首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent advances in high throughput experiments and annotations via published literature have provided a wealth of interaction maps of several biomolecular networks, including metabolic, protein-protein, and protein-DNA interaction networks. The architecture of these molecular networks reveals important principles of cellular organization and molecular functions. Analyzing such networks, i.e., discovering dense regions in the network, is an important way to identify protein complexes and functional modules. This task has been formulated as the problem of finding heavy subgraphs, the heaviest k-subgraph problem (k-HSP), which itself is NP-hard. However, any method based on the k-HSP requires the parameter k and an exact solution of k-HSP may still end up as a "spurious" heavy subgraph, thus reducing its practicability in analyzing large scale biological networks. We proposed a new formulation, called the rank-HSP, and two dynamical systems to approximate its results. In addition, a novel metric, called the standard deviation and mean ratio (SMR), is proposed for use in "spurious" heavy subgraphs to automate the discovery by setting a fixed threshold. Empirical results on both the simulated graphs and biological networks have demonstrated the efficiency and effectiveness of our proposal  相似文献   

2.
Detection of functional modules from protein interaction networks   总被引:4,自引:0,他引:4  
  相似文献   

3.
Protein evolution shows interesting strategies to be used in protein design. During evolution the creation of new proteins has been accomplished by combining different peptide modules, i.e. evolutionary successful stable folding units. Thereby, the evolution of proteins has been greatly enhanced. Today this mechanism of recombining optimized building blocks to design new proteins has been introduced into applied molecular evolution.  相似文献   

4.
Chordates comprise three major groups, cephalochordates (amphioxus), tunicates (urochordates), and vertebrates. Since cephalochordates were the early branching group, comparisons between amphioxus and other chordates help us to speculate about ancestral chordates. Here, I summarize accumulating data from functional studies analyzing amphioxus cis-regulatory modules (CRMs) in model systems of other chordate groups, such as mice, chickens, clawed frogs, fish, and ascidians. Conservatism and variability of CRM functions illustrate how gene regulatory networks have evolved in chordates. Amphioxus CRMs, which correspond to CRMs deeply conserved among animal phyla, govern reporter gene expression in conserved expression domains of the putative target gene in host animals. In addition, some CRMs located in similar genomic regions (intron, upstream, or downstream) also possess conserved activity, even though their sequences are divergent. These conservative CRM functions imply ancestral genomic structures and gene regulatory networks in chordates. However, interestingly, if expression patterns of amphioxus genes do not correspond to those of orthologs of experimental models, some amphioxus CRMs recapitulate expression patterns of amphioxus genes, but not those of endogenous genes, suggesting that these amphioxus CRMs are close to the ancestral states of chordate CRMs, while vertebrates/tunicates innovated new CRMs to reconstruct gene regulatory networks subsequent to the divergence of the cephalochordates. Alternatively, amphioxus CRMs may have secondarily lost ancestral CRM activity and evolved independently. These data help to solve fundamental questions of chordate evolution, such as neural crest cells, placodes, a forebrain/midbrain, and genome duplication. Experimental validation is crucial to verify CRM functions and evolution.  相似文献   

5.
6.
7.
Ribonucleoproteins (RNP) are involved in many essential processes in life. However, the roles of RNA and protein subunits in an RNP complex are often hard to dissect. In many RNP complexes, including the ribosome and the Group II introns, one main function of the protein subunits is to facilitate RNA folding. However, in other systems, the protein subunits may perform additional functions, and can affect the biological activities of the RNP complexes. In this review, we use ribonuclease P (RNase P) as an example to illustrate how the protein subunit of this RNP affects different aspects of catalysis. RNase P plays an essential role in the processing of the precursor to transfer RNA (pre-tRNA) and is found in all three domains of life. While every cell has an RNase P (ribonuclease P) enzyme, only the bacterial and some of the archaeal RNase P RNAs (RNA component of RNase P) are active in vitro in the absence of the RNase P protein. RNase P is a remarkable enzyme in the fact that it has a conserved catalytic core composed of RNA around which a diverse array of protein(s) interact to create the RNase P holoenzyme. This combination of highly conserved RNA and altered protein components is a puzzle that allows the dissection of the functional roles of protein subunits in these RNP complexes.  相似文献   

8.
Genetic modules and networks for behavior: lessons from Drosophila   总被引:3,自引:0,他引:3  
Behaviors are quantitative traits determined through actions of multiple genes and subject to genome-environment interactions. Early studies concentrated on analyzing the effects of single genes on behaviors, often generating views of simplified linear genetic pathways. The genome era has generated a profound paradigm shift enabling us to identify all the genes that contribute to expression of a behavioral phenotype, to investigate how they are organized as functional ensembles and to begin to identify polymorphisms that contribute to phenotypic variation and are targets for natural selection. Recent studies show that the genetic architecture of behavior is determined by dynamic and plastic modular networks of pleiotropic genes and that the behavioral phenotype manifests itself as an emergent property of such networks. Such networks are exquisitely sensitive to genetic background and sex effects. This review describes how Drosophila can serve as a model for uncovering fundamental principles of the genetic architecture of behavior.  相似文献   

9.
10.
The development of functional foods: lessons from the gut   总被引:1,自引:0,他引:1  
Functional foods have resulted from the gradual recognition that healthy diets result from eating nutritious foods and from the identification of the mechanisms by which foods modulate metabolism and health. After initial successes with foods that reduce blood cholesterol level, probiotic bacteria and prebiotic carbohydrates have now also demonstrated added health benefits. As ingredients become more complex, the need to stabilize such ingredients in foods become increasingly important to the success of functional foods. Modern biotechnologies such as genomics, genetic expression and biomarkers of health and performance will be applied to this increasingly visible portion of human diets.  相似文献   

11.
In silico evolution of functional modules in biochemical networks   总被引:1,自引:0,他引:1  
Understanding the large reaction networks found in biological systems is a daunting task. One approach is to divide a network into more manageable smaller modules, thus simplifying the problem. This is a common strategy used in engineering. However, the process of identifying biological modules is still in its infancy and very little is understood about the range and capabilities of motif structures found in biological modules. In order to delineate these modules, a library of functional motifs has been generated via in silico evolution techniques. On the basis of their functional forms, networks were evolved from four broad areas: oscillators, bistable switches, homeostatic systems and frequency filters. Some of these motifs were constructed from simple mass action kinetics, others were based on Michaelis-Menten kinetics as found in protein/protein networks and the remainder were based on Hill equations as found in gene/protein interaction networks. The purpose of the study is to explore the capabilities of different network architectures and the rich variety of functional forms that can be generated. Ultimately, the library may be used to delineate functional motifs in real biological networks.  相似文献   

12.
13.
Differentiated sex chromosome pairs in diverse species display certain common characteristics, normally comprising one largely heterochromatic genetically inactive chromosome and one euchromatic genetically active chromosome (e.g. the mammalian Y and X respectively). It is widely accepted that dimorphic sex chromosomes evolved from homologous pairs of autosomes. Although the exact mechanisms through which the pair diverged are not fully understood, an initial suppression of recombination in the sex-determining region is required by all of the major theories. Here we address the question of the mechanism by which this initial suppression of recombination occurs. Our model postulates that the stochastic, de novo accumulation of heterochromatin in the sex determining region can delay pairing of the sex chromosomes in meiosis, resulting in a decrease in recombination. Data to support this model is presented from the cichlid fish, Oreochromis niloticus. Although such a decrease would in most circumstances be evolutionarily disadvantageous, if the region concerned included the major sex determining gene and other gene(s) with sex-specific functions, then this would be selectively advantageous and could trigger the process(es) which, ultimately, lead to the differentiation of the sex chromosomes.  相似文献   

14.
15.

Background  

Nowadays modern biology aims at unravelling the strands of complex biological structures such as the protein-protein interaction (PPI) networks. A key concept in the organization of PPI networks is the existence of dense subnetworks (functional modules) in them. In recent approaches clustering algorithms were applied at these networks and the resulting subnetworks were evaluated by estimating the coverage of well-established protein complexes they contained. However, most of these algorithms elaborate on an unweighted graph structure which in turn fails to elevate those interactions that would contribute to the construction of biologically more valid and coherent functional modules.  相似文献   

16.
17.
How enzymes adapt: lessons from directed evolution   总被引:15,自引:0,他引:15  
Enzymes that are adapted to widely different temperature niches are being used to investigate the molecular basis of protein stability and enzyme function. However, natural evolution is complex: random noise, historical accidents and ignorance of the selection pressures at work during adaptation all cloud comparative studies. Here, we review how adaptation in the laboratory by directed evolution can complement studies of natural enzymes in the effort to understand stability and function. Laboratory evolution experiments can attempt to mimic natural evolution and identify different adaptive mechanisms. However, laboratory evolution might make its biggest contribution in explorations of nonnatural functions, by allowing us to distinguish the properties nutured by evolution from those dictated by the laws of physical chemistry.  相似文献   

18.
Cvrcková F  Rivero F  Bavlnka B 《Protoplasma》2004,224(1-2):15-31
Summary. The actin cytoskeleton plays a central part in the dynamic organization of eukaryotic cell structure. Nucleation of actin filaments is a crucial step in the establishment of new cytoskeletal structures or modification of existing ones, providing abundant targets for regulatory processes. A substantial part of our understanding of actin nucleation derives from studies on yeast and metazoan cells. However, recent advances in structural and functional genome analysis in less traditional models, such as plants or Dictyostelium discoideum, provide an emerging picture of an evolutionarily conserved core of at least two actin nucleation mechanisms, one mediated by the Arp2/3 complex and the other one by the formin-based module. A considerable degree of conservation is found also in the systems controlling the balance between filamentous and globular actin (profilin, actin-depolymerizing factor/cofilin) and even in certain regulatory aspects, such as the involvement of Rho-related small GTPases. Identification of such conserved elements provides a prerequisite for the characterization of evolutionarily variable aspects of actin regulation which may be responsible for the rich morphological diversity of eukaryotic cells.Correspondence and reprints: Department of Plant Physiology, Faculty of Sciences, Charles University, Vininá 5, 128 44 Praha 2, Czech Republic.  相似文献   

19.
Recently, progress has been made towards the structural characterization of the novel folds of RNA-bound arginine-rich peptides and the architecture of their peptide-binding RNA pockets in viral and phage systems. These studies are based on an approach whereby the peptide and RNA components are minimalist modular domains that undergo adaptive structural transitions upon complex formation. Such complexes are characterized by recognition alignments in which the tertiary fold of the RNA generates binding pockets with the potential to envelop minimal elements of protein secondary structure. Strikingly, the peptides fold as isolated alpha-helical or beta-hairpin folds within their RNA major-groove targets, without the necessity of additional appendages for anchorage within the binding pocket. The RNA peptide-binding pocket architectures are sculptured through precisely positioned mismatches, triples and looped-out bases, which accommodate amino acid sidechains through hydrophobic, hydrogen bonding and ionic intermolecular contacts. By contrast, protein modules associated with the HIV-1 nucleocapsid and MS2 phage coat target their RNA binding sites through the insertion of specificity-determining RNA base residues within conserved hydrophobic pockets and crevices on the protein surface, with the bases anchored through hydrogen bonding interactions. These alternative strategies of RNA recognition at the peptide and protein module level provide novel insights into the principles, patterns and diversity of the adaptive transitions associated with the recognition process.  相似文献   

20.
The Gibbs conference on biothermodynamics arose in the late 1980's as a 'self-organized' endeavor by researchers at eleven institutions of the US. Over a period of 10 years these annual conferences have grown steadily in size. They have fostered the development of new thermodynamic approaches and their applications in biochemistry. By emphasizing participation by students and postdoctoral fellows they have contributed significantly to the career development of young scientists in this field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号