首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An earlier model for the study of rib cage mechanics was modified so that rib deformity in scoliosis could be better represented. The rigid ribs of that model were replaced by five-segment deformable ribs. Literature data on cadaver rib mechanical behavior were used to assign stiffnesses to the new individual model ribs so that experimental and model rib deflections agreed. Shear and tension/compression stiffnesses had little effect on individual rib deformation, but bending stiffnesses had a major effect. Level-to-level differences in mechanical behavior could be explained almost exclusively by level to level differences in the rib shape. The model ribs were then assembled into a whole rib cage. Computer simulations of whole rib cage behaviors, both in vivo and in vitro, showed a reasonable agreement with the measured behaviors. The model was used to study rib cage mechanics in two scolioses, one with a 43 degrees and the other with a 70 degrees Cobb angle. Scoliotic rib cage deformities were quantified by parameters measuring the rib cage lateral offset, rib cage axial rotation, rib cage volume and rib distortion. Rib distortion was quantified both in best-fit and simulated computer tomography (CT) scan planes. Model rib distortion was much smaller in best-fit planes than in CT planes. The total rib cage volume changed little in the presence of the scolioses, but it became asymmetrically distributed.  相似文献   

2.

Background

Factors determining the shape of the human rib cage are not completely understood. We aimed to quantify the contribution of anthropometric and COPD-related changes to rib cage variability in adult cigarette smokers.

Methods

Rib cage diameters and areas (calculated from the inner surface of the rib cage) in 816 smokers with or without COPD, were evaluated at three anatomical levels using computed tomography (CT). CTs were analyzed with software, which allows quantification of total emphysema (emphysema%). The relationship between rib cage measurements and anthropometric factors, lung function indices, and %emphysema were tested using linear regression models.

Results

A model that included gender, age, BMI, emphysema%, forced expiratory volume in one second (FEV1)%, and forced vital capacity (FVC)% fit best with the rib cage measurements (R2 = 64% for the rib cage area variation at the lower anatomical level). Gender had the biggest impact on rib cage diameter and area (105.3 cm2; 95% CI: 111.7 to 98.8 for male lower area). Emphysema% was responsible for an increase in size of upper and middle CT areas (up to 5.4 cm2; 95% CI: 3.0 to 7.8 for an emphysema increase of 5%). Lower rib cage areas decreased as FVC% decreased (5.1 cm2; 95% CI: 2.5 to 7.6 for 10 percentage points of FVC variation).

Conclusions

This study demonstrates that simple CT measurements can predict rib cage morphometric variability and also highlight relationships between rib cage morphometry and emphysema.  相似文献   

3.
This study examines structural changes of the thorax in hyperinflated subjects with chronic obstructive pulmonary disease (COPD). Age-matched normal subjects were used for comparison. Thoracic dimensions were determined using anteroposterior and lateral chest radiographs performed at total lung capacity, functional residual capacity, and residual volume. Rib cage dimensions (lateral diameter, rib angle, anteroposterior diameter) and diaphragm position were determined at each lung volume. There were no significant differences in rib cage dimension between the COPD and normal subjects for all lung volumes. In contrast, the diaphragm was significantly lower in the COPD subjects. The change of rib cage dimensions in the COPD subjects (for a similar volume change) was not different from that in normal subjects, whereas the change of diaphragm position in the COPD subjects (for a similar volume change) was reduced. In conclusion, the primary structural change of the thorax in COPD with chronic hyperinflation is confined to the diaphragm, with no appreciable structural change in the rib cage.  相似文献   

4.
5.
In this study, we searched for signs of thixotropic behavior in human rib cage respiratory muscles. If rib cage respiratory muscles possess thixotropic properties similar to those seen in other skeletal muscles in animals and humans, we expect resting rib cage circumference would be temporarily changed after deep rib cage inflations or deflations and that these aftereffects would be particularly pronounced in trials that combine conditioning deep inflations or deflations with forceful isometric contractions of the respiratory muscles. We used induction plethysmography to obtain a continuous relative measure of rib cage circumference changes during quiet breathing in 12 healthy subjects. Rib cage position at the end of the expiratory phase (EEP) was used as an index of resting rib cage circumference. Comparisons were made between EEP values of five spontaneous breaths immediately before and after six types of conditioning maneuvers: deep inspiration (DI); deep expiration (DE); DI combined with forceful effort to inspire (FII) or expire (FEI); and DE combined with forceful effort to inspire (FIE) or expire (FEE), both with temporary airway occlusion. The aftereffects of the conditioning maneuvers on EEP values were consistent with the supposition that human respiratory muscles possess thixotropic properties. EEP values were significantly enhanced after all conditioning maneuvers involving DI, and the aftereffects were particularly pronounced in the FII and FEI trials. In contrast, EEP values were reduced after DE maneuvers. The aftereffects were statistically significant for the FEE and FIE, but not DE, trials. It is suggested that respiratory muscle thixotropy may contribute to the pulmonary hyperinflation seen in patients with chronic obstructive pulmonary disease.  相似文献   

6.
Subject-specific three-dimensional (3D) reconstructions of the ribs can be obtained from biplanar X-rays. The goal of this study was to evaluate the accuracy and the inter-observer reproducibility of this technique in comparison to CT-scan reconstructions. CT scans and biplanar X-rays were obtained from 50 ribs (from three cadaveric rib cages). Three experienced experimenters reconstructed each rib from biplanar X-rays. Morphometric parameters were then computed from the rib midlines. Differences were computed between parameters obtained from the 3D reconstructions based on biplanar X-rays and from CT scans. The accuracy was computed as the mean of this difference for the 50 ribs from all three experimenters. The inter-observer variability was assessed using the coefficient of variation (CV) between the three observers. The CT-scan reconstructions were considered to be the gold standard in spite of their limitations for rib reconstructions. According to the different linear parameters, the accuracy of the reconstructions was found to be between -6mm (-2%) and 3mm, (4%). The accuracy of the current method was close to that of CT-scan reconstructions. The inter-observer variability was between 3% and 6%. Frontal and lateral X-rays are commonly obtained clinically, so 3D reconstructions can be used without increased radiation exposure to the patient.  相似文献   

7.
In this study, we developed a statistical rib cage geometry model accounting for variations by age, sex, stature and body mass index (BMI). Thorax CT scans were obtained from 89 subjects approximately evenly distributed among 8 age groups and both sexes. Threshold-based CT image segmentation was performed to extract the rib geometries, and a total of 464 landmarks on the left side of each subject?s ribcage were collected to describe the size and shape of the rib cage as well as the cross-sectional geometry of each rib. Principal component analysis and multivariate regression analysis were conducted to predict rib cage geometry as a function of age, sex, stature, and BMI, all of which showed strong effects on rib cage geometry. Except for BMI, all parameters also showed significant effects on rib cross-sectional area using a linear mixed model. This statistical rib cage geometry model can serve as a geometric basis for developing a parametric human thorax finite element model for quantifying effects from different human attributes on thoracic injury risks.  相似文献   

8.
Chest wall motion of infants during spinal anesthesia   总被引:1,自引:0,他引:1  
To test the extent to which diaphragmatic contraction moves the rib cage in awake supine infants during quiet breathing, we studied chest wall motion in seven prematurely born infants before and during spinal anesthesia for inguinal hernia repair. Infants were studied at or around term (postconceptional age 43 +/- 8 wk). Spinal anesthesia produced a sensory block at the T2-T4 level, with concomitant motor block at a slightly lower level. This resulted in the loss of most intercostal muscle activity, whereas diaphragmatic function was preserved. Rib cage and abdominal displacements were measured with respiratory inductance plethysmography before and during spinal anesthesia. During the anesthetic, outward inspiratory rib cage motion decreased in six infants (P less than 0.02, paired t test); four of these developed paradoxical inward movement of the rib cage during inspiration. One infant, the most immature in the group, had inward movement of the rib cage both before and during the anesthetic. Abdominal displacements increased during spinal anesthesia in six of seven infants (P less than 0.05), suggesting an increase in diaphragmatic motion. We conclude that, in the group of infants studied, outward rib cage movement during awake tidal breathing requires active, coordinated intercostal muscle activity that is suppressed by spinal anesthesia.  相似文献   

9.
Geometry and kinematics of dog ribs   总被引:5,自引:0,他引:5  
Five anesthetized supine beagle dogs were scanned using a fast, multislice computed tomographic X-ray technique to determine the orientation of the ribs at total lung capacity (TLC) and functional residual capacity (FRC). A plane was fit to each rib using a coordinate system in which the z-axis was aligned approximately cephalocaudally and the x-z-plane coincided with the sagittal midplane. The orientation of each plane was described by "pump-handle" and "bucket-handle" angles. The ribs rotated downward and inward during a passive deflation of the lungs from TLC to FRC. Rib displacement was not uniform: bucket-handle motion was predominant in the upper ribs, and pump- and bucket-handle motions were equal in the lower ribs. The change in the pump-handle angles between TLC and FRC was approximately 6 degrees for ribs 3-8, and the change in the bucket-handle angles decreased with rib number from 16 degrees for rib 3 to 6 degrees for rib 8. Rib shape was described by fitting an ellipse to the data for each rib; the ribs became larger and more circular with increasing rib number.  相似文献   

10.
We have determined the mechanical effects of immersion to the neck on the passive chest wall of seated upright humans. Repeated measurements were made at relaxed end expiration on four subjects. Changes in relaxed chest wall configuration were measured using magnetometers. Gastric and esophageal pressures were measured with balloon-tipped catheters in three subjects; from these, transdiaphragmatic pressure was calculated. Transabdominal pressure was estimated using a fluid-filled, open-tipped catheter referenced to the abdomen's exterior vertical surface. We found that immersion progressively reduced mean transabdominal pressure to near zero and that the relaxed abdominal wall was moved inward 3-4 cm. The viscera were displaced upward into the thorax, gastric pressure increased by 20 cmH2O, and transdiaphragmatic pressure decreased by 10-15 cmH2O. This lengthened the diaphragm, elevating the diaphragmatic dome 3-4 cm. Esophageal pressure became progressively more positive throughout immersion, increasing by 8 cmH2O. The relaxed rib cage was elevated and expanded by raising water from hips to lower sternum; this passively shortened the inspiratory intercostals and the accessory muscles of inspiration. Deeper immersion distorted the thorax markedly: the upper rib cage was forced inward while lower rib cage shape was not systematically altered and the rib cage remained elevated. Such distortion may have passively lengthened or shortened the inspiratory muscles of the rib cage, depending on their location. We conclude that the nonuniform forcing produced by immersion provides unique insights into the mechanical characteristics of the abdomen and rib cage, that immersion-induced length changes differ among the inspiratory muscles according to their locations and the depth of immersion, and that such length changes may have implications for patients with inspiratory muscle deficits.  相似文献   

11.
Changes in lung volume can be partitioned into volume displacements of the rib cage and abdomen. Abdominal displacements are often used as estimates of diaphragmatic displacements and changes in lengthening of diaphragmatic muscle. We used X-rays, ultrasound, and linear measurements of thoracic and abdominal diameters to estimate relationships among lung volume, thoracoabdominal configuration and diaphragmatic length, and we found that diaphragmatic length was strongly dependent on rib cage as well as abdominal displacement. In three subjects, the diaphragm shortened 57-85% as much during a breath made without abdominal displacement as during a normal breath in which the abdominal wall moved outward with the rib cage. We conclude that changes in diaphragmatic length can be estimated from surface measurements without radiation and that the length of the diaphragm cannot be estimated from displacements of the abdominal wall alone.  相似文献   

12.
Chest wall mechanics during artificial ventilation.   总被引:1,自引:0,他引:1  
Chest wall mechanics were studied in six healthy volunteers before and during anesthesia prior to surgery. The intratracheal, esophageal, and intragastric pressures were measured concurrently. Gas flow was measured by pneumotachography and gas volume was obtained from it by electrical integration. Rib cage and abdomen movements were registered with magnetometers, these being calibrated by "isovolume" maneuvers. During spontaneous breathing in the conscious state, rib cage volume displacement corresponded to 40% of the tidal volume. During anesthesia and artificial ventilation, this rose to 72% of the tidal volume. The relative contributions of rib cage and abdomen displacements were not influenced by a change in tidal volume. Compliance was higher with a larger tidal volume, a finding which could be due to a curved pressure-volume relationship of the overall chest wall.  相似文献   

13.
The role of new bone formation on visceral surfaces of ribs in the diagnosis of tuberculosis (TB) in past human populations has been explored by many researchers, using both skeletal remains with known causes of death and archaeological samples. This study focuses, firstly, on adult skeletons from the Coimbra Identified Skeletal Collection in Portugal and investigates the skeletal manifestations of individuals known to have died from TB; secondly, this study focuses on the role of rib lesions in the diagnostic criteria for TB. One hundred and fifty-seven males and 106 females aged between 22-87 years were examined; causes of death were assigned as pulmonary TB, extrapulmonary TB, and pulmonary non-TB; a control group, extrapulmonary non-TB, was selected from the remaining individuals. Of individuals with rib lesions, 85.7% (69/81) had pulmonary or extrapulmonary TB as an assigned cause of death, while 17.8% (16/90) of individuals with rib lesions had a non-TB cause of death. Rib lesions were significantly more common in individuals who had died from TB, although the lesions cannot be considered pathognomonic for TB. In individuals dying from pulmonary TB, ribs in the central part of the rib cage were most affected, at their vertebral ends. The lower part of the rib cage may be a marker for peritoneal TB, and "coral-like" new bone formation on ribs may be an indicator of neoplastic disease. Further work on rib involvement in TB in clinical contexts, and the study of further documented skeletal collections, are recommended.  相似文献   

14.
This paper describes a limited computer-analyzed kinematic model of the rib cage that can be adapted to individual subjects. Also described is its validation and use in assessing the changes in chest wall shape after coronary artery bypass graft (CABG) surgery in 12 patients. The positions of a small number of anatomic locations on the thoracic spine, ribs, manubrium, and sternum are measured from lateral and posterior-anterior chest radiographs. The computer program puts these two views together removing the magnification and reconstructs any missing points to give a three-dimensional picture of the rib cage to which mathematical models of the bones are scaled. The patients had chest radiographs taken at total lung capacity (TLC) and residual volume (RV) to investigate the source of the restrictive ventilatory defect that follows CABG. The predictions from the model were tested by comparing full-sized computer plots with the actual chest radiographs. The estimates of the bony structures were accurate to +/- 3 degrees for orientations and +/- 6 mm for positions. We found reduced rib motion both "pump-handle" (theta) and "bucket handle" (psi) going from theta, psi left, psi right = 9 degrees, 10 degrees, 14 degrees to 4 degrees, 10 degrees, 9 degrees, respectively, after surgery with P less than 0.025, 0.42, 0.07. The angles were measured from the horizontal and increased caudally. There was also reduction in the range of angles subtended by the arc of the thoracic vertebrae between TLC and RV, which went from 12 degrees to -1 degrees (P less than 0.015). These data explain the fall in lung volumes that follow CABG and provide insight into the contribution made by the ribs and spine in full inspiration and full expiration.  相似文献   

15.
We examined chest wall and rib cage configuration in seven normal subjects during a variety of breathing maneuvers. Magnetometers were used to measure lower rib cage anteroposterior, lower rib cage transverse, upper rib cage anteroposterior, and abdomen anteroposterior diameters. Changes of these diameters were recorded during voluntary maneuvers, rebreathing, reading, and "natural" breathing. Relative motion of the rib cage and abdomen was displayed with the rib cage represented by the product of its lower anteroposterior and transverse diameters. During spontaneous breathing the rib cage and chest wall are near their relaxation configuration. During chemically driven ventilation the chest wall and rib cage progressively depart from this configuration. Much greater distortions of the chest wall and rib cage occurred during some voluntary maneuvers. Additionally, esophageal pressure and gastric pressure were measured during voluntary distortion of the rib cage. Substantial changes in lower rib cage shape occurred during voluntary maneuvers when compared with spontaneous breaths at the same transmural pressure. We conclude that the unitary behavior of the rib cage in normal subjects requires muscle coordination.  相似文献   

16.
A new device that utilizes the voltages induced in separate coils encircling the rib cage and abdomen by a magnetic field is described for measurement of cross-sectional areas of the human chest wall (rib cage and abdomen) and their variation during breathing. A uniform magnetic field (1.4 X 10(-7) Tesla at 100 kHz) is produced by generating an alternating current at 100 kHz in two square coils, 1.98 m on each side, parallel to the planes of the areas to be measured and placed symmetrically cephalad and caudad to these planes at a mean distance of 0.53 m. We demonstrated that the accuracy of the device on well-defined surfaces (squares, circles, rectangles, ellipses) was within 1% in all cases. Observed errors are due primarily to small inhomogeneities of the magnetic field and variation of the orientation of the coil relative to the field. Using a second magnetic field (80 kHz) perpendicular to the first, we measured the errors due to nonparallel orientation during quiet breathing and inspiratory capacity maneuvers. In 10 normal subjects, orientation effects were less than 2% for the rib cage and less than 0.7% for the abdomen. In five of these subjects, orientation effects at functional residual capacity in lateral and seated postures were generally less than or equal to 5%, but estimated tidal volume during spontaneous breathing was comparable to measurements in the supine posture. In five curarized patients, we assessed the linearity of volume-motion relationships of the rib cage and abdomen, comparing cross-sectional area and circumference measurements. Departures from linearity using cross-sectional areas were only one-third of those using circumferences. In seven normal subjects we compared cross-sectional area measurements with respiratory inductive plethysmography (RIP) and found comparable estimates of lung volume change over a wide range of relative rib cage contributions to tidal volume (-5 to 105%), with slightly higher standard deviations for the RIP (SD = 10% for RIP; SD = 4% for cross-sectional area).  相似文献   

17.
The actions of several human respiratory muscles have been inferred from finite element analysis of the rib cage. The human model is based on anatomic and mechanical measurements in dogs and human cadavers. As in an earlier canine model, the external and internal (interosseous) intercostal muscles were found to cause, respectively, inspiratory and expiratory displacements of the rib cage, in agreement with the two-dimensional geometric analysis of Hamberger. When extended to three dimensions, Hamberger's analysis helps explain why muscles at the side of the rib cage produce changes in the anteroposterior diameter, whereas muscles at the front and back of the rib cage cause changes in the transverse diameter.  相似文献   

18.
The shape of the passive chest wall of six anesthetized dogs was determined at total lung capacity (TLC) and functional residual capacity (FRC) in the prone and supine body positions by use of volumetric-computed tomographic images. The transverse cross-sectional areas of the rib cage, mediastinum, and diaphragm were calculated every 1.6 mm along the length of the thorax. The changes in the volume and the axial distribution of transverse area of the three chest wall components with lung volume and body position were evaluated. The decrease of the transverse area within the rib cage between TLC and FRC, as a fraction of the area at TLC, was uniform from the apex of the thorax to the base. The volume of the mediastinum increased slightly between TLC and FRC (14% of its TLC volume supine and 20% prone), squeezing the lung between it and the rib cage. In the transverse plane, the heart was positioned in the midthorax and moved little between TLC and FRC. The shape, position, and displacement of the diaphragm were described by contour plots. In both postures, the diaphragm was flatter at FRC than at TLC, because of larger displacements in the dorsal than in the ventral region of the diaphragm. Rotation from the prone to supine body position produced a lever motion of the diaphragm, displacing the dorsal portion of the diaphragm cephalad and the ventral portion caudad. In five of the six dogs, bilateral isovolume pneumothorax was induced in the supine body position while intrathoracic gas volume was held constant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In 14 healthy male subjects we studied the effects of rib cage and abdominal strapping on lung volumes, airway resistance (Raw), and total respiratory resistance (Rrs) and reactance (Xrs). Rib cage, as well as abdominal, strapping caused a significant decrease in vital capacity (respectively, -36 and -34%), total lung capacity (TLC) (-31 and -27%), functional residual capacity (FRC) (-28 and -28%), and expiratory reserve volume (-40 and -48%) and an increase in specific airway conductance (+24 and +30%) and in maximal expiratory flow at 50% of control TLC (+47 and +42%). The decrease of residual volume (RV) was significant (-12%) with rib cage strapping only. Abdominal strapping resulted in a minor overall increase in Rrs, whereas rib cage strapping produced a more marked increase at low frequencies; thus a frequency dependence of Rrs was induced. A similar pattern, but with lower absolute values, of Rrs was obtained by thoracic strapping when the subject was breathing at control FRC. Xrs was decreased, especially at low frequencies, with abdominal strapping and even more with thoracic strapping; thus the resonant frequency of the respiratory system was shifted toward higher frequencies. Partitioning Rrs and Xrs into resistance and reactance of lungs and chest wall demonstrated that the different effects of chest wall and abdominal strapping on Rrs and Xrs reflect changes mainly of chest wall mechanics.  相似文献   

20.
To determine the influence of body position on chest wall and pulmonary function, we studied the ventilatory, pulmonary mechanics, and thoracoabdominal motion profiles in 20 preterm infants recovering from respiratory disease who were positioned in both the supine and prone position. Thoracoabdominal motion was assessed from measurements of relative rib cage and abdominal movement and the calculated phase angle (an index of thoracoabdominal synchrony) of the rib and abdomen Lissajous figures. The ventilatory and pulmonary function profiles were assessed from simultaneous measurements of transpulmonary pressure, airflow, and tidal volume. The infants were studied in quiet sleep, and the order of positioning was randomized across patients. The results demonstrated no significant difference in ventilatory and pulmonary function measurements as a function of position. In contrast, there was a significant reduction (-49%) in the phase angle of the Lissajous figures and an increase (+66%) in rib cage motion in prone compared with the supine position. In addition, the degree of improvement in phase angle in the prone position was correlated to the severity of asynchrony in the supine position. We speculate that the improvement in thoracoabdominal synchrony in the prone position is related to alterations of chest wall mechanics and respiratory muscle tone mediated by a posturally related shift in the area of apposition of the diaphragm to the anterior inner rib cage wall and increase in passive tension of the muscles of the rib cage. This study suggests that the mechanical advantage associated with prone positioning may confer a useful alternative breathing pattern to the preterm infant in whom elevated respiratory work loads and respiratory musculoskeletal immaturity may predispose to respiratory failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号