首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Effects of polyamine (PA) synthesis inhibitors--alpha-difluoromethylornithinchloride (DFMO) and alpha-methylornithinchloride (MO)--separately or in combination with the epidermal growth factor (EGF)--on lysosome-phagosome fusion (P-LF) and F-actin content in murine peritoneal macrophages were studied using fluorescent dye Acridine orange for lysosome labelling, FITC-phalloidin for F-actin, and yeast cells as a target. DFMO and MO significantly inhibited P-LF and decreased F-actin content in murine peritoneal macrophages. A combination of DFMO and MO with EGF failed to inhibit P-LF or to decrease F-actin content in these cells. The results obtained with DFMO and MO suggested new cellular targets of their effects. These results may be extended to cancer research to provide a rationale for clinical trials using combinations of EGF with DFMO or MO.  相似文献   

2.
Epidermal growth factor produces a time- and dose-dependent activation of phospholipid methyltransferase activity in hepatocytes isolated from juvenile and mature hepatectomized rats. This treatment however has no effect with hepatocytes isolated from mature or laparotomized rats. Dansylcadaverine (50μM), an inhibitor of receptor-mediated internalization of epidermal growth factor, has no effect on basal phospholipid methyltransferase but inhibits the stimulation of this enzyme by epidermal growth factor.

These results indicate a possible role of phospholipid methylation during liver proliferation.  相似文献   


3.
Rat platelets contain two types of growth inhibitor of adult rat hepatocytes in primary culture. One, named platelet derived growth inhibitor (PDGI)-alpha, is a heat- and acid-labile protein with a molecular weight of over 200 KD that is not released on thrombin treatment. The other, named PDGI-beta, is a heat- and acid-stable factor with a molecular weight of 24 KD that is released by thrombin. Both PDGI-alpha and -beta were inactivated by treatment with dithiothreitol. They both caused dose-dependent inhibition of DNA synthesis stimulated by insulin plus epidermal growth factor. These inhibitions were closely correlated with marked decrease in the labeling index. Neither PDGI-alpha nor -beta had a cytotoxic effect as judged by phase-contrast microscopic examination of the cells nor inhibition of protein synthesis. The properties of PDGI-beta suggest that it may be identical with transforming growth factor-beta. These results indicate that rat platelets contain not only a growth factor (HGF), but also growth inhibitors that affect adult rat hepatocytes.  相似文献   

4.
We have studied the effects of two polyamine biosynthetic inhibitors, alpha-difluoromethylornithine (DFMO) and alpha-difluoromethylarginine (DFMA), and of polyamines (PAs), alone and in combination, on mycelial growth and morphology of four phytopathogenic fungi: Botrytis sp, B. cinerea, Rhizoctonia solani and Monilinia fructicola. The inhibitors were added to a Czapek agar medium to get final concentrations of 0.1, 0.5 and 1.0 mM. DFMO and DFMA, suicide inhibitors of ornithine decarboxylase (ODC) and arginine decarboxylase (ADC) respectively, inhibited mycelial growth strongly; the effect was generally more pronounced with DFMA than with DFMO, but each fungus had its own response pattern. The addition of the PAs putrescine (Put) and spermidine (Spd) to the culture medium resulted in a promotion of growth. In Botrytis sp and Monilinia fructicola exposed to inhibitors plus PAs, mycelial growth was actually increased above control values. Mycelial morphology was altered and cell size dramatically reduced in plates containing inhibitors alone, whereas with PAs alone, or in combination with inhibitors, morphology was normal, but cell length and diameters increased considerably. These results suggest that PAs are essential for growth in fungal mycelia. The inhibition caused by DFMA may be due to its arginase-mediated conversion to DFMO.  相似文献   

5.
In the present study we have compared the growth potential of hepatocytes from rats and pigs and the influence of cocultivation between these hepatocytes and the rat liver epitheloid cell line RL-ET-14. Proliferation, i.e., DNA synthesis, was detected by autoradiography after exposure to [3H]thymidine. Rat hepatocytes cultured at low cell density showed a very low basal growth and responded to epidermal growth factor (EGF) and insulin by a considerable increase in DNA synthesis after 48 h leading to a labeling index (LI) of 33%. Cocultivation with RL-ET-14 cells almost completely blocked the basal as well as the growth factor stimulated proliferation of the rat hepatocytes. In contrast, pig hepatocytes cultured alone showed a much greater growth potential (basal: LI 11%; insulin/EGF:LI 67%) than rat hepatocytes and were further stimulated by cocultivation (basal: LI 39%; insulin/EGF: LI 89%). Density-dependent inhibition of cell growth was less pronounced with pig hepatocytes. Even after reaching confluency, they showed further strong proliferation in pure as well as in cocultures whereas the LI of the rapidly growing clone RL-ET-14 decreased to 40%. Use of conditioned medium from RL-ET-14 cells did not mimic the growth inhibition of rat hepatocytes in coculture indicating that no soluble growth inhibitors produced by the epitheloid cells are responsible for this effect. In particular, the differences between rat and pig hepatocytes in coculture are not simply due to production of TGF-beta by the epitheloid cells since the hepatocytes from both species were inhibited by TGF-beta to a similar extent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Intracellular polyamine synthesis is regulated by the enzyme ornithine decarboxylase (ODC), and its inhibition by -difluromethylornithine (DFMO), confers resistance to apoptosis. We have previously shown that DFMO leads to the inhibition of de novo polyamine synthesis, which in turn rapidly activates Src, STAT3 and NF-κB via integrin β3 in intestinal epithelial cells. One mechanism to explain these effects involves the activation of upstream growth factor receptors, such as the epidermal growth factor receptor (EGFR). We therefore hypothesized that EGFR phosphorylation regulates the early response to polyamine depletion. DFMO increased EGFR phosphorylation on tyrosine residues 1173 (pY1173) and 845 (pY845) within 5 min. Phosphorylation declined after 10 min and was prevented by the addition of exogenous putrescine to DFMO containing medium. Phosphorylation of EGFR was concomitant with the activation of ERK1/2. Pretreatment with either DFMO or EGF for 1 h protected cells from TNF-/CHX-induced apoptosis. Exogenous addition of polyamines prevented the protective effect of DFMO. In addition, inhibition of integrin β3 activity (with RGDS), Src activity (with PP2), or EGFR kinase activity (with AG1478), increased basal apoptosis and prevented protection conferred by either DFMO or EGF. Polyamine depletion failed to protect B82L fibroblasts lacking the EGFR (PRN) and PRN cells expressing either a kinase dead EGFR (K721A) or an EGFR (Y845F) mutant lacking the Src phosphorylation site. Conversely, expression of WT-EGFR (WT) restored the protective effect of polyamine depletion. Fibronectin activated the EGFR, Src, ERKs and protected cells from apoptosis. Taken together, our data indicate an essential role of EGFR kinase activity in MEK/ERK-mediated protection, which synergizes with integrin β3 leading to Src-mediated protective responses in polyamine depleted cells.  相似文献   

7.
Epidermal growth factor and transforming growth factor alpha stimulated DNA synthesis in primary cultures of adult rat hepatocytes. Neurotensin amplified epidermal growth factor-stimulated or transforming growth factor alpha-stimulated DNA synthesis by three- to eightfold. Neurotensin by itself did not stimulate DNA synthesis. Amplification of DNA synthesis by neurotensin was observed as low as 10?10 M, and it was increased in a dose-dependent manner with maximal effects at 10–8 M. These results were obtained when hepatocytes were cultured in Williams' medium E, but not in Leibovitz L-15 medium, suggesting that a minor component(s) in the medium is required for hepatocytes to fully respond to neurotensin. Neurotensin effect on DNA synthesis was observed not only in normal rat hepatocytes but also in partially hepatectomized rat hepatocytes, although its effect was stronger in normal hepatocytes. Amplified DNA synthesis was inhibited by transforming growth factor β. Secondary mitogens (co-mitogens) such as insulin, vasopressin, or angiotensin II interacted additively with low concentrations of epidermal growth factor as well as with neurotensin. Neurotensin-related peptides such as kinetensin or neuromedin-N, which was released from blood plasma by pepsin digestion, did not have this amplifying effect on DNA synthesis at any concentrations tested. Neurotensin mRNA was found in several organs including brain and intestine, but not liver. These results suggest that neurotensin can be regarded as a new secondary mitogen and that it may be involved in cell proliferation, including regenerating liver as a gastrointestinal hormone and/or a neurotransmitter. © 1994 Wiley-Liss, Inc.  相似文献   

8.
Rajam B  Rajam MV 《Mycopathologia》1996,133(2):95-103
Polyamine (PA) biosynthesis inhibitors, difluoromethylornithine (DFMO), difluoromethylarginine (DFMA), methylglyoxal bis-(guanylhydrazone) (MGBG) and bis-(cyclohexylammonium) sulphate (BCHA) have been tested for their effects on colony diameters at different intervals after inoculation of four plant pathogenic fungi (Helminthosporium oryzae, Curvularia lunata, Pythium aphanidermatum and Colletotrichum capsici). All these inhibitors, except DFMA had strongly retarded the growth of four fungi in a dose- and species-dependent fashion, and H. oryzae and C. lunata were found to be most sensitive to the effects of PA inhibitors. P. aphanidermatum and C. capsici were relatively insensitive and required rather high concentrations of inhibitors to get greater inhibition of mycelial growth, except DFMA which had stimulatory effect on the growth of these two fungi. However DFMA had greatly suppressed the growth of H. oryzae and C. lunata. The effect was generally more pronounced with MGBG than with DFMO and BCHA, and 1 mM Put completely prevented the inhibitory effects of 1 and 5 mM DFMO. Analysis of free and conjugated PAs in two sensitive fungi (H. oryzae and C. lunata) revealed that Put was present in highest concentrations followed by Spd and Spm and their levels were greatly reduced by DFMO application, and such inhibitions were totally reversed by exogenously supplied Put; in fact, PA titers were considerably increased by 1 mM Put alone and in combination with 1 mM DFMO. These results suggest that PA inhibitors, particularly DFMO and MGBG may be useful as target-specific fungicides in plants.  相似文献   

9.
Beta-Adrenergic receptors and epidermal growth factor receptors are both expressed on the cell surface of human astrocytoma cells. Incubation with a catecholamine or epidermal growth factor results in rapid internalization of the respective receptor. The internalized receptors co-migrate in light fractions on sucrose gradients. Astrocytoma cells maintain a constant ATP concentration by either glycolytic or mitochondrial ATP production. When cells are incubated in a medium depleted of substrates for glycolysis and gluconeogenesis, addition of inhibitors of mitochondrial ATP synthesis causes a rapid reduction in cellular ATP content. An immediate return to control ATP levels occurs upon addition of an appropriate nutrient, such as glucose. Decreasing the cellular ATP content to less than 10% of control markedly inhibits internalization of beta-adrenergic receptors and epidermal growth factor. The inhibition of endocytosis is reversed as soon as the intracellular ATP content is restored. Previous work by others (Clarke, B.L., and Weigel, P.H. (1985) J. Biol. Chem. 260, 128-133) suggested that ATP is not required for internalization (per se) of asialoglycoprotein in hepatocytes but was required for recycling of the asialoglycoprotein receptor. In contrast, our results indicate that in astrocytoma cells the process of internalization of epidermal growth factor and beta-adrenergic receptors, per se, is highly ATP dependent.  相似文献   

10.
11.
The effects of several protein kinase activators and protein phosphatase inhibitors on the phenobarbital (PB)-induced gene expression of CYP2B1 and CYP2B2 (CYP2B1/2B2) in adult rat hepatocytes were investigated. Insulin, epidermal growth factor, interleukin 6, cAMP, phorbol 12-myristate 13-acetate, tumor necrosis factor alpha, vanadate, and okadaic acid were found to suppress the induction of CYP2B1/2B2 at mRNA and protein levels in hepatocytes. cAMP and vanadate completely suppressed the induction of CYP2B1/2B2 gene expression in both rat hepatocytes and liver. The addition of genistein to vanadate-treated hepatocytes partially recovered the induction of CYP2B1/2B1 gene expression by PB. These results of the present study demonstrate that phosphorylation/dephosphorylation steps are crucial for the induction of CYP2B1/2B2 gene expression by PB.  相似文献   

12.
The TGF-beta (transforming growth factor-beta) induces survival signals in foetal rat hepatocytes through transactivation of EGFR (epidermal growth factor receptor). The molecular mechanism is not completely understood, but both activation of the TACE (tumour necrosis factor alpha-converting enzyme)/ADAM17 (a disintegrin and metalloproteinase 17; one of the metalloproteases involved in shedding of the EGFR ligands) and up-regulation of TGF-alpha and HB-EGF (heparin-binding epidermal growth factor-like growth factor) appear to be involved. In the present study, we have analysed the molecular mechanisms that mediate up-regulation of the EGFR ligands by TGF-beta in foetal rat hepatocytes. The potential involvement of ROS (reactive oxygen species), an early signal induced by TGF-beta, and the existence of an amplification loop triggered by initial activation of the EGFR, have been studied. Results indicate that DPI (diphenyleneiodonium) and apocynin, two NOX (NADPH oxidase) inhibitors, and SB431542, an inhibitor of the TbetaR-I (TGF-beta receptor I), block up-regulation of EGFR ligands and Akt activation. Different members of the NOX family of genes are expressed in hepatocytes, included nox1, nox2 and nox4. TGF-beta up-regulates nox4 and increases the levels of Rac1 protein, a known regulator of both Nox1 and Nox2, in a TbetaR-I-dependent manner. TGF-beta mediates activation of the nuclear factor-kappaB pathway, which is inhibited by DPI and is required for up-regulation of TGF-alpha and HB-EGF. In contrast, EGFR activation is not required for TGF-beta-induced up-regulation of those ligands. Considering previous work that has established the role of ROS in apoptosis induced by TGF-beta in hepatocytes, the results of the present study indicate that ROS might mediate both pro- and anti-apoptotic signals in TGF-beta-treated cells.  相似文献   

13.
Summary Normal rat prostate epithelial cell growth requires both epidermal growth factor and heparin-binding growth factor/prostatropin. In contrast, epithelial cells derived from the transplantable Dunning R3327H rat tumor require either epidermal growth factor or heparin-binding growth factor/prostatropin. Transforming growth factor type beta inhibited normal epithelial cell growth. Transforming growth factor beta inhibited epidermal growth factor-dependent growth of tumor epithelial cells, independent of epidermal growth factor concentrations. Transforming growth factor beta increased the effective dose of heparin-binding growth factor type 1 required to support tumor epithelial cell growth by 10-fold but saturating levels of heparin-binding growth factor type 1 (290 pM) completely attenuated the inhibitory effect of transforming growth factor beta. These results suggest that prostate tumor epithelial cells may escape the inhibitory effect of transforming growth factor beta as a consequence of alteration of the concurrent requirement for both epidermal growth factor (or homologues) and heparin-binding growth factors. This work was supported by NCI Grant CA37589. Editor’s Statement The observation that heparin-binding growth factor/prostatropin can counteract the inhibitory effect of transforming growth factor beta in prostate epithelial cells may help explain how some cancers avoid the action of growth inhibitors and provides a model for studying how inhibitory peptides overcome the stimulatory signals generated by growth factors.  相似文献   

14.
We investigated the effects of microbial protease inhibitors, in particular the aminopeptidase inhibitor bestatin, on DNA synthesis and cell division induced by epidermal growth factor (EGF) in hepatocytes. Although bestatin did not significantly affect binding of EGF to hepatocytes, it inhibited EGF-induced DNA synthesis and cell division. DNA synthesis in rat hepatocytes was maximal 24-26 h after EGF addition to the medium. The time required for maximal DNA synthesis was not affected if bestatin was removed less than 12 h after addition, but synthesis was partially inhibited if bestatin was added to the medium several hours after EGF addition, depending on the time of bestatin addition. Our results suggest that bestatin arrests the new cell cycle induced by EGF at about 12 h after the initiation. Considering also our results obtained by employing other protease inhibitors, we concluded that specific proteases play important roles in hepatocyte DNA synthesis and cell division induced by EGF.  相似文献   

15.
The object of this study was to examine the effect of inhibition of polyamine biosynthesis on the cell cycle traverse of HeLa cells using α-difluoromethyl ornithine (DFMO), a catalytic irreversible inhibitor of ornithine decarboxylase. The results of this study indicate that DFMO inhibits HeLa cell growth by causing a decrease in the intracellular levels of putrescine and spermidine without any significant effect on concentration of spermine. The inhibition is readily reversible by exogenous supply of putrescine to the medium. The DFMO treatment also results in an accumulation of cells in S phase. Further, the use of an S phase-specific drug like Ara-C following DFMO treatment results in a synergistic killing of the tumor cells as revealed by the inhibition of cell growth. These observations suggest that exploitation of regulation of the cell cycle by the depletion of polyamines with the use of inhibitors like DFMO might help in designing better therapeutic regimes in combination with other cytotoxic drugs.  相似文献   

16.
Epidermal growth factor stimulates migration of a number of cell types, yet the signaling pathways that regulate epidermal growth factor-stimulated migration are poorly defined. In this report, we employ a transient transfection migration assay to assess the role of components of the Ras-mitogen-activated protein (MAP) kinase signaling pathway in epidermal growth factor-stimulated chemotaxis of rat embryo fibroblasts. Expression of dominant negative Ras blocks epidermal growth factor-mediated chemotaxis, while constitutively active Ras has no effect on chemokinesis or chemotaxis. PD98059 and U0126, inhibitors of MAP kinase kinase (MEK) activity, decreased epidermal growth factor-stimulated migration, while kinase-defective MEK1, an inhibitor of MAP kinase activation, enhanced migration. To understand the paradoxical effects of these molecules on epidermal growth factor-induced migration, we examined the role of c-Raf on migration. Expression of either wild type c-Raf or the catalytic domain of c-Raf effectively inhibited epidermal growth factor-stimulated cell migration. We suggest that, whereas Ras activity is necessary to promote epidermal growth factor-stimulated migration, sustained activation of c-Raf may be important in down-regulating migratory signaling pathways triggered by epidermal growth factor receptor activation. Further, activation of c-Raf upon inhibition of the MEK-MAP kinase pathway may contribute to the inhibition of cell migration observed with pharmacological MEK inhibitors.  相似文献   

17.
18.
We studied the effects of several polyamine biosynthesis inhibitors on growth, differentiation, free polyamine levels and in vivo and in vitro activity of polyamine biosynthesis enzymes in Sclerotinia sclerotiorum. -Difluoromethylornithine (DFMO) and -difluoromethylarginine (DFMA) were potent inhibitors of mycelial growth. The effect of DFMO was due to inhibition of ornithine decarboxylase (ODC). No evidence for the existence of an arginine decarboxylase (ADC) pathway was found. The effect of DFMA was partly due to inhibition of ODC, presumably after its conversion into DFMO by mycelial arginase, as suggested by the high activity of this enzyme detected both in intact mycelium and mycelial extracts. In addition, toxic effects of DFMA on cellular processes other than polyamine metabolism might have occurred. Cyclohexylamine (CHA) slightly inhibited mycelial growth and caused an important decrease of free spermidine associated with a drastic increase of free putrescine concentration. Methylglyoxal bis-[guanyl hydrazone] (MGBG) had no effect on mycelial growth. Excepting MGBG, all the inhibitors strongly decreased sclerotial formation. Results demonstrate that sclerotial development is much more sensitive to polyamine biosynthesis inhibition than mycelial growth. Our results suggest that mycelial growth can be supported either by spermidine or putrescine, while spermidine (or the putrescine/spermidine ratio) is important for sclerotial formation to occur. Ascospore germination was completely insensitive to the inhibitors.  相似文献   

19.
Murine embryonal carcinoma F9 cells can be induced to differentiate by 2-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase (ODC). The differentiated phenotype is similar to that of retinoic acid (RA)-treated F9 cells. In contrast to F9 cells the differentiated cells secrete plasminogen activator and express keratin intermediate filaments. Both DFMO and RA reduce ornithine decarboxylase activity, polyamine levels and inhibit cell proliferation of F9 cells. These compounds also reduce ODC, polyamine levels and proliferation of mouse BALB/c 3T6 fibroblasts. RA inhibits the induction of ODC by insulin, serum and to a lesser extent that of epidermal growth factor (EGF) and 12-O-tetradecanoylphorbol-13-acetate (TPA). The action of DFMO and RA can be distinguished by their response to putrescine. The induction of differentiation and the inhibition of cell proliferation by DFMO can be totally abolished upon the addition of putrescine, whereas the actions of RA are not affected at all. These results suggest that the inhibition of ODC and reduction of polyamines are not causal in the induction of differentiation and the inhibition of proliferation by RA.  相似文献   

20.
We have studied the effects of two polyamine biosynthetic inhibitors,-difluoromethylor-nithine (DFMO) and -difluoromethylarginine(DFMA), and of polyamines (PAs), alone and in combination onuredospore germination and germ tube growth in Uromyces phaseoliL, race O. Both the inhibitors at concentrations 0.01, 0.1 and1.0 mM produce successively inhibition of uredospore germinationin vitro. The inhibitors also delay the timing of spore germinationfor 15–30 min and restrict germ tube elongation. Stimulationof spore germination and germ tube growth was noticed in culturescontaining PAs (putrescine or spermidine) alone, while culturesfortified with inhibitor plus PA resulted in a partial reversionof the inhibitory effect, suggesting that PAs may be requiredfor normal germination and outgrowth of fungal spores. Sporegermination was completely inhibited on the surface of unifoliolatebean leaves treated with 0.5 mM or higher DFMO 1 d before inoculationwith pathogen, while DFMO treated 1 d after inoculation showedgreater damage of uredosporelings. In contrast, DFMA confersno effect even at 5 mM. Spores collected from bean plants givena pre- and post-inoculatory treatments with DFMO and DFMA showno significant differences in germination and pathogenicity,however, the higher doses caused significant decrease. (Received April 25, 1988; Accepted October 20, 1988)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号