首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recent studies have demonstrated the importance of heptad repeat regions within envelope proteins of viruses in mediating conformational changes at various stages of viral infection. However, it is not clear if heptad repeats have a direct role in the actual fusion event. Here we have synthesized, fluorescently labeled and functionally and structurally characterized a wild-type 70 residue peptide (SV-117) composed of both the fusion peptide and the N-terminal heptad repeat of Sendai virus fusion protein, two of its mutants, as well as the fusion peptide and heptad repeat separately. One mutation was introduced in the fusion peptide (G119K) and another in the heptad repeat region (I154K). Similar mutations have been shown to drastically reduce the fusogenic ability of the homologous fusion protein of Newcastle disease virus. We found that only SV-117 was active in inducing lipid mixing of egg phosphatidylcholine/phosphatidyiglycerol (PC/PG) large unilamellar vesicles (LUV), and not the mutants nor the mixture of the fusion peptide and the heptad repeat. Functional characterization revealed that SV-117, and to a lesser extent its two mutants, were potent inhibitors of Sendai virus-mediated hemolysis of red blood cells, while the fusion peptide and SV-150 were negligibly active alone or in a mixture. Hemagglutinin assays revealed that none of the peptides disturb the binding of virions to red blood cells. Further studies revealed that SV-117 and its mutants oligomerize similarly in solution and in membrane, and have similar potency in inducing vesicle aggregation. Circular dichroism and FTIR spectroscopy revealed a higher helical content for SV-117 compared to its mutants in 40 % tifluorethanol and in PC/PG multibilayer membranes, respectively, ATR-FTIR studies indicated that SV-117 lies more parallel with the surface of the membrane than its mutants. These observations suggest a direct role for the N-terminal heptad repeat in assisting the fusion peptide in mediating membrane fusion.  相似文献   

3.
Entry of most paramyxoviruses is accomplished by separate attachment and fusion proteins that function in a cooperative manner. Because of this close interdependence, it was not possible with most paramyxoviruses to replace either of the two protagonists by envelope glycoproteins from related paramyxoviruses. By using reverse genetics of Sendai virus (SeV), we demonstrate that chimeric respiratory syncytial virus (RSV) fusion proteins containing either the cytoplasmic domain of the SeV fusion protein or in addition the transmembrane domain were efficiently incorporated into SeV particles provided the homotypic SeV-F was deleted. In the presence of SeV-F, the chimeric glycoproteins were incorporated with significantly lower efficiency, indicating that determinants in the SeV-F ectodomain exist that contribute to glycoprotein uptake. Recombinant SeV in which the homotypic fusion protein was replaced with chimeric RSV fusion protein replicated in a trypsin-independent manner and was neutralized by antibodies directed to RSV-F. However, replication of this virus also relied on the hemagglutinin-neuraminidase (HN) as pretreatment of cells with neuraminidase significantly reduced the infection rate. Finally, recombinant SeV was generated with chimeric RSV-F as the only envelope glycoprotein. This virus was not neutralized by antibodies to SeV and did not use sialic acids for attachment. It replicated more slowly than hybrid virus containing HN and produced lower virus titers. Thus, on the one hand RSV-F can mediate infection in an autonomous way while on the other hand it accepts support by a heterologous attachment protein.  相似文献   

4.
5.
Cell entry by paramyxoviruses requires fusion of the viral envelope with the target cell membrane. Fusion is mediated by the viral fusion (F) glycoprotein and usually requires the aid of the attachment glycoprotein (G, H or HN, depending on the virus). Human respiratory syncytial virus F protein (F(RSV)) is able to mediate membrane fusion in the absence of the attachment G protein and is unique in possessing two multibasic furin cleavage sites, separated by a region of 27 amino acids (pep27). Cleavage at both sites is required for cell-cell fusion. We have investigated the significance of the two cleavage sites and pep27 in the context of Sendai virus F protein (F(SeV)), which possesses a single monobasic cleavage site and requires both coexpression of the HN attachment protein and trypsin in order to fuse cells. Inclusion of both F(RSV) cleavage sites in F(SeV) resulted in a dramatic increase in cell-cell fusion activity in the presence of HN. Furthermore, chimeric F(SeV) mutants containing both F(RSV) cleavage sites demonstrated cell-cell fusion in the absence of HN. The presence of two multibasic cleavage sites may therefore represent a strategy to regulate activation of a paramyxovirus F protein for cell-cell fusion in the absence of an attachment protein.  相似文献   

6.
Small hydrophobic peptides that are capable of inhibiting Sendai virus infection of cells (Richardson, C. D., Scheid, A., and Choppin, P. W. (1980) Virology 105, 205-222) are also capable of inhibiting membrane fusion in a pure lipid vesicle system. Large unilamellar vesicles of N-methyl dioleoylphosphatidylethanolamine containing encapsulated 1-aminonaphthalene-3,6,8-trisulfonic acid and/or p-xylene bis (pyridinium bromide) were formed by extrusion. Vesicle fusion (contents mixing) and leakage were then monitored with the 1-aminonaphthalene-3,6,8-trisulfonic acid/p-xylene bis(pyridinium bromide) fluorescence assay. Sendai virus fusion with lipid vesicles was measured by following the relief of fluorescence quenching of virus labeled with octadecylrhodamine B chloride, a lipid mixing assay for fusion. The efficiency with which the peptides carbobenzoxy-D-Phe-L-PheGly, carbobenzoxy-L-Phe-L-Tyr, and carbobenz-oxy-Gly-L-Phe inhibit fusion of N-methyl dioleoyl-phosphatidylethanolamine large unilamellar vesicles directly paralleled their previously known effectiveness in blocking virus infectivity of cultured cells. In addition, above a certain concentration threshold, the inhibitory peptides decreased the initial rate of leakage from lipid vesicles. The inhibition by these peptides of virus-vesicle fusion followed the same order of potency as for vesicle-vesicle fusion. The observation of the same relative potency of these peptides toward inhibition of virus-cell infection, and virus-vesicle and vesicle-vesicle membrane fusion suggested that these peptides inhibited virus-cell infection by inhibiting the ability of the virus to fuse with the cell. Furthermore, these results suggest that the mechanism of inhibition of all three fusion events may have steps in common.  相似文献   

7.
Tamura T  Yamashita T  Segawa H  Taira H 《FEBS letters》2002,513(2-3):153-158
The selectivity and individual roles of the N-linked oligosaccharide chains of Sendai virus fusion protein (F protein) in the interaction with endoplasmic reticulum molecular chaperones were investigated by analyses of transient expression of single N-glycosylation mutants and sequential immunoprecipitation. We demonstrated differential interactions depending on the location of the N-linked oligosaccharide chain, and showed that these interactions were correlated with the folding and transport of F proteins. Moreover, mutant F proteins that lacked the specific N-linked oligosaccharide chains required for disulfide bond formation showed increased association with ERp57.  相似文献   

8.
9.
A M Haywood  B P Boyer 《Biochemistry》1984,23(18):4161-4166
How the lipid composition of liposomes determines their ability to fuse with Sendai virus membranes was tested. Liposomes were made of compositions designed to test postulated mechanisms of membrane fusion that require specific lipids. Fusion does not require the presence of lipids that can form micelles such as gangliosides or lipids that can undergo lamellar to hexagonal phase transitions such as phosphatidylethanolamine (PE), nor is a phosphatidylinositol (PI) to phosphatidic acid (PA) conversion required, since fusion occurs with liposomes containing phosphatidylcholine (PC) and any one of many different negatively charged lipids such as gangliosides, phosphatidylserine (PS), phosphatidylglycerol, dicetyl phosphate, PI, or PA. A negatively charged lipid is required since fusion does not occur with neutral liposomes containing PC and a neutral lipid such as globoside, sphingomyelin, or PE. Fusion of Sendai virus membranes with liposomes that contain PC and PS does not require Ca2+, so an anhydrous complex with Ca2+ or a Ca2+-induced lateral phase separation is not required although the possibility remains that viral binding causes a lateral phase separation. Sendai virus membranes can fuse with liposomes containing only PS, so a packing defect between domains of two different lipids is not required. The concentration of PS required for fusion to occur is approximately 10-fold higher than that required for ganglioside GD1a, which has been shown to act as a Sendai virus receptor. When cholesterol is added as a third lipid to liposomes containing PC and GD1a, the amount of fusion decreases if the GD1a concentration is low.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Analysis of the Sendai virus M gene and protein.   总被引:12,自引:4,他引:8       下载免费PDF全文
The nucleotide sequence of the Sendai virus M (matrix or membrane) gene region was determined from cloned genomic DNA, and the limits of the M mRNA were determined by S1 nuclease mapping. The M mRNA is 1,173 nucleotides long and contains a single long open reading frame coding for a protein of 348 amino acids. The amino acid sequences of the N- and C-terminal peptides of the M protein were obtained by mass spectrometric analysis and correspond to those predicted from the open reading frame, with the N terminus modified in vivo by cleavage of the initiating methionine and acetylation of the following amino acid. The amphiphilic nature of the M protein structure is discussed.  相似文献   

11.
12.
Cholesterol sulfate is a component of several biological membranes. In erythrocytes, cholesterol sulfate inhibits hypotonic hemolysis, while in sperm, it can decrease fertilization efficiency. We have found cholesterol sulfate to be a potent inhibitor of Sendai virus fusion to both human erythrocyte and liposomal membranes. Cholesterol sulfate also raises the bilayer to hexagonal phase transition temperature of dielaidoyl phosphatidylethanolamine as demonstrated by differential scanning calorimetry and 31P nuclear magnetic resonance spectrometry. Although hexagonal phase structures are not readily found in biological membranes, there is a correlation between the effects of membrane additives on bilayer/non-bilayer equilibria and membrane stabilization. It is proposed that the ability of cholesterol sulfate to alter the physical properties of membranes contributes to its stabilization of biological membranes and the inhibition of membrane fusion.  相似文献   

13.
14.
Y I Henis  T M Jenkins 《FEBS letters》1983,151(1):134-138
The subunit stoichiometry of the ATP synthetase (CF1-CF0) immunoprecipitated from Triton X-100 extracts of chloroplast thylakoid membranes was determined to be α3, β3, γ, δ, ? (CF1) and I0.3, II0.6–0.9, III4(6) (CF0). Antibodies against the polypeptides α, β, γ, δ, I, II and ? combined specifically with the isolated subunits as analysed by the protein blotting method. Applying this technique, antibodies against the CF1 subunits were found to form complexes with the corresponding polypeptides of thylakoids, whereas those against I (Mr 20 000) and II (Mr 17 000) combined with Mr 26 000 and Mr 24 500 membrane polypeptides, respectively. The Mr 26 000 polypeptide was identified as the major subunits of the light-harvesting chlorophyll a/b-protein (LHCP) complex and the Mr 24 500 component seems to be functionally connected with this complex. From the results it is concluded that the chloroplast ATP synthetase consists of the subunit of the α, β, γ, δ, ? and III (proteolipid only and that proteolytically altered LHCP polypeptides bind artifically to the protein complex during isolation.  相似文献   

15.
Sendai virus pneumonia was produced in BALB/c mice fed protein-deficient diets in an effort to understand the severity of viral pneumonia in infants in developing countries. Animals on the deficient diet became clinically malnourished, and some aspects of cellular immunity were altered. In protein-deprived animals, the 50% lethal dose of intranasally administered Sendai virus was over 1,000-fold lower, pulmonary virus titers were higher, the infection was prolonged, and lung infection was established at a lower inoculum than in normal animals.  相似文献   

16.
Multiple lipid interactions of the Sendai virus fusogenic protein   总被引:1,自引:0,他引:1  
The membrane topology of the envelope of Sendai virus was investigated using various radioactive photoactivable hydrophobic reagents: 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine and the two phospholipid analogues, 1-palmitoyl-2-(2-azido-4-nitro)benzoyl-sn -glycero-3- phospho[3H]choline and 1-myristoyl-2,12-amino-(4-N-3-nitro-1-azidophenyl)dodecanoyl-sn-glycero- 3-phospho[14C]choline. The hemagglutinin-neuraminidase glycoprotein and the fusogenic (F) glycoprotein were labeled by all three probes, confirming that these proteins are integral components of the viral envelope. The labeled F glycoprotein, composed of the two subunits F1 and F2, was cleaved in situ with trypsin to yield two fragments, F32 (32 kDa) and F19 (19 kDa). F2 was not labeled by any of the probes, suggesting an external location; whereas F19 was labeled by all probes and hence contains the portion of the F glycoprotein which traverses the viral envelope. Fragment F32 reacted both with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine and with 1-palmitoyl-2-(2-azido-4-nitro)benzoyl-sn-glycero-3-phospho[3H]choline, but not with 1-myristoyl-2,12-amino-(4-N-3-nitro-1-azidophenyl)dodecanoyl-sn-glycero- 3- phospho[14C]choline. This result opens the possibility that the F glycoprotein is formed by a loop-like structure having multiple interactions with viral lipids.  相似文献   

17.
The mature fusion (F) glycoprotein of the paramyxovirus family consists of two disulfide-linked subunits, the N-terminal F2 and the C-terminal F1 subunits, and contains 10 cysteine residues which are highly conserved at specific positions. The high level of conservation strongly suggests that they are indeed disulfide linked and play important roles in the folding and functioning of the molecule. However, it has not even been clarified which cysteine residues link the F2 and F1 subunits. This report describes our assignment of the disulfide bridges in purified Sendai virus F glycoprotein by fragmentation of the polypeptide and isolation of cystine-containing peptides and determination of their N-terminal sequences. The data demonstrate that all of the 10 cysteine residues participate in disulfide bridges and that Cys-70, the only cysteine in F2, and Cys-199, the most upstream cysteine in F1, form the interchain bond. Of the remaining eight cysteine residues clustered near the transmembrane domain of F1, the specific bridges identified are Cys-338 to Cys-347 and Cys-362 to Cys-370. Although no exact pairings between the subsequent four residues were defined, it seems likely that the most downstream, Cys-424, is linked to Cys-394, Cys-399, or Cys-401. Thus, we conclude that the cysteine-rich domain indeed contributes to the formation of a bunched structure containing at least two tandem cystine loops.  相似文献   

18.
The role of the target membrane structure in fusion with Sendai virus   总被引:3,自引:0,他引:3  
Fusion between membranes of Sendai virus and liposomes or human erythrocytes ghosts was studied using an assay for lipid mixing based on the relief of self-quenching of octadecylrhodamine (R18) fluorescence. We considered only viral fusion that reflects the biological activity of the viral spike glycoproteins. The liposomes were made of phosphatidylcholine, and the effects of including cholesterol, the sialoglycolipid GD1a, and/or the sialoglycoprotein glycophorin as receptors were tested. Binding of Sendai virus to those liposomes at 37 degrees C was very weak. Fusion with the erythrocyte membranes occurred at a 30-fold faster rate than with the liposomes. Experiments with biological and liposomal targets of different size indicated that size did not account for differences in fusion efficiency.  相似文献   

19.
S Nir  K Klappe  D Hoekstra 《Biochemistry》1986,25(25):8261-8266
The kinetics and extent of fusion between Sendai virus particles and liposomes were investigated with an assay for lipid mixing based on the relief of self-quenching of fluorescence. The measurements, which were carried out at pH 7.4 and 5.0, included liposomes of three compositions, cardiolipin (CL), CL/dioleoylphosphatidylcholine (CL/DOPC 1:1), and phosphatidylserine (PS). Liposomal lipid concentrations varied from 2.5 to 50 microM. In addition, the effect of low concentrations of the dehydrating agent poly(ethylene glycol) (PEG) on fusion between the virus and the liposomes at pH 7.4 was studied. The results were analyzed in terms of a mass action kinetic model which views the overall fusion reaction as a sequence of a second-order process of virus-liposome adhesion or aggregation, followed by the first-order fusion reaction itself. The fusion products were shown to consist of a single virus particle and several liposomes. Analytical solutions were found for the final extent of fusion and increase in fluorescence intensity following the fusion of fluorescently labeled virus particles with liposomes. The final extents of fluorescence intensity were explained by assuming an essentially irreversible binding of liposomes to inactive virus particles. The percents of active virus particles and the rate constants of fusion and aggregation were larger at pH 5 than at pH 7.4, increased when PEG was included in the medium, and varied with liposomal lipid composition according to the sequence CL greater than CL/DOPC greater than PS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Most viral glycoproteins mediating membrane fusion adopt a metastable native conformation and undergo major conformational changes during fusion. We previously described a panel of compounds that specifically prevent fusion induced by measles virus (MV), most likely by interfering with conformational rearrangements of the MV fusion (F) protein. To further elucidate the basis of inhibition and better understand the mechanism of MV glycoprotein-mediated fusion, we generated and characterized resistant MV variants. Spontaneous mutations conferring drug resistance were confirmed in transient assays and in the context of recombinant virions and were in all cases located in the fusion protein. Several mutations emerged independently at F position 462, which is located in the C-terminal heptad repeat (HR-B) domain. In peptide competition assays, all HR-B mutants at residue 462 revealed reduced affinity for binding to the HR-A core complex compared to unmodified HR-B. Combining mutations at residue 462 with mutations in the distal F head region, which we had previously identified as mediating drug resistance, causes intracellular retention of the mutant proteins. The transport competence and activity of the mutants can be restored, however, by incubation at reduced temperature or in the presence of the inhibitory compounds, indicating that the F escape mutants have a reduced conformational stability and that the inhibitors stabilize a transport-competent conformation of the F trimer. The data support the conclusion that residues located in the head domain of the F trimer and the HR-B region contribute jointly to controlling F conformational stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号