首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Hsu BG  Lee RP  Yang FL  Harn HJ  Chen HI 《Life sciences》2006,79(21):2010-2016
N-acetylcysteine (NAC) is an antioxidant and cytoprotective agent with scavenging action against reactive oxygen species and inhibitory effects on pro-inflammatory cytokines. In a previous study, we found that pretreatment with NAC attenuated organ dysfunction and damage, reduced the production of free radicals, tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) following endotoxemia elicited by administration of lipopolysaccharide (LPS). In the present study, we tested the effects of post-treatment with NAC on the sepsis-induced change. Post-treatment imitates clinical therapeutic regimen with administration of drug after endotoxemia. Endotoxin shock was induced by intravenous injection of Klebsiella pneumoniae LPS (10 mg/kg) in conscious rats. Mean arterial pressure (MAP) and heart rate (HR) were continuously monitored for 48 h after LPS administration. NAC was given 20 min after LPS. Measurements of biochemical substances were taken to reflect organ functions. Biochemical factors included blood urea nitrogen (BUN), creatinine (Cre), lactate dehydrogenase (LDH), creatine phosphokinase (CPK), aspartate transferase (GOT), alanine transferase (GPT), TNF-alpha, interleukin-6 (IL-6), and interleukin-10 (IL-10). LPS significantly increased blood BUN, Cre, LDH, CPK, GOT, GPT, TNF-alpha, IL-6, IL-10 levels and HR, and decreased MAP. Post-treatment with NAC diminished the decrease in MAP, increased the HR, and decreased the markers of organ injury (BUN, Cre, LDH, CPK, GOT, GPT) and inflammatory biomarkers (TNF-alpha, IL-6, IL-10) after LPS. We conclude that post-treatment with NAC suppresses the release of plasma TNF-alpha, IL-6, and IL-10 in endotoxin shock, and decreases the markers of organ injury. These beneficial effects protect against LPS-induced kidney, heart and liver damage in conscious rats. The beneficial effects may suggest a potential chemopreventive effect of this compound after sepsis.  相似文献   

2.
Heme oxygenase-1 (HO-1) catalyzes the enzymatic degradation of heme to carbon monoxide, bilirubin, and iron. All three products possess biological functions; bilirubin, in particular, is a potent free radical scavenger of which its antioxidant property is enhanced at low oxygen tension. Here, we investigated the effect of severe hypoxia and reoxygenation on HO-1 expression in cardiomyocytes and determined whether HO-1 and its product, bilirubin, have a protective role against reoxygenation damage. Hypoxia caused a time-dependent increase in both HO-1 expression and heme oxygenase activity, which gradually declined during reoxygenation. Reoxygenation of hypoxic cardiomyocytes produced marked injury; however, incubation with hemin or bilirubin during hypoxia considerably reduced the damage at reoxygenation. The protective effect of hemin is attributable to increased availability of substrate for heme oxygenase activity, because hypoxic cardiomyocytes generated very little bilirubin when incubated with medium alone but produced substantial bile pigment in the presence of hemin. Interestingly, incubation with hemin also maintained high heme oxygenase activity levels during the reoxygenation period. Reactive oxygen species generation was enhanced after hypoxia, and hemin and bilirubin were capable once again to attenuate this effect. These results indicate that the HO-1-bilirubin pathway can effectively defend hypoxic cardiomyocytes against reoxygenation injury and highlight the issue of heme availability in the cytoprotective action afforded by HO-1.  相似文献   

3.
Endotoxin shock is a major cause of death in patients with septicemia. Endotoxin induces nitric oxide (NO) production and causes tissue damage. In addition, the release of oxygen free radicals has also been observed in endotoxin shock and was found to be responsible for the occurrence of multiple organ failure. The purpose of the present study was to evaluate suitable indicators for early and late stages of endotoxin shock. The experiments were designed to induce endotoxin shock in conscious rats by means of anEscherichia coli lipopolysaccharide (LPS) injection. Arterial pressure (AP) and heart rate (HR) were continuously monitored for 72 h after LPS administration. The maximal decrease in AP and increase in HR and nitrate/nitrite level occurred at 9–12 h following LPS administration. The white blood cell (WBC) count had decreased at 3 h. Hydroxyl radical (methyl guanidine, MG) decreased rapidly after LPS administration. Plasma levels of blood urea nitrogen (BUN), creatinine (Cr), lactic dehydrogenase (LDH), creatine phosphokinase (CPK), and glutamic oxaloacetic transaminase increased before the rise of amylase. Our results suggest that changes in AP, HR, WBC, free radicals, and chemical substances (BUN, Cr) can possibly serve as approximate indicators for the early stage of endotoxin shock. Severe multiple organ damage may be caused by amylase release in the late stage of endotoxin shock.  相似文献   

4.
The major goal of this study was to examine the ability of several antioxidants namely, vitamin E, beta-carotene and N-acetylcysteine, to protect the brain from oxidative stress induced by lipopolysaccharide (LPS, endotoxin). LPS, a component of the bacterial wall of gram-negative bacteria, has been recognized as one of the most potent bacterial products in the induction of host inflammatory responses and tissue injury and was used in this study to mimic infections. LPS injection resulted in a significant increase in the stress indices, plasma corticosterone and glucose concentration, a significant alteration of the brain oxidative status observed as elevation of the level of malondialdehyde (MDA, index of lipid peroxidation) and reduction of reduced glutathione (GSH), and a disturbance in the brain energy metabolism presented as a reduction in the ATP/ADP ratio and an increase in the mitochondrial/cytosolic hexokinase ratio. However, the activities of brain superoxide dismutase and Na+, K+-ATPase and contents of cholesterol and phospholipids were not altered. Administration of the aforementioned antioxidants prior to LPS injection ameliorated the oxidative stress by reducing levels of MDA, restoring GSH content and normalizing the mitochondrial/cytosolic hexokinase ratio in the brain in addition to lowering levels of plasma corticosterone and glucose. In conclusion, this study showed the increased free radical generation during infections and LPS-induced stress. It also suggests that brain oxidative status and energy is disturbed.  相似文献   

5.

Background

The chemokine receptor CXCR4 is a multifunctional receptor which is activated by its natural ligand C-X-C motif chemokine 12 (CXCL12). As CXCR4 is part of the lipopolysaccharide sensing complex and CXCL12 analogs are not well characterized in inflammation, we aimed to uncover the systemic effects of a CXCL12 analog in severe systemic inflammation and to evaluate its impact on endotoxin induced organ damages by using a sublethal LPS dose.

Methods

The plasma stable CXCL12 analog CTCE-0214D was synthesized and administered subcutaneously shortly before LPS treatment. After 24 hours, mice were sacrificed and blood was obtained for TNF alpha, IFN gamma and blood glucose evaluation. Oxidative stress in the liver and spleen was assessed and liver biotransformation capacity was determined. Finally, CXCR4, CXCL12 and TLR4 expression patterns in liver, spleen and thymus tissue as well as the presence of different markers for apoptosis and oxidative stress were determined by means of immunohistochemistry.

Results

CTCE-0214D distinctly reduced the LPS mediated effects on TNF alpha, IFN gamma, ALAT and blood glucose levels. It attenuated oxidative stress in the liver and spleen tissue and enhanced liver biotransformation capacity unambiguously. Furthermore, in all three organs investigated, CTCE-0214D diminished the LPS induced expression of CXCR4, CXCL12, TLR4, NF-κB, cleaved caspase-3 and gp91 phox, whereas heme oxygenase 1 expression and activity was induced above average. Additionally, TUNEL staining revealed anti-apoptotic effects of CTCE-0214D.

Conclusions

In summary, CTCE-0214D displayed anti-inflammatory, anti-oxidative and cytoprotective features. It attenuated reactive oxygen species, induced heme oxygenase 1 activity and mitigated apoptosis. Thus, the CXCR4/CXCL12 axis seems to be a promising target in the treatment of acute systemic inflammation, especially when accompanied by a hepatic dysfunction and an excessive production of free radicals.  相似文献   

6.
Strenuous, long-duration aerobic exercise results in endotoxemia due to increased plasma levels of lipopolysaccharide (LPS) leading to cytokine release, oxidative stress, and altered gastrointestinal function. However, the effect of short-term strenuous aerobic exercise either with or without antioxidant supplementation on exercise-induced endotoxemia is unknown. A significant increase in the concentration of bacterial LPS (endotoxin) was noted in the venous circulation of healthy volunteers following maximal acute aerobic exercise (0.14(-1) pre-exercise vs. 0.24(-1) postexercise, p <0.01). Plasma nitrite concentration also increased with exercise (0.09 +/- 0.05 nM x ml(-1) vs. 0.14 +/- 0.01 nM x ml(-1), p <0.05) as did ascorbate free radical levels (0.02 +/- 0.001 vs. 0.03 +/- 0.002 arbitrary units, p <0.05). Oral ascorbic acid supplementation (1000 mg) significantly increased plasma ascorbic acid concentration (29.45 mM x l(-1) to 121.22 mM x l(-1), p <0.05), and was associated with a decrease in plasma LPS and nitrite concentration before and after exercise (LPS: 0.01(-1); nitrite: 0.02 +/- 0.02 nM x ml(-1) vs. 0.02 +/- 0.03 nM x ml(-1)). Ascorbic acid supplementation led to a significant increase in ascorbate free radical levels both before (0.04 +/- 0.01 arbitrary units) and after exercise (0.06 +/- 0.02 arbitrary units, p <0.05). In conclusion, strenuous short-term aerobic exercise results in significant increases in plasma LPS levels (endotoxemia) together with increases in markers of oxidative stress. Supplementation with ascorbic acid, however, abolished the increase in LPS and nitrite but led to a significant increase in the ascorbate radical in plasma. The amelioration of exercise-induced endotoxemia by antioxidant pretreatment implies that it is a free radical-mediated process while the use of the ascorbate radical as a marker of oxidative stress in supplemented systems is limited.  相似文献   

7.
The in vivo effect of hemin on both hepatic oxidative stress and heme oxygenase induction was studied. A marked increase in lipid peroxidation was observed 1 hr after hemin administration. Heme oxygenase-1 activity and expression appeared 6 hr after treatment, reaching a maximum between 12 and 15 hr after hemin administration. Such induction was preceded by a decrease in the soluble and enzymatic defenses, both effects taking place some hours before induction of heme oxygenase. Ferritin content began to increase 6 hr after heme oxygenase induction, and these increases were significantly higher 15 hr after treatment and remained high for at least 24 hr after hemin injection. Co-administration of tin protoporphyrin IX, a potent inhibitor of heme oxygenase, completely prevented the enzyme induction and the increase in ferritin levels, increasing the appearance of oxidative stress parameters. Administration of bilirubin, prevented the heme oxygenase induction as well as the decrease in hepatic GSH and the increase of lipid peroxidation when it was administered 2 hr before hemin treatment. These results indicate that the induction of heme oxygenase by hemin may be a general response to oxidant stress, by increasing bilirubin and ferritin levels and could therefore provide a major cellular defense mechanism against oxidative damage.  相似文献   

8.
S Picunio  M Simioni  M G Doni 《Life sciences》1999,65(14):1463-1475
Injection of lipopolysaccharide (LPS) (Salmonella W. Typhosa i.v. bolus) into conscious rats, induced a rapid drop of circulating platelets analogous to that induced by ADP. The animals showed a small fall in mean arterial blood pressure (MABP), an increase in heart rate and a significant increase in plasma nitrite and nitrate level. This result is consistent with the stimulation of an inducible NO synthase (i-NOS). The administration of the stable prostacyclin analogue, iloprost plus ADP or LPS, significantly protected against the decrease in free platelet number induced by ADP or LPS. The plasma nitrite and nitrate level stimulated by LPS was significantly reduced by iloprost and also by prostacyclin. These results are consistent with an inhibition of i-NOS by agents that increase the intracellular level of cAMP. The administration of the NO donor S-Nitroso-N-acyl-D-penicillamine (SNAP) plus ADP or LPS, significantly prevented thrombocytopenia induced by ADP and by LPS. SNAP did not decrease the plasma nitrite and nitrate level stimulated by LPS; furthermore it induced a significant increase of heart rate, without affecting MABP, suggesting a direct accelerating effect of NO on the sino-atrial node. The administration of S-nitroso-glutathione (GSNO), a stable nitrosothiol, plus ADP or LPS, significantly prevented thrombocytopenia induced by ADP but not by LPS. GSNO significantly reduced the plasma nitrite and nitrate level stimulated by LPS. These data demonstrate that the L-Arginine: NO pathway in vivo may be modulated by prostanoids and that compounds which increase cAMP, such as iloprost, are able to protect against LPS-induced early thrombocytopenia.  相似文献   

9.
Bilirubin is a potent antioxidant generated intracellularly during the degradation of heme by the enzyme heme oxygenase. The purpose of this study was to determine the role of increased cardiac bilirubin in protection against postischemic myocardial dysfunction. Rat hearts were isolated and perfused according to the Langendorff technique to evaluate the recovery of myocardial function after 30 min of global ischemia and 60 min of reperfusion. We found that upregulation of the inducible isoform of heme oxygenase (HO-1) by treatment of animals with hemin 24 h before ischemia ameliorated myocardial function and reduced infarct size (tetrazolium staining) on reperfusion of isolated hearts. Tin protoporphyrin IX, an inhibitor of heme oxygenase activity, completely abolished the improved postischemic myocardial performance observed after hemin-mediated HO-1 induction. Likewise, cardiac tissue injury was exacerbated by treatment with tin protoporphyrin IX. Increased cardiac HO-1 expression and heme oxygenase activity were associated with enhanced tissue bilirubin content and an increased rate of bilirubin release into the perfusion buffer. Furthermore, exogenously administered bilirubin at concentrations as low as 100 nanomolar significantly restored myocardial function and minimized both infarct size and mitochondrial damage on reperfusion. Our data provide strong evidence for a primary role of HO-1-derived bilirubin in cardioprotection against reperfusion injury.  相似文献   

10.
The hemolysis of red blood cells and muscle damage results in the release of the heme proteins myoglobin, hemoglobin, and free heme into the vasculature. The mechanisms of heme toxicity are not clear but may involve lipid peroxidation, which we hypothesized would result in mitochondrial damage in endothelial cells. To test this, we used bovine aortic endothelial cells (BAEC) in culture and exposed them to hemin. Hemin led to mitochondrial dysfunction, activation of autophagy, mitophagy, and, at high concentrations, apoptosis. To detect whether hemin induced lipid peroxidation and damaged proteins, we used derivatives of arachidonic acid tagged with biotin or Bodipy (Bt-AA, BD-AA). We found that in cells treated with hemin, Bt-AA was oxidized and formed adducts with proteins, which were inhibited by α-tocopherol. Hemin-dependent mitochondrial dysfunction was also attenuated by α-tocopherol. Protein thiol modification and carbonyl formation occurred on exposure and was not inhibited by α-tocopherol. Supporting a protective role of autophagy, the inhibitor 3-methyladenine potentiated cell death. These data demonstrate that hemin mediates cytotoxicity through a mechanism which involves protein modification by oxidized lipids and other oxidants, decreased respiratory capacity, and a protective role for the autophagic process. Attenuation of lipid peroxidation may be able to preserve mitochondrial function in the endothelium and protect cells from heme-dependent toxicity.  相似文献   

11.
Heme oxygenase (HO) catalyzes the degradation of heme to biliverdin, iron, and CO. The inducible isoform (HO-1) has been implicated as a modulator of the inflammatory response. HO-1 activity can be induced by hemin and inhibited with zinc protoporphyrin IX (ZnPP). Using these reagents, we assessed the possibility that HO-1 modulates the inflammatory response by altering the expression of endothelial cell adhesion molecules. Endotoxin (lipopolysaccharide, LPS)-induced expression of P- and E-selectin expression was quantified in different vascular beds of the rat using the dual radiolabeled monoclonal antibody technique. Pretreatment with hemin attenuated, whereas ZnPP treatment exacerbated, the increased selectin expression normally elicited by LPS. Biliverdin, at an equimolar dosage, was as effective as hemin in attenuating LPS-induced selectin expression in the lung, kidneys, liver, and intestines. These findings indicate that the anti-inflammatory properties of HO-1 may be related to an inhibitory action of P- and E-selectin expression in the vasculature. Biliverdin (or its metabolite, bilirubin), rather than CO, may account for this action of HO-1 on endothelial cell adhesion molecule expression.  相似文献   

12.
The administration of hemin chloride in a dose of 1.5 mg/100 g of the body weight was found to cause accumulation of the total heme and TBA-reactive products in the rat blood serum and vessels. Pretreatment by N(omega)-nitro-L-arginine (0.5 h before hemin chloride administration) did not affect the dynamics of the total heme and TBA-reacting products accumulation. The increase of heme oxygenase activity was observed in the vessels after hemin chloride administration. This effect was strengthened by N(omega)-nitro-L-arginine pretreatment. The changes of heme oxygenase activity and the total heme level in heart were not observed at any periods studied. The increase of the TBA-reactive products level in the heart after exogenous hemin injection was accompanied by an increase of nitrites content and blocked by pretreatment of NOS inhibitor. The N(omega)-nitro-L-arginine alone caused the accumulation of the total heme, TBA-reacting products and the increase of heme oxygenase activity in the vessels. The role of heme and NO in regulation of the heme oxygenase activity is discussed.  相似文献   

13.
This in vivo study evaluates the effect of N-acetylcysteine (NAC) administration on nitric oxide (NO) production by the inducible form of nitric oxide synthase (iNOS). NO production was induced in the rat by the ip administration of 2 mg/100 g lipopolysaccharide (LPS). This treatment caused: (1) a decrease in body temperature within 90 min, followed by a slow return to normal levels; (2) an increase in plasma levels of urea, nitrite/nitrate, and citrulline; (3) the appearance in blood of nitrosyl-hemoglobin (NO-Hb) and in liver of dinitrosyl-iron-dithiolate complexes (DNIC); and (4) increased expression of iNOS mRNA in peripheral blood mononuclear cells (PBMC). Rat treatment with 15 mg/100 g NAC ip, 30 min before LPS, resulted in a significant decrease in blood NO-Hb levels, plasma nitrite/nitrate and citrulline concentrations, and liver DNIC complexes. PBMC also showed a decreased expression of iNOS mRNA. NAC pretreatment did not modify the increased levels of plasma urea or the hypothermic effect induced by the endotoxin. The administration of NAC following LPS intoxication (15 min prior to sacrifice) did not affect NO-Hb levels. These results demonstrate that NAC administration can modulate the massive NO production induced by LPS. This can be attributed mostly to the inhibitory effect of NAC on one of the events leading to iNOS protein expression. This hypothesis is also supported by the lack of effect of late NAC administration.  相似文献   

14.
15.
Increased nitric oxide (NO) production by inducible NO synthase (NOS2), an obligate homodimer, is implicated in the cardiovascular sequelae of sepsis. We tested the ability of a highly selective NOS2 dimerization inhibitor (BBS-2) to prevent endotoxin-induced systemic hypotension, myocardial dysfunction, and impaired hypoxic pulmonary vasoconstriction (HPV) in mice. Mice were challenged with Escherichia coli endotoxin before treatment with BBS-2 or vehicle. Systemic blood pressure was measured before and 4 and 7 h after endotoxin challenge, and echocardiographic parameters of myocardial function were measured before and 7 h after endotoxin challenge. The pulmonary vasoconstrictor response to left mainstem bronchus occlusion, which is a measure of HPV, was studied 22 h after endotoxin challenge. BBS-2 treatment alone did not alter baseline hemodynamics. BBS-2 treatment blocked NOS2 dimerization and completely inhibited the endotoxin-induced increase of plasma nitrate and nitrite levels. Treatment with BBS-2 after endotoxin administration prevented systemic hypotension and attenuated myocardial dysfunction. BBS-2 also prevented endotoxin-induced impairment of HPV. In contrast, treatment with NG-nitro-l-arginine methyl ester, which is an inhibitor of all three NOS isoforms, prevented the systemic hypotension but further aggravated the myocardial dysfunction associated with endotoxin challenge. Treatment with BBS-2 prevented endotoxin from causing key features of cardiovascular dysfunction in endotoxemic mice. Selective inhibition of NOS2 dimerization with BBS-2, while sparing the activities of other NOS isoforms, may prove to be a useful treatment strategy in sepsis.  相似文献   

16.
内源性一氧化碳在大鼠高血压发病中的作用   总被引:11,自引:4,他引:11  
Ou HS  Yang J  Dong LW  Pang YZ  Su JY  Tang CS  Liu NK 《生理学报》1998,50(6):643-648
本实验研究内源性血红素氧化酶/一氧化碳系统在大鼠高血压发病听作用。2,4二甘油次卟啉锌是体内HO活必抑制剂 。  相似文献   

17.
Flavonoids including the aglycones, hesperetin (HT; 5,7,3'-trihydroxy-4'-methoxy-flavanone), and naringenin (NE; 5,7,4'-trihydroxy flavanone) and glycones, hesperidin (HD; 5,7,3'-trihydroxy-4'-methoxy-flavanone 7-rhamnoglucoside) and naringin (NI; 5,7,4'-trihydroxy flavanone 7-rhamno glucoside), were used to examine the importance of rutinose at C7 on the inhibitory effects of flavonoids on lipopolysaccharide (LPS)-induced nitric oxide production in macrophages. Both HT and NE, but not their respective glycosides HD and NI, induced heme oxygenase 1 (HO-1) protein expression in the presence or absence of LPS and showed time and dose-dependent inhibition of LPS-induced nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in RAW264.7, J774A.1, and thioglycolate-elicited peritoneal macrophages. Additive inhibitory effect of an HO-1 inducer hemin and NE or NI on LPS-induced NO production and iNOS expression was identified, and HO enzyme inhibitor tin protoporphyrin (SnPP) attenuated the inhibitory effects of HT, NE, and hemin on LPS-induced NO production. Both NE and HT showed no effect on iNOS mRNA and protein stability in RAW264.7 cells. Removal of rutinose at C7 of HD and NI by enzymatic digestion using hesperidinase (HDase) and naringinase (NIase) produce inhibitory activity on LPS-induced NO production, according to the production of the aglycones, HT and NE, by high-performance liquid chromatography (HPLC) analysis. Furthermore, the amount of NO produced by LPS or lipoteichoic acid (LTA) was significantly reduced in HO-1-overexpressing cells (HO-1/RAW264.7) compared to that in parental cells (RAW264.7). Results of the present study provide scientific evidence to suggest that rutinose at C7 is a negative moiety in flavonoid inhibition of LPS-induced NO production, and that HO-1 is involved in the inhibitory mechanism of flavonoids on LPS-induced iNOS and NO production.  相似文献   

18.
Endotoxins (lipopolysaccharides; LPS) are known to cause multiple organ failure, including myocardial dysfunction. The present study aimed to investigate the mechanism of caffeic acid phenethyl ester (CAPE) protection against LPS-induced cardiac stress. Rats were allocated into three groups; group 1 served as a normal control group, group 2 (LPS) received a single intraperitoneal injection of LPS (10 mg/kg), group 3 (LPS + CAPE) was injected intraperitoneally with CAPE (10 mg/kg/day; solubilized in saline containing 20% tween 20) throughout a period of 10 days prior to LPS injection. Rats were maintained 4 h before sacrifice. Caffeic acid phenethyl ester pretreatment normalized LPS-enhanced activities of serum creatine kinase (CK) and lactate dehydrogenase (LDH) as well as glutathione peroxidase (GPx), and myeloperoxidase (MPO) in cardiac tissue. A significant reduction of the elevated levels of serum tumor necrosis factor-alpha (TNF-α) as well as serum and cardiac nitrite/nitrate (NOx) ) was achieved after CAPE pretreatment. CAPE also restored malondialdelyde (MDA), reduced glutathione (GSH), and cytosolic calcium (Ca2+ ) levels in the heart. A marked induction of cardiac heme oxygenase-1 (HO-1) protein level was detected in CAPE-pretreated group. Whereas, LPS-induced reduction of adenosine triphosphate (ATP) and phosphocreatine (PCr) levels was insignificantly changed. Conclusively, the early treatment with CAPE maintained antioxidant defences, reduced oxidative injury, cytokine damage, and inflammation but did not markedly improve energy status in cardiac tissue. The beneficial effect of CAPE might be mediated, at least in part, by the superinduction of HO-1.  相似文献   

19.
This study determined whether free radical formation by the liver, tumor necrosis factor (TNF)-alpha production by isolated Kupffer cells, and plasma endotoxin are affected by dietary saturated fat. Rats were fed enteral ethanol and corn oil (E-CO) or medium-chain triglycerides (E-MCT) and control rats received corn oil (C-CO) or medium-chain triglycerides (C-MCT) for 2 wk. E-CO rats developed moderate fatty infiltration and slight inflammation; however, E-MCT prevented liver injury. Serum aspartate aminotransferase levels, gut permeability, and plasma endotoxin doubled with E-CO but were blunted approximately 50% with E-MCT. In Kupffer cells from E-CO rats, intracellular calcium was elevated by lipopolysaccharide (LPS) in a dose-dependent manner. In cells from E-MCT rats, increases were blunted by approximately 40-50% at all concentrations of LPS. The LPS-induced increase in TNF-alpha production by Kupffer cells was dose dependent and was blunted by 40% by MCT. E-CO increased radical adducts and was reduced approximately 50% by MCT. MCT prevent early alcohol-induced liver injury, in part, by inhibition of free radical formation and TNF-alpha production by inhibition of endotoxin-mediated activation of Kupffer cells.  相似文献   

20.
Recently, the carbon monoxide (CO)-heme oxygenase pathway has been shown to play an important role in fever generation by acting on the central nervous system, but the mechanisms involved have not been assessed. Thus the present study was designed to determine whether prostagandins participate in the rise in body temperature (T(b)) observed after induction of the CO-heme oxygenase pathway in the central nervous system. Intracerebroventricular (ICV) injection of heme-lysinate (152 nmol/4 microl), which is known to induce the CO-heme oxygenase pathway, caused an increase in T(b) [thermal index (TI) = 5.3 +/- 0.5 degrees C. h], which was attenuated by ICV administration of the heme oxygenase inhibitor ZnDPBG (200 nmol/4 microl; TI = 2.5 +/- 1.7 degrees C. h; P < 0.05). No change in T(b) was observed after intraperitoneal injection of the cyclooxygenase inhibitor indomethacin (5 mg/kg), whereas indomethacin at the same dose attenuated the fever induced by ICV administration of lipopolysaccharide (LPS) (10 ng/2 microl) (vehicle/LPS: TI = 4.5 +/- 0.5 degrees C. h; indomethacin/LPS: TI = 1.7 +/- 1.0 degrees C. h; P < 0.05). Interestingly, indomethacin did not affect the rise in T(b) induced by heme-lysinate (152 nmol/4 microl) ICV injection (vehicle/heme: TI = 4.5 +/- 1.4 degrees C. h; indomethacin/heme: TI = 4.2 +/- 1.0 degrees C. h). Finally, PGE(2) (200 ng/2 microl) injected ICV evoked a rise in T(b) that lasted 1.5 h. The heme oxygenase inhibitor ZnDPBG (200 nmol/4 microl) failed to alter PGE(2)-induced fever. Taken together, these results indicate that the central CO-heme oxygenase pathway increases T(b) independently of prostaglandins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号