首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The synthesis of phosphotyrosine-containing phosphopeptides using solid-phase peptide synthesis (SPPS) techniques is described. We present the synthesis of a Boc-phosphotyrosine derivative, which when used with modifications of the conventional SPPS protocol permits the incorporation of phosphotyrosine into synthetic peptides. The resulting phosphopeptides were authenticated by fast atom bombardment mass spectrometry, amino acid analysis, and phosphate assay. Alkaline phosphatase was found to dephosphorylate synthetic phosphopeptides at different rates, supporting the potential use of these synthetic substrates for studies of phosphoprotein phosphatases. Synthesis of a phosphopeptide using the described protocol has several advantages over the preparation of phosphopeptides via enzymatic phosphorylation.  相似文献   

2.
Effective proteomics studies of protein phosphorylation require an efficient enrichment method for phosphopeptides, which remains a challenge. Here, we describe the discovery of pI differences between methylated phosphopeptides (typically <7.4) and methylated nonphosphorylated peptides (typically >9.0). This pI difference allows isolation of methylated phosphopeptides from the methylated nonphosphopeptides by in-solution isoelectric focusing. We proved the principle of such a novel approach by isolating a phosphorylated peptide from nonphosphorylated tryptic digest of myoglobin. While the principle for pI-based, in-solution electrophoresis is proven, it requires further development for practical application. The method described here provides a stepping stone toward more reliable, convenient method for efficient isolation of phosphopeptides.  相似文献   

3.
A system which consisted of multidimensional liquid chromatography (Yin-yang MDLC) coupled with mass spectrometry was used for the identification of peptides and phosphopeptides. The multidimensional liquid chromatography combines the strong-cation exchange (SCX), strong-anion exchange (SAX), and reverse-phase methods for the separation. Protein digests were first loaded on an SCX column. The flow-through peptides from SCX were collected and further loaded on an SAX column. Both columns were eluted by offline pH steps, and the collected fractions were identified by reverse-phase liquid chromatography tandem mass spectrometry. Comprehensive peptide identification was achieved by the Yin-yang MDLC-MS/MS for a 1 mg mouse liver. In total, 14 105 unique peptides were identified with high confidence, including 13 256 unmodified peptides and 849 phosphopeptides with 809 phosphorylated sites. The SCX and SAX in the Yin-Yang system displayed complementary features of binding and separation for peptides. When coupled with reverse-phase liquid chromatography mass spectrometry, the SAX-based method can detect more extremely acidic (pI < 4.0) and phosphorylated peptides, while the SCX-based method detects more relatively basic peptides (pI > 4.0). In total, 134 groups of phosphorylated peptide isoforms were obtained, with common peptide sequences but different phosphorylated states. This unbiased profiling of protein expression and phosphorylation provides a powerful approach to probe protein dynamics, without using any prefractionation and chemical derivation.  相似文献   

4.
Prosolin is a major cytosolic phosphoprotein of proliferating normal PBL. Treatment of growing PBL with phorbol ester (12-O-tetradecanoylphorbol-13-acetate (TPA)) or calcium ionophore (A23187) for 1 h caused phosphorylation of prosolin with the production of up to four prominent phosphorylated forms differing in degree of phosphorylation and/or two-dimensional electrophoretic mobility (peptides B to E). Formation of these phosphopeptides coincided with rapid down-regulation of DNA synthesis. A23187 was particularly effective in inducing phosphorylation of the more highly phosphorylated peptides D and E, suggesting the existence of a (Ca2+)-activated mechanism in their phosphorylation. The T cell leukemia cell lines Jurkat, HuT-78, CCRF-CEM, and Molt-4 showed reduced to absent ability to phosphorylate prosolin peptides rapidly in response to A23187 and also showed diminished down-regulation of DNA synthesis. In leukemic cells treated with both TPA and A23187, peptides B and C were rapidly phosphorylated, but the phosphorylation of peptides D and E seen in normal PBL remained deficient. The T cell leukemic cells appear to have intact a TPA-activated mechanism for phosphorylating prosolin peptides B and C, but share an impairment of a specific Ca2(+)-activated mechanism, possibly a Ca2(+)-dependent protein kinase, required for phosphorylation of prosolin phosphopeptides D and E. The degree of rapid down-regulation of DNA synthesis was correlated with degree of phosphorylation of peptide E in PBL and in three of four T cell leukemic cell lines. Thus, rapid phosphorylation of prosolin may mediate responses to TPA and A23187 in normal proliferating PBL, including down-regulation of DNA synthesis. A deficiency of this pathway in leukemic T cells may impede their response to physiologic growth regulatory signals utilizing this pathway and contribute to unrestrained cell growth.  相似文献   

5.
6.
Phosphopeptides can be difficult to detect and sequence by mass spectrometry (MS) due to low ionization efficiency and suppression effects in the MS mode, and insufficient fragmentation in the tandem MS (MS/MS) mode, respectively. To address this problem, we have developed a technique called Phosphatase-directed Phosphorylation-site Determination (PPD), which combines on-target phosphatase reactions, MALDI MS/MS of IMAC beads on target, and hypothesis-driven MS (HD-MS). In this method, on-target dephosphorylation experiments are conducted on IMAC-bound phosphopeptides, because dephosphorylated peptides have, in general, higher MS sensitivities than the corresponding phosphopeptides. The detected dephosphorylated peptides are sequenced by MS/MS, which identifies the potentially phosphorylated peptide and the total number of Ser, Thr, or Tyr residues that could hypothetically be phosphorylated within that peptide. On the basis of this information, a mass list containing every possible phosphorylation state of each observed peptide (where 1 HPO(3) = 80 Da) is used to direct MALDI-MS/MS on the phosphorylated peptides bound to IMAC beads at each theoretical mass from the list. If the peptide is present, the resulting MS/MS spectrum reveals the exact site(s) of phosphorylation in the peptide. We have demonstrated the applicability of PPD to the detection of in vivo phosphorylation sites on the Drosophila Stem Loop Binding Protein (dSLBP), and the complementarity of this new technique to conventional MS phosphorylation site mapping methods, since the phosphorylation sites in dSLBP could not be detected by other methods.  相似文献   

7.
A common strategy in proteomics to improve the number and quality of peptides detected by mass spectrometry (MS) is to desalt and concentrate proteolytic digests using reversed phase (RP) chromatography prior to analysis. However, this does not allow for detection of small or hydrophilic peptides, or peptides altered in hydrophilicity such as phosphopeptides. We used microcolumns to compare the ability of RP resin or graphite powder to retain phosphopeptides. A number of standard phosphopeptides and a biologically relevant phosphoprotein, dynamin I, were analyzed. MS revealed that some phosphopeptides did not bind the RP resin but were retained efficiently on the graphite. Those that did bind the RP resin often produced much stronger signals from the graphite powder. In particular, the method revealed a doubly phosphorylated peptide in a tryptic digest of dynamin I purified from rat brain nerve terminals. The detection of this peptide was greatly enhanced by graphite micropurification. Sequencing by tandem MS confirmed the presence of phosphate at both Ser-774 and Ser-778, while a singly phosphorylated peptide was predominantly phosphorylated only on Ser-774. The method further revealed a singly and doubly phosphorylated peptide in dynamin III, analogous to the dynamin I sequence. A pair of dynamin III phosphorylation sites were found at Ser-759 and Ser-763 by tandem MS. The results directly define the in vivo phosphorylation sites in dynamins I and III for the first time. The findings indicate a large improvement in the detection of small amounts of phosphopeptides by MS and the approach has major implications for both small- and large-scale projects in phosphoproteomics.  相似文献   

8.
Global analyses of protein phosphorylation require specific enrichment methods because of the typically low abundance of phosphoproteins. To date, immobilized metal ion affinity chromatography (IMAC) for phosphopeptides has shown great promise for large-scale studies, but has a reputation for poor specificity. We investigated the potential of IMAC in combination with capillary liquid chromatography coupled to tandem mass spectrometry for the identification of plasma membrane phosphoproteins of Arabidopsis. Without chemical modification of peptides, over 75% pure phosphopeptides were isolated from plasma membrane digests and detected and sequenced by mass spectrometry. We present a scheme for two-dimensional peptide separation using strong anion exchange chromatography prior to IMAC that both decreases the complexity of IMAC-purified phosphopeptides and yields a far greater coverage of monophosphorylated peptides. Among the identified sequences, six originated from different isoforms of the plasma membrane H(+)-ATPase and defined two previously unknown phosphorylation sites at the regulatory C terminus. The potential for large-scale identification of phosphorylation sites on plasma membrane proteins will have wide-ranging implications for research in signal transduction, cell-cell communication, and membrane transport processes.  相似文献   

9.
We have developed an efficient, sensitive, and specific method for the detection of phosphopeptides present in peptide mixtures by MALDI Q-TOF mass spectrometry. Use of the MALDI Q-TOF enables selection of phosphopeptides and characterization by CID of the phosphopeptides performed on the same sample spot. However, this type of experiment has been limited by low ionization efficiency of phosphopeptides in positive ion mode while selecting precursor ions of phosphopeptides. Our method entails neutralizing negative charges on acidic groups of nonphosphorylated peptides by methyl esterification before mass spectrometry in positive and negative ion modes. Methyl esterification significantly increases the relative signal intensity generated by phosphopeptides in negative ion mode compared with positive ion mode and greatly increases selectivity for phosphopeptides by suppressing the signal intensity generated by acidic peptides in negative ion mode. We used the method to identify 12 phosphopeptides containing 22 phosphorylation sites from low femtomolar amounts of a tryptic digest of beta-casein and alpha-s-casein. We also identified 10 phosphopeptides containing five phosphorylation sites from an in-gel tryptic digest of 100 fmol of an in vitro autophosphorylated fibroblast growth factor receptor kinase domain and an additional phosphopeptide containing another phosphorylation site when 500 fmol of the digest was examined. The results demonstrate that the method is a fast, robust, and sensitive means of characterizing phosphopeptides present in low abundance mixtures of phosphorylated and nonphosphorylated peptides.  相似文献   

10.
Phosphorylation of the insulin receptor was studied in intact well differentiated hepatoma cells (Fao) and in a solubilized and partially purified receptor preparation obtained from these cells by affinity chromatography on wheat germ agglutinin agarose. Tryptic peptides containing the phosphorylation sites of the beta-subunit of the insulin receptor were analyzed by reverse-phase high performance liquid chromatography. Phosphoamino acid content of these peptides was determined by acid hydrolysis and high voltage electrophoresis. Separation of the phosphopeptides from unstimulated Fao cells revealed one major and two minor phosphoserine-containing peptides and a single minor phosphothreonine-containing peptide. Insulin (10(-7) M) increased the phosphorylation of the beta-subunit of the insulin receptor 3- to 4-fold in the intact Fao cell. After insulin stimulation, two phosphotyrosine-containing peptides were identified. Tyrosine phosphorylation reached a steady state within 20 s after the addition of insulin and remained nearly constant for 1 h. Under our experimental conditions, no significant change in the amount of [32P]phosphoserine or [32P]phosphothreonine associated with the beta-subunit was found during the initial response of cells to insulin. When the insulin receptor was extracted from the Fao cells and incubated in vitro with [gamma-32P]ATP and Mn2+, very little phosphorylation occurred in the absence of insulin. In this preparation, insulin rapidly stimulated autophosphorylation of the receptor on tyrosine residues only and high performance liquid chromatography analysis of the beta-subunit digested with trypsin revealed one minor and two major phosphopeptides. The elution position of the minor peptide corresponded to that of the major phosphotyrosine-containing peptide obtained from the beta-subunit of the insulin-stimulated receptor labeled in vivo. In contrast, the elution position of one of the major phosphopeptides that occurred during in vitro phosphorylation corresponded to the minor phosphotyrosine-containing peptide phosphorylated in vivo. The other major in vitro phosphotyrosine-containing peptide was not detected in vivo. Our results indicate that: tyrosine phosphorylation of the insulin receptor occurs rapidly following insulin binding to intact cells; the level of tyrosine phosphorylation remains constant for up to 1 h; the specificity of the receptor kinase or accessibility of the phosphorylation sites are different in vivo and in vitro.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Serine phosphorylation of insulin/IGF-I receptors in transfected fibroblasts was analysed by peptide mapping. PMA stimulated the phosphorylation of 5 distinct insulin receptor phosphopeptides: a single major phosphothreonine peptide containing Thr-1348, one major and 3 minor phosphoserine peptides. The major insulin-stimulated phosphoserine peptides were the same as those after PMA, with the exception of 2 minor phosphoserine peptides. PMA stimulated phosphorylation of a single major IGF-I receptor phosphoserine peptide which was phosphorylated to a lesser extent after IGF-I. We conclude that insulin/IGF-I and PMA stimulate phosphorylation of the same sites, but differ in the extents of phosphorylation.  相似文献   

12.
Protein phosphorylation is a critical mechanism in the regulation of cellular biochemical pathways and phosphopeptides can play an important role in determining function. However, the use of phosphopeptides especially multiphosphorylated peptides is hampered by their low abundance, difficulty in isolation from biological samples and in their chemical synthesis. Here we describe methodologies for the Fmoc synthesis, purification and mass spectral analysis of the multiphosphorylated sequence H-[Asp-(Ser(P))2]3-Asp-OH from phosphophoryn a protein involved in dentine mineralization. Critical steps in the synthesis of phosphophoryn using Fmoc-Ser(PO3Bzl,H)-OH as the building block were double acylation steps for each residue, alternating HBTU and HATU as the acylating agents and synthesis on a chlorotrityl resin which was essential for complete removal of the benzyl-side chain protecting groups. The synthetic phosphophoryn was only effectively purified by anion exchange and size exclusion chromatography as both alkaline and acid buffers failed to aid in purification by reversed phase HPLC. MALDI-TOF analysis of phosphophoryn was achieved with good sensitivity (20 fmol/ml) and resolution using the DNA matrix 3-hydroxypicolinic acid, whereas typical protein/peptide matrices failed to provide mass spectra. The synthetic phosphophoryn peptide was found to bind calcium, binding 6 mol of calcium per mole of peptide. In conclusion the methodology described here can be easily adopted for the synthesis and analysis of a wide variety of multiphosphorylated peptides.  相似文献   

13.
Protein phosphorylation plays a critical role in the regulation of cell growth and differentiation, There is considerable interest, therefore, in the facile synthesis of peptides that possess selectively phosphorylated residues for use as molecular probes in mechanistic studies of the biological consequences of phosphorylation. This work will review the various synthetic protocols used in the generation of phosphopeptides and will discuss their characterization by amino acid compositional analysis.  相似文献   

14.
Summary Glycogen synthase I from human polymorphonuclear leukocytes was phosphorylated with cAMP dependent protein kinase, synthase kinase or phosvitin kinase prepared from these cells. Limited tryptic hydrolysis released four phosphopeptides (t-A, t-B, t-C, t-D). Subsequent α-chymotryptic hydrolysis of the trypsin resistant core released three phosphopeptides. (c-A, c-B, c-C). The kinetic changes of glycogen synthase were compared with the phosphorylation of the peptides. Equivalent kinetic changes (Kc=0.2–0.3 mM Glc-6-P) were obtained when 1 Pi/subunit was introduced by cAMP dependent protein kinase, 0.5 Pi/subunit by synthase kinase and 0.8 Pi/subunit by both kinases. Initially, cAMP dependent protein kinase phosphorylated peptides c-A and t-C in parallel and somewhat later also t-B, whereas synthase kinase initially phosphorylated only c-A. The ultimate effect of the two kinases on c-A was additive. It was concluded that the initial kinetic changes were dependent on phosphorylation of c-A, which contained two sites, one for each kinase. The same kinetic changes were induced by phosphorylation on each of the sites. In the subsequent phosphorylation the kinases, separately or together, phosphorylated peptide c-C indicating one non-specific phosphorylatable site in this peptide. The cAMP dependent protein kinase alone phosphorylated t-C maximally, whereas both kinases were required for an equal phosphorylation of t-A and t-B. It is suggested that the cAMP dependent protein kinase phosphorylated t-A and t-C, whereas the data did not allow a similar suggestion for t-B. The kinetic changes occurring during the later stages of phosphorylation were an increase in Kc for Glc. 6-P to 4–5 mM at 1.85 Pi/subunit and to 20 mM at 3.3 Pi/subunit, but the changes could not be assigned to phosphorylation of any specific peptide. Phosphorylation of the peptides t-D and c-B were insignificant, but c-B may be phosphorylated under other experimental conditions (25). The phosvitin kinase phosphorylated glycogen synthase extremely slowly to an extent of 0.8 Pi/subunit, mainly in peptide c-C. Glycogen synthase would appear without physiological importance as substrate for this kinase. Phosphorylase kinase from rabbit skeletal muscle incorporated 0.7 Pi/subunit, mainly in peptide c-A causing a decrease in RI to 0.3, which upon further incubation remained constant. The rate of decrease in RI to 0.5 was unaffected by several synthase modifiers, including Glc-6-P, but was inhibited by ADP and Pi. The rate of phosphorylation by cAMP dependent protein kinase and synthase kinase was diversely affected in different buffers, however, without affecting the ultimate phosphorylation pattern.  相似文献   

15.
The reversible phosphorylation of proteins is recognized as an essential post-translational modification regulating cell signaling and ultimately function of biological systems. Detection of phosphopeptides and localization of phosphorylation sites remains quite a challenge, even if the protein is purified to near homogeneity. Mass spectrometry has become a vital technique that is routinely utilized for the identification of proteins from whole cell lysates. Nonetheless, due to the minimal amount of phosphorylation found on proteins, enrichment steps for isolating phosphopeptides from complex mixtures have been the focus of many research groups world-wide. In this review, we describe some current methods for the enrichment of phosphopeptides that are compatible with mass spectrometry for assignment of phosphorylation sites. Phosphorylation modifications on proteins and peptides are either directly isolated by solid-phase approaches or chemically modified for selective isolation and/or improved characterization by mass spectrometry. These strategies hold the potential for rapid and sensitive profiling of phosphoproteins from a variety of sources and cellular conditions.  相似文献   

16.
Electron capture dissociation (ECD) and infrared multiphoton dissociation (IRMPD) present complementary techniques for the fragmentation of peptides and proteins in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) in addition to the commonly used collisionally activated dissociation (CAD). Both IRMPD and ECD have been shown to be applicable for an efficient sequencing of peptides and proteins, whereas ECD has proven especially valuable for mapping labile posttranslational modifications (PTMs), such as phosphorylations. In this work, we compare the different fragmentation techniques and MS detection in a linear ion trap and the ICR cell with respect to their abilities to efficiently identify and characterize phosphorylated peptides. For optimizing fragmentation parameters, sets of synthetic peptides with molecular weights ranging from approximately 1 to 4 kDa and different levels of phosphorylation were analyzed. The influence of spectrum averaging for obtaining high-quality spectra was investigated. Our results show that the fragmentation methods CAD and ECD allow for a facilitated analysis of phosphopeptides; however, their general applicability for analyzing phosphopeptides has to be evaluated in each specific case with respect to the given analytical task. The major advantage of complementary peptide cleavages by combining different fragmentation methods is the increased amount of information that is obtained during MS/MS analysis of modified peptides. On the basis of the obtained results, we are planning to design LC time-scale compatible, data-dependent MS/MS methods using the different fragmentation techniques in order to improve the identification and characterization of phosphopeptides.  相似文献   

17.
Summary Phosphopeptides and mimics thereof are useful tools for the investigation of phosphorylation, an important posttranslational modification of peptides and proteins. In order to investigate different aspects of phosphorylation and dephosphorylation processes, homoserine phospho-, H-phosphono- and methylphosphonopeptides were synthesized. The tetrapeptide H-Gly-Gly-Hse-Ala-OH was used as a model sequence; further, the heptapeptide H-Leu-Arg-Arg-Ala-Hse-Leu-Gly-OH and the octapeptide H-Glu-Ser-Leu-Hse-Ser-Ser-Glu-Glu-OH were synthesized and modified. After selective deprotection of the trityl-protected homoserine residue, phosphorylation or phosphonylation was performed on resin by the global phosphorylation approach using different phosphoamidites. Peptides were analysed by analytical RP-HPLC and electrospray mass spectrometry. All compounds were obtained in yields over 75%. The byproducts observed were both the unmodified peptide and the H-phosphonopeptide in the case of the phosphopeptides, the phosphorylated and the unmodified peptide in the case of the H-phosphonopeptides, and the unmodified peptide in the case of the methylphosphonopeptides. Due to simple purification by RP-HPLC, the method presented gives access to a new class of phosphopeptides and mimics.  相似文献   

18.
Phosphopeptides and mimics thereof are useful tools for the investigation of phosphorylation, an important post-translational modification of peptides and proteins. In order to investigate different aspects of phosphorylation and dephosphorylation processes, homoserine phospho-, H-phosphono- and methylphosphonopeptides were synthesized. The tetrapeptide H-Gly-Gly-Hse-Ala-OH was used as a model sequence; further, the heptapeptide H-Leu-Arg-Arg-Ala-Hse-Leu-Gly-OH and the octapeptide H-Glu-Ser-Leu-Hse-Ser-Ser-Glu-Glu-OH were synthesized and modified. After selective deprotection of the trityl-protected homoserine residue, phosphorylation or phosphonylation was performed on resin by the global phosphorylation approach using different phosphoamidites. Peptides were analysed by analytical RP-HPLC and electrospray mass spectrometry. All compounds were obtained in yields over 75%. The byproducts observed were both the unmodified peptide and the H-phosphonopeptide in the case of the phosphopeptides, the phosphorylated and the unmodified peptide in the case of the H-phosphonopeptides, and the unmodified peptide in the case of the methylphosphonopeptides. Due to simple purification by RP-HPLC, the method presented gives access to a new class of phosphopeptides and mimics.  相似文献   

19.
IMAC in combination with mass spectrometry is a promising approach for global analysis of protein phosphorylation. Nevertheless this approach suffers from two shortcomings: inadequate efficiency of IMAC and poor fragmentation of phosphopeptides in the mass spectrometer. Here we report optimization of the IMAC procedure using (32)P-labeled tryptic peptides and development of MS/MS/MS (MS3) for identifying phosphopeptide sequences and phosphorylation sites. The improved IMAC method allowed recovery of phosphorylated tryptic peptides up to approximately 77% with only minor retention of unphosphorylated peptides. MS3 led to efficient fragmentation of the peptide backbone in phosphopeptides for sequence assignment. Proteomics of mitochondrial phosphoproteins using the resulting IMAC protocol and MS3 revealed 84 phosphorylation sites in 62 proteins, most of which have not been reported before. These results revealed diverse phosphorylation pathways involved in the regulation of mitochondrial functions. Integration of the optimized batchwise IMAC protocol with MS3 offers a relatively simple and more efficient approach for proteomics of protein phosphorylation.  相似文献   

20.
Improvements to phosphopeptide enrichment protocols employing titanium dioxide (TiO2) are described and applied to identification of phosphorylation sites on recombinant human cyclin-dependent kinase 2 (CDK2). Titanium dioxide binds phosphopeptides under acidic conditions, and they can be eluted under basic conditions. However, some nonphosphorylated peptides, particularly acidic peptides, bind and elute under these conditions as well. These nonphosphorylated peptides contribute significantly to ion suppression of phosphopeptides and also increase sample complexity. We show here that the conversion of peptide carboxylates to their corresponding methyl esters sharply reduces nonspecific binding, improving the selectivity for phosphopeptides, just as has been reported for immobilized metal affinity chromatography (IMAC) columns. We also present evidence that monophosphorylated peptides can be effectively fractionated from multiply phosphorylated peptides, as well as acidic peptides, via stepwise elution from TiO2 using pH step gradients from pH 8.5 to pH 11.5. These approaches were applied to human CDK2 phosphorylated in vitro by yeast CAK1p in the absence of cyclin. We confirmed phosphorylation at T160, a site previously documented and shown to be necessary for CDK2 activity. However, we also discovered several novel sites of partial phosphorylation at S46, T47, T165, and Y168 when ion-suppressing nonphosphorylated peptides were eliminated using the new protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号