure of 10 chromosomal fibers from mitotic spindles of PtK1 cells in metaphase and anaphase, using electron microscopy of serial thin sections and computer image processing to follow the trajectories of the component microtubules (MTs) in three dimensions. Most of the kinetochore MTs ran from their kinetochore to the vicinity of the pole, retaining a clustered arrangement over their entire length. This MT bundle was invaded by large numbers of other MTs that were not associated with kinetochores. The invading MTs frequently came close to the kinetochore MTs, but a two-dimensional analysis of neighbor density failed to identify any characteristic spacing between the two MT classes. Unlike the results from neighbor density analyses of interzone MTs, the distributions of spacings between kinetochore MTs and other spindle MTs revealed no evidence for strong MT-MT interactions. A three-dimensional analysis of distances of closest approach between kinetochore MTs and other spindle MTs has, however, shown that the most common distances of closest approach were 30-50 nm, suggesting a weak interaction between kinetochore MTs and their neighbors. The data support the ideas that kinetochore MTs form a mechanical connection between the kinetochore and the pericentriolar material that defines the pole, but that the mechanical interactions between kinetochore MTs and other spindle MTs are weak.  相似文献   

8.
Chromosome segregation during mitosis requires kinetochores, specialized organelles that mediate chromosome attachment to spindle microtubules. We have shown previously that in budding yeast, Plc1p (phosphoinositide-specific phospholipase C) localizes to centromeric loci, associates with the kinetochore proteins Ndc10p and Cep3p, and affects the function of kinetochores. Deletion of PLC1 results in nocodazole sensitivity, mitotic delay, and a higher frequency of chromosome loss. We report here that despite the nocodazole sensitivity of plc1Delta cells, Plc1p is not required for the spindle checkpoint. However, plc1Delta cells require a functional BUB1/BUB3-dependent spindle checkpoint for viability. PLC1 displays strong genetic interactions with genes encoding components of the inner kinetochore, including NDC10, SKP1, MIF2, CEP1, CEP3, and CTF13. Furthermore, plc1Delta cells display alterations in chromatin structure in the core centromere. Chromatin immunoprecipitation experiments indicate that Plc1p localizes to centromeric loci independently of microtubules, and accumulates at the centromeres during G(2)/M stage of cell cycle. These results are consistent with the view that Plc1p affects kinetochore function, possibly by modulating the structure of centromeric chromatin.  相似文献   

9.
Summary Chinese hamster ovary (CHO) cells are treated with hydroxurea followed by a caffeine treatment to form detached kinetochore fragments in the absence of sister chromatids. Detached kinetochores in mitotic CHO cells display a functional association with MTs initiated from one or both centrosomes such that these association(s) have a significant influence on the location and orientation of detached kinetochores and/or their fragments. Kinetochore fragments which are amphitelically oriented are positioned approximately midway between the two centrosomes. Thus, a kinetochore isolated from a single chromatid can capture MTs from both poles. Monotelic orientation of these fragments is more frequently observed with kinetochore fragments located an average distance of 2.5 m from the nearest centrosome, compared to an average distance of 4.4 m in amphitelically oriented fragments. In cells treated with the potent MT poison, nocodazole, kinetochore isolation also occurs and therefore is not dependent on the presence of MTs. CHO cells treated to produce isolated kinetochores or kinetochore fragments then subsequently hyperosmotically shocked show no MTs directly inserted into kinetochore lamina, similar to the response of sucrose-treated metapbase PtK1 cells. This treatment shows circular kinetochores tangentially associated with bundles of MTs that are located an average of 1.5 m from the centrosome. Our results suggest that a single kinetochore fragment can attach to MTs initiated from one or both centrosomes and that their specific association to MT fibers defines orientation of detached kinetochores within the spindle domain.  相似文献   

10.
The mitotic spindle is made of microtubules (MTs) nucleated through different pathways involving the centrosomes, the chromosomes or the walls of pre-existing MTs. MCRS1 is a RanGTP target that specifically associates with the chromosome-driven MTs protecting them from MT depolymerases. MCRS1 is also needed for the control of kinetochore fiber (K-fiber) MT minus-ends dynamics in metaphase. Here, we investigated the regulation of MCRS1 activity in M-phase. We show that MCRS1 is phosphorylated by the Aurora-A kinase in mitosis on Ser35/36. Although this phosphorylation has no role on MCRS1 localization to chromosomal MTs and K-fiber minus-ends, we show that it regulates MCRS1 activity in mitosis. We conclude that Aurora-A activity is particularly important in the tuning of K-fiber minus-ends dynamics in mitosis.  相似文献   

11.
The spindle checkpoint in the yeast Saccharomyces cerevisiae is an intracellular signal transduction pathway comprised of two branches that inhibit two different mitotic transitions in cells treated with benzimidazole drugs such as nocodazole. The kinetochore is an integral component of the MAD2 branch of the spindle checkpoint pathway. Current models propose that the kinetochore is required for both the establishment and maintenance of the spindle checkpoint but a role for the kinetochore in the maintenance of spindle checkpoint in yeast has never been directly tested. We used a temperature sensitive ndc10-1 mutant to inactivate kinetochores before and after arresting cells in mitosis to determine the role of kinetochores in the establishment and maintenance of the spindle checkpoint. We show that both establishment and maintenance requires kinetochore function in response to spindle damage induced by benzimidazole drugs. Excess expression of the Mps1 protein kinase causes wild type cells and ndc10-1 cells to arrest in mitosis. Unlike the spindle checkpoint arrest activated by benzimidazoles, this arrest can be maintained independently of kinetochores. The arrest induced by excess Mps1p is independent of BUB2. Therefore, mitotic arrest induced by excess Mps1p expression is due to the action of the MAD2 branch of the spindle checkpoint pathway and excess Mps1p acts downstream of the kinetochore.  相似文献   

12.
The proper segregation of sister chromatids in mitosis depends on bipolar attachment of all chromosomes to the mitotic spindle. We have identified the small molecule Hesperadin as an inhibitor of chromosome alignment and segregation. Our data imply that Hesperadin causes this phenotype by inhibiting the function of the mitotic kinase Aurora B. Mammalian cells treated with Hesperadin enter anaphase in the presence of numerous monooriented chromosomes, many of which may have both sister kinetochores attached to one spindle pole (syntelic attachment). Hesperadin also causes cells arrested by taxol or monastrol to enter anaphase within <1 h, whereas cells in nocodazole stay arrested for 3-5 h. Together, our data suggest that Aurora B is required to generate unattached kinetochores on monooriented chromosomes, which in turn could promote bipolar attachment as well as maintain checkpoint signaling.  相似文献   

13.
The spindle checkpoint in the yeast Saccharomyces cerevisiae is an intracellular signal transduction pathway comprised of two branches that inhibit two different mitotic transitions in cells treated with benzimidazole drugs such as nocodazole. The kinetochore is an integral component of the MAD2 branch of the spindle checkpoint pathway. Current models propose that the kinetochore is required for both the establishment and maintenance of the spindle checkpoint but a role for the kinetochore in the maintenance of spindle checkpoint in yeast has never been directly tested. We used a temperature sensitive ndc10-1 mutant to inactivate kinetochores before and after arresting cells in mitosis to determine the role of kinetochores in the establishment and maintenance of the spindle checkpoint. We show that both establishment and maintenance requires kinetochore function in response to spindle damage induced by benzimidazole drugs. Excess expression of the Mps1 protein kinase causes wild type cells and ndc10-1 cells to arrest in mitosis. Unlike the spindle checkpoint arrest activated by benzimidazoles, this arrest can be maintained independently of kinetochores. The arrest induced by excess Mps1p is independent of BUB2. Therefore, mitotic arrest induced by excess Mps1p expression is due to the action of the MAD2 branch of the spindle checkpoint pathway and excess Mps1p acts downstream of the kinetochore.  相似文献   

14.
We recently developed a direct fluorescence ratio assay (Zhai, Y., and G.G. Borisy. 1994. J. Cell Sci. 107:881-890) to quantify microtubule (MT) polymer in order to determine if net MT depolymerization occurred upon anaphase onset as the spindle was disassembled. Our results showed no net decrease in polymer, indicating that the disassembly of kinetochore MTs was balanced by assembly of midbody and astral MTs. Thus, the mitosis-interphase transition occurs by a redistribution of tubulin among different classes of MTs at essentially constant polymer level. We now examine the reverse process, the interphase-mitosis transition. Specifically, we quantitated both the level of MT polymer and the dynamics of MTs during the G2/M transition using the fluorescence ratio assay and a fluorescence photoactivation approach, respectively. Prophase cells before nuclear envelope breakdown (NEB) had high levels of MT polymer (62%) similar to that previously reported for random interphase populations (68%). However, prophase cells just after NEB had significantly reduced levels (23%) which recovered as MT attachments to chromosomes were made (prometaphase, 47%; metaphase, 56%). The abrupt reorganization of MTs at NEB was corroborated by anti- tubulin immunofluorescence staining using a variety of fixation protocols. Sensitivity to nocodazole also increased at NEB. Photoactivation analyses of MT dynamics showed a similar abrupt change at NEB, basal rates of MT turnover (pre-NEB) increased post-NEB and then became slower later in mitosis. Our results indicate that the interphase-mitosis (G2/M) transition of the MT array does not occur by a simple redistribution of tubulin at constant polymer level as the mitosis-interphase (M/G1) transition. Rather, an abrupt decrease in MT polymer level and increase in MT dynamics occurs tightly correlated with NEB. A subsequent increase in MT polymer level and decrease in MT dynamics occurs correlated with chromosome attachment. These results carry implications for understanding spindle morphogenesis. They indicate that changes in MT dynamics may cause the steady-state MT polymer level in mitotic cells to be lower than in interphase. We propose that tension exerted on the kMTs may lead to their lengthening and thereby lead to an increase in the MT polymer level as chromosomes attach to the spindle.  相似文献   

15.
Chromosome segregation relies on the dynamic properties of spindle microtubules (MTs). Poleward MT flux contributes to spindle dynamics through the disassembly of MT minus ends at spindle poles coupled to the continuous poleward transport of spindle MTs. Despite being conserved in metazoan cells, the function of flux remains controversial because flux rates differ widely in different cell types. In meiotic systems, the rate of flux nearly matches that of chromosome movement, but in mitotic systems, flux is significantly slower than chromosome movement. Here, we show that spindles in human mitotic cells depleted of the kinesin-13 proteins Kif2a and MCAK lack detectable flux and that such cells frequently fail to segregate all chromosomes appropriately at anaphase. Elimination of flux reduces poleward chromosome velocity approximately 20%, but does not hinder bipolar spindle assembly, chromosome alignment, or mitotic progression. Thus, mitosis proceeds efficiently in human cells lacking detectable poleward MT flux. These data demonstrate that in human cultured cells, kinetochores are sufficient to effectively power chromosome movement, leading us to speculate that flux is maintained in these cells to fulfill other functional roles such as error correction or kinetochore regulation.  相似文献   

16.
As anaphase began, mitotic PtK1 and newt lung epithelial cells were permeabilized with digitonin in permeabilization medium (PM). Permeabilization stopped cytoplasmic activity, chromosome movement, and cytokinesis within about 3 min, presumably due to the loss of endogenous ATP. ATP, GTP, or ATP-gamma-S added in the PM 4-7 min later restarted anaphase A while kinetochore fibers shortened. AMPPNP could not restart anaphase A; ATP was ineffective if the spindle was stabilized in PM + DMSO. Cells permeabilized in PM + taxol varied in their response to ATP depending on the stage of anaphase reached: one mid-anaphase cell showed initial movement of chromosomes back to the metaphase plate upon permeabilization but later, anaphase A resumed when ATP was added. Anaphase A was also reactivated by cold PM (approximately 16 degrees C) or PM containing calcium (1-10 mM). Staining of fixed cells with antitubulin showed that microtubules (MTs) were relatively stable after permeabilization and MT assembly was usually promoted in asters. Astral and kinetochore MTs were sensitive to MT disassembly conditions, and shortening of kinetochore MTs always accompanied reactivation of anaphase A. Interphase and interzonal spindle MTs were relatively stable to cold and calcium until extraction of cells was promoted by longer periods in the PM, or by higher concentrations of detergent. Since we cannot envisage how both cold treatment or relatively high calcium levels can reactivate spindle motility in quiescent, permeabilized, and presumably energy-depleted cells, we conclude that anaphase A is powered by energy stored in the spindle. The nucleotide triphosphates effective in reactivating anaphase A could be necessary for the kinetochore MT disassembly without which anaphase movement cannot proceed.  相似文献   

17.
The protein kinase inhibitor 2-aminopurine induces checkpoint override and mitotic exit in BHK cells which have been arrested in mitosis by inhibitors of microtubule function (Andreassen, P. R., and R. L. Margolis. 1991. J. Cell Sci. 100:299-310). Mitotic exit is monitored by loss of MPM-2 antigen, by the reformation of nuclei, and by the extinction of p34cdc2-dependent H1 kinase activity. 2-AP-induced inactivation of p34cdc2 and mitotic exit depend on the assembly state of microtubules. During mitotic arrest generated by the microtubule assembly inhibitor nocodazole, the rate of mitotic exit induced by 2-AP decreases proportionally with increasing nocodazole concentrations. At nocodazole concentrations of 0.12 microgram/ml or greater, 2-AP induces no apparent exit through 75 min of treatment. In contrast, 2-AP brings about a rapid exit (t1/2 = 20 min) from mitotic arrest by taxol, a drug which causes inappropriate overassembly of microtubules. In control mitotic cells, p34cdc2 localizes to kinetochores, centrosomes, and spindle microtubules. We find that efficient exit from mitosis occurs under conditions where p34cdc2 remains associated with centrosomal microtubules, suggesting it must be present on these microtubules in order to be inactivated. Mitotic slippage, the natural reentry of cells into G1 during prolonged mitotic block, is also microtubule dependent. At high nocodazole concentrations slippage is prevented and mitotic arrest approaches 100%. We conclude that essential components of the machinery for exit from mitosis are present on the mitotic spindle, and that normal mitotic exit thereby may be regulated by the microtubule assembly state.  相似文献   

18.
Wnt signalling is known to promote G1/S progression through the stimulation of gene expression, but whether this signalling regulates mitotic progression is not clear. Here, the function of dishevelled 2 (Dvl2), which transmits the Wnt signal, in mitosis was examined. Dvl2 localized to the spindles and spindle poles during mitosis. When cells were treated with nocodazole, Dvl2 was observed at the kinetochores (KTs). Dvl2 bound to and was phosphorylated at Thr206 by a mitotic kinase, Polo‐like kinase 1 (Plk1), and this phosphorylation was required for spindle orientation and stable microtubule (MT)‐KT attachment. Dvl2 was also found to be involved in the activation of a spindle assembly checkpoint (SAC) kinase, Mps1, and the recruitment of other SAC components, Bub1 and BubR1, to the KTs. However, the phosphorylation of Dvl2 by Plk1 was dispensable for SAC. Furthermore, Wnt receptors were involved in spindle orientation, but not in MT‐KT attachment or SAC. These results suggested that Dvl2 is involved in mitotic progression by regulating the dynamics of MT plus‐ends and the SAC in Plk1‐dependent and ‐independent manners.  相似文献   

19.
Inhibition of mitosis by antimitotic drugs is thought to occur by destruction of microtubules, causing cells to arrest through the action of one or more mitotic checkpoints. We have patterned experiments in the yeast Saccharomyces cerevisiae after recent studies in mammalian cells that demonstrate the effectiveness of antimitotic drugs at concentrations that maintain spindle structure. We show that low concentrations of nocodazole delay cell division under the control of the previously identified mitotic checkpoint genes BUB1, BUB3, MAD1, and MAD2 and independently of BUB2. The same genes mediate the cell cycle delay induced in ctf13 mutants, limited for an essential kinetochore component. Our data suggest that a low concentration of nocodazole induces a cell cycle delay through checkpoint control that is sensitive to impaired kinetochore function. The BUB2 gene may be part of a separate checkpoint that responds to abnormal spindle structure.  相似文献   

20.
GJ Kops  JV Shah 《Chromosoma》2012,121(5):509-525
With the goal of creating two genetically identical daughter cells, cell division culminates in the equal segregation of sister chromatids. This phase of cell division is monitored by a cell cycle checkpoint known as the spindle assembly checkpoint (SAC). The SAC actively prevents chromosome segregation while one or more chromosomes, or more accurately kinetochores, remain unattached to the mitotic spindle. Such unattached kinetochores recruit SAC proteins to assemble a diffusible anaphase inhibitor. Kinetochores stop production of this inhibitor once microtubules (MTs) of the mitotic spindle are bound, but productive attachment of all kinetochores is required to satisfy the SAC, initiate anaphase, and exit from mitosis. Although mechanisms of kinetochore signaling and SAC inhibitor assembly and function have received the bulk of attention in the past two decades, recent work has focused on the principles of SAC silencing. Here, we review the mechanisms that silence SAC signaling at the kinetochore, and in particular, how attachment to spindle MTs and biorientation on the mitotic spindle may turn off inhibitor generation. Future challenges in this area are highlighted towards the goal of building a comprehensive molecular model of this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号