首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mitochondrial nicotinamide nucleotide transhydrogenase from beef heart was investigated with respect to minimal assembly of the purified enzyme and of the enzyme in the mitochondrial inner membrane. Studies of the hydrodynamic properties of the purified enzyme in the presence of 0.3% Triton X-100 allowed determination of the Stokes radius, sedimentation constant, partial specific volume, frictional ratio, and molecular weight. Under these conditions transhydrogenase existed as an inactive monomer, suggesting that monomerization may be accompanied by inactivation. Radiation inactivation was used to determine the functional molecular size of purified detergent-dispersed transhydrogenase and transhydrogenase in beef heart submitochondrial particles. Under these conditions the catalytic activity of both the purified and the membrane-bound enzyme was found to be catalyzed by a dimeric form of the enzyme. These results suggest for the first time that the minimal functional assembly of detergent-dispersed as well as membrane-bound transhydrogenase is a dimer, which is not functionally associated with, for example, complex I or ATPase. In addition, the results are consistent with the possibility that the two subunits of transhydrogenase are catalytically active in an alternating fashion according to a previously proposed half-of-the-sites reactivity model.  相似文献   

2.
Reaction of purified bovine heart transhydrogenase with bifunctional cross-linking reagents dimethyl adipimidate, dimethyl pimelimidate, dimethyl suberimidate, and dithiobis(succinimidyl propionate) results in the appearance of a dimer band on sodium dodecyl sulfate polyacrylamide gels with no higher oligomers formed. Treatment of the enzyme with 6 M urea led to inactivation and prevented cross-linking by dimethyl suberimidate. Transhydrogenase reconstituted into phosphatidylcholine proteoliposomes also yielded a dimer band on cross-linking. These data indicate that soluble and functionally reconstituted transhydrogenase possesses a dimeric structure.  相似文献   

3.
The orientation of the transmembranous enzyme, pyridine dinucleotide transhydrogenase, in the inner mitochondrial membrane of rat liver has been determined by evaluating effects of proteases on the integrity of the enzyme in mitoplasts and submitochondrial particles. Following treatment of these membranes with the nonspecific protease, proteinase K, antigenic proteolytic products were detected by immunoblot analysis using polyclonal antibody prepared against purified bovine heart enzyme. Proteinase K treatment of mitoplasts converted the 110,000 transhydrogenase monomer into a single immunoreactive species having Mr 75,000. This proteolytic product is stable to further incubation with the protease. Treatment of submitochondrial particles with proteinase K resulted in the disappearance of the 110,000 monomer and the transient formation of an intermediate product with Mr 52,000. Information from these proteolysis studies was used to construct a model of the orientation of transhydrogenase in the inner mitochondrial membrane. This model indicates that transhydrogenase (Mr 110,000) contains a core of proteolytically inaccessible proteins within the membrane (Mr 23,000) bounded by extramembranous domains on the matrix (Mr 52,000) and cytoplasmic (Mr 35,000) face of the inner mitochondrial membrane.  相似文献   

4.
Polyphenol oxidase activity (E.C. 1.14.18.1) has been found in two enzyme species isolated from thylakoid membranes of spinach chloroplasts. The proteins were released from the membrane by sonication and purified >900-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography. The enzymes appear to be the tetramer and monomer of a subunit with a molecular weight of 42,500 as determined by lithium dodecyl sulfate gel electrophoresis. The higher molecular weight enzyme is the predominant form in freshly isolated preparations but on aging or further purification, the amount of lower molecular weight enzyme increases at the expense of the higher.  相似文献   

5.
Two phospholipase enzymes NN1 and NN2 were purified from the venom of Naja nigricolis nigricolis Reinhardt to apparent homogeneity. NN1 was purified by a two-step anion-exchange chromatography on DEAE-cellulose column while NN2 was purified by a combination of anion-exchange chromatography and gel filtration on Sephadex G-150. The enzyme NN1 moved homogenously on acrylamide gel as a monomer with a molecular weight of 65 kDa while NN2 was a dimer of 71 kDa. Both enzymes were clearly separated. Both enzymes hydrolyzed L-alpha-phosphatidyl choline with activities of 345.5 for NN1 and 727.8 micromol min(-1) x mg(-1) for NN2. The dimeric 71-kDa enzyme has a higher haemolytic and anticoagulant activity than the monomeric 65-kDa enzyme. It is apparent that the dimeric enzyme has a more pronounced activity than the monomer has, thus toxic activity may be related to the hydrolysis of phospholipids.  相似文献   

6.
Biosynthesis of rat liver transhydrogenase in vivo and in vitro   总被引:1,自引:0,他引:1  
The biosynthesis of pyridine dinucleotide transhydrogenase, a homodimeric inner mitochondrial membrane redox-linked proton pump, has been studied in isolated rat hepatocytes. Newly synthesized transhydrogenase, having an apparent molecular weight identical to the enzyme of isolated liver mitochondria, was selectively immunoprecipitated from detergent extracts of isolated hepatocytes which were labeled with [35S]methionine. That the enzyme is a nuclear gene product is indicated since 1) synthesis was inhibited by cycloheximide, but not by chloramphenicol and 2) no synthesis could be demonstrated in hepatocyte ghosts which are competent only in mitochondrial translation. In addition to the mature form of the enzyme, a species about 2000 daltons larger was also immunoprecipitated from pulse-labeled cells. The half-life of the larger form during a subsequent chase at 37 degrees C was about 2 min, whereas the mature form was not degraded. The relationship between the two forms of the enzyme was established by in vitro studies. A protein approximately 2000 daltons larger than mature transhydrogenase was immunoisolated from a rabbit reticulocyte lysate system programmed with sucrose gradient fractionated rat liver mRNA. This protein was converted to a species having the same size as mature enzyme after incubation with either intact rat liver mitochondria or a soluble matrix fraction derived from mitoplasts. These studies indicate that transhydrogenase is synthesized in the cytoplasm as a higher molecular weight precursor which is post-translationally processed to the mature protein by a soluble matrix protease during or after membrane insertion.  相似文献   

7.
A Ca2+ -dependent calmodulin-binding peptide (CBP) is an attractive tag for affinity purification of recombinant proteins, especially membrane proteins, since elution is simply accomplished by removing/chelating Ca2+. To develop a single-step calmodulin/CBP-dependent purification procedure for Escherichia coli nicotinamide nucleotide transhydrogenase, a 49 amino acid large CBP or a larger 149 amino acid C-terminal fragment of human plasma membrane Ca2+ -ATPase (hPMCA) was fused C-terminally to the beta subunit of transhydrogenase. Fusion using the 49 amino acid fragment resulted in a dramatic loss of transhydrogenase expression while fusion with the 149 amino acid fragment gave a satisfactory expression. This chimeric protein was purified by affinity chromatography on calmodulin-Sepharose with mild elution with EDTA. The purity and activity were comparable to those obtained with His-tagged transhydrogenase and showed an increased stability. CBP-tagged transhydrogenase contained a 4- to 10-fold higher amount of the alpha subunit relative to the beta subunit as compared to wild-type transhydrogenase. To determine whether the latter was due to the CBP tag, a double-tagged transhydrogenase with both an N-terminal 6x His-tag and a CBP-tag, purified by using either tag, gave no significant increase in purity as compared to the single-tagged protein. The reasons for the altered subunit composition are discussed. The results suggest that, depending on the construct, the CBP-tag may be a suitable affinity purification tag for membrane proteins in general.  相似文献   

8.
The 16S and 8S forms of acetylcholinesterase (AchE), which are composed of an elongated tail structure in addition to the more globular catalytic subunits, were extracted and purified from membranes from Torpedo californica electric organs. Their subunit compositions and quaternary structures were compared with 11S lytic enzyme which is derived from collagenase or trypsin treatment of the membranes and devoid of the tail unit. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the absence of reducing agent, appreciable populations of monomeric through tetrameric species are observed for the 11S form. Under the same conditions, the 16S form yields only monomer and dimer in addition to a higher molecular weight species. If complete reduction is effected, only the 80,000 molecular weight monomer is dominant for both the 11S and 16S forms. Cross-linking of the 11S form by dimethyl suberimidate followed by reduction yields monomer through tetramer in descending frequency, while the 16S form again shows a high molecular weight species. A comparison of the composition of the 11S and 16S forms reveals that the latter has an increased glycine content, and 1.1 and 0.3 mol % hydroxyproline and hydroxylysine, respectively. Collagenases that have been purified to homogencity and are devoid of amidase and caseinolytic activity, but active against native collagen, will convert 16S acetylcholinesterase to the 11S form. Thus, composition and substrate behavior of the 16S enzyme are indicative of the tail unit containing a collagen-like sequence. A membrane fraction enriched in acetylcholinesterase and components of basement membrane can be separated from the major portion of the membrane protein. The 16S but not the 11S form reassociates selectively with this membrane fraction. These findings reveal distinct similarities between the tail unit of acetylcholinesterase and basement membrane components and suggest a primary association of AchE with the basement membrane.  相似文献   

9.
Although phosphatidylcholine (PC) has been shown to be the type of phospholipid required for activation of mitochondrial beta-hydroxybutyrate dehydrogenase (BDH), mixtures of phospholipids containing PC are more effective activators. This study shows that apo-BDH, purified from bovine-heart mitochondria, and phospholipid-reconstituted BDH appear to be polydisperse. Upon cross-linking with dimethylpimelimidate and acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS), the enzyme exhibited molecular weight forms from monomeric to heptameric BDH as well as higher molecular weight aggregates that did not much penetrate the gels. When different phospholipid mixtures containing PC were used to activate apo-BDH, and the reconstituted samples were subjected to cross-linking and SDS-gel electrophoresis, a direct relationship was found between the activating effect of the phospholipids used and BDH monomer concentration in the gels. The effectiveness order of phospholipids used was as follows: a mixture of PC, phosphatidylethanolamine and diphosphatidylglycerol in a molar ratio of 5:4:1 greater than bovine-heart mitochondrial phospholipids greater than Asolectin greater than PC. These results suggest the following. In addition to PC, which is required by BDH, other types of phospholipids play a role in activation of purified apo-BDH, possibly via enzyme disaggregation. The activity exhibited by purified, phospholipid-reconstituted BDH is associated mainly with the lower molecular aggregates of the enzyme, especially monomeric BDH.  相似文献   

10.
Mitochondrial nicotinamide nucleotide transhydrogenase from beef heart was purified by a novel procedure involving fast protein liquid chromatography and characterized with respect to molecular and catalytic properties. The method is reproducible, gives highly pure transhydrogenase as judged by silver staining, and can be modified to produce large amounts of pure transhydrogenase protein suitable for e.g. sequencing and other protein chemical studies. Transhydrogenase purified by fast protein liquid chromatography is reconstitutively active and pumps protons as indicated by an extensive quenching of 9-aminoacridine fluorescence. Under conditions which generate a proton gradient in the absence of a membrane potential the activity of reconstituted transhydrogenase is close to zero indicating a complete and proper incorporation in the membrane and a preferential regulation of the enzyme by a proton gradient rather than a membrane potential. Treatment of reconstituted transhydrogenase with N,N-dicyclohexylcarbodiimide results in an inhibition of proton pump activity without an effect on uncoupled catalytic activity, suggesting that proton translocation and catalytic activities are not obligatory linked or that this agent separates proton pumping from the catalytic activity.  相似文献   

11.
Rat liver serine dehydratase (SDH) is known to be involved in gluconeogenesis. It has long been believed to be a dimeric protein with the subunit molecular weight (M(r)) of 34,000. Recently, sheep liver SDH was reported to be a monomer with a M(r) of 38,000. The native M(r) of rat SDH was only determined by the ultracentrifugation method more than three decades ago, and that of sheep SDH was done by the method of gel chromatography. The primary to quaternary structures of a given enzyme in a specific mammalian organ are usually conserved among various species. The aim of the present investigation is to clarify the structural differences between rat and sheep SDHs. First, we found that the amino acid composition reported for sheep SDH was statistically similar to that of rat SDH. Second, immunoblot analysis using anti-rat SDH IgG as the probe showed the size of sheep SDH to be a M(r) of 30,500, whereas that of SDH was about M(r) of 35,000. On the other hand, the native size of rat SDH was assessed by two methods: (1) the laser light scattering method demonstrated that rat SDH had a M(r) of 66,800, consistent with the previous value (M(r)=64,000); (2) cross-linking experiments of the purified rat SDH with dimethyl suberimidate revealed the existence of a dimeric form by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The present results clearly confirm that rat SDH is a dimer, and suggest that sheep SDH is similar to rat SDH immunologically, but with a molecular weight 7500 smaller than reported previously.  相似文献   

12.
1. Pyridine nucleotide transhydrogenase of Azotobacter vinelandii purified by affinity chromatography consists of a mixture of polydisperse rods at neutral pH. No other structures are seen by electron microscopy. 2. At high pH (8.5--9.0) the rods depolymerize. Complete depolymerization can be achieved in 0.1 M Tris-Cl pH 9.0. The depolymerized enzyme has a molecular weight of 421000 (sedimentation equilibrium), its sedimentation coefficient s20, w = 15 S and its Stokes' radius Rs = 7 nm. Since gel electrophoresis in the presence of sodium dodecyl sulphate shows that transhydrogenase consists of a single polypeptide chain of molecular weight (54 +/- 2) X 10(3) it follows that the depolymerized enzyme has an octameric quaternary structure. We propose that this octamer serves as the functional monomeric unit ('unimer') from which the polymeric form of transhydrogenase is constructed. 3. Gel filtration and sucrose gradient centrifugation studies of cell-free extracts from A. vinelandii show the unimer to be the predominant active species.  相似文献   

13.
The mitochondrial proton-translocating nicotinamide nucleotide transhydrogenase is embedded in the inner membrane as a homodimer of monomer Mr = 109,288. Its N-terminal 430 residues and C-terminal 200 residues protrude into the matrix, whereas its central 400 residues appear to intercalate into the inner membrane as 14 hydrophobic clusters of about 20 residues each (Yamaguchi, M., and Hatefi, Y. (1991) J. Biol. Chem. 266, 5728-5735). Treatment of mitoplasts (mitochondria denuded of outer membrane) with several proteolytic enzymes cleaves the transhydrogenase into a 72-kDa N-terminal and a 37-kDa C-terminal fragment. The cleavage site of proteinase K was determined to be Ala690-Ala691, which is located in a small loop of the transhydrogenase exposed on the cytosolic side of the inner membrane. This paper shows that the bisected transhydrogenase can be purified from proteinase K-treated mitoplasts with retention of greater than or equal to 85% transhydrogenase activity. The inactivation rate of the bisected enzyme by trypsin and N-ethylmaleimide was altered in the presence of NADP and NADPH, suggesting substrate-induced conformation changes similar to those reported previously for the intact transhydrogenase. Also, like the intact enzyme, proteoliposomes of the bisected transhydrogenase were capable of membrane potential formation and internal acidification coupled to NADPH----NAD transhydrogenation. The properties of the bisected transhydrogenase have been discussed in relation to those of the two-subunit Escherichia coli transhydrogenase, the bisected lac permease (via gene restriction), and the fragmented and reconstituted bacteriorhodopsin.  相似文献   

14.
Dipeptidyl aminopeptidase IV, a glycoprotein from pig kidney   总被引:3,自引:0,他引:3  
Dipeptidyl aminopeptidase IV was purified 350 fold from pig kidney by chromatographic procedures including affinity chromatography with conjugates of Gly-Pro linked to Sepharose 4.B. Purified enzyme existed in a dimeric form as determined by sodium dodecyl sulfate polyacrylamide-gel electrophoresis using dimethyl suberimidate (a cross-linking reagent). The molecular weight of the subunit was estimated to be 100 000 by gel filtration with 6 M guanidine hydrochloride and to be 94 000 based on analysis of N-terminal residue (dinitrophenyl-serine). The amino acid composition of the purified enzyme was also determined. The enzyme contained 18.3% of carbohydrate consisting of mannose, galactose, fucose, glucosamine and sialic acid. The enzyme desialized with sialidase was found to still possess full enzyme activity.  相似文献   

15.
The active form of purified mitochondrial nicotinamide nucleotide transhydrogenase from beef heart was investigated by crosslinking with dimethylsuberimidate and SDS-PAGE, with or without pretreatment with the inactivating detergent Triton X-100. In the absence of detergent, crosslinked isomers of the dimeric form of 208–235 kDa were obtained. Addition of detergent led to the simultaneous loss of the dimers and the bulk of the activity. Removal of the detergent led to a partial restoration of both activity and the dimeric forms. The results suggest that the active form is a dimer, and that the detergent-dependent conversion to the largely inactive monomer is reversible. It is proposed that the mechanism of inactivation of transhydrogenase by Triton X-100 involves a disruption of essential hydrophobic interactions between the membrane-spanning regions of the monomers.  相似文献   

16.
Licia N.Y. Wu  Ronald R. Fisher 《BBA》1982,681(3):388-396
Modification of pyridine dinucleotide transhydrogenase with tetranitromethane resulted in inhibition of its activity. Development of a membrane potential in submitochondrial particles during the reduction of 3-acetylpyridine adenine dinucleotide (AcPyAD+) by NADPH decreased to nearly the same extent as the transhydrogenase rate on tetranitromethane treatment of the membrane. Kinetics of the inactivation of homogeneous transhydrogenase and the enzyme reconstituted into phosphatidylcholine liposomes indicate that a single essential residue was modified per active monomer. NADP+, NADPH and NADH gave substantial protection against tetranitromethane inactivation of both the nonenergy-linked and energy-linked transhydrogenase reactions of submitochondrial particles and the NADPH → AcPyAD+ reaction of reconstituted enzyme. NAD+ had no effect on inactivation. Tetranitromethane modification of reconstituted transhydrogenase resulted in a decrease in the rate of coupled H+ translocation that was comparable to the decrease in the rate of NADPH → AcPyAD+ transhydrogenation. It is concluded that tetranitromethane modification controls the H+ translocation process solely through its effect on catalytic activity, rather than through alteration of a separate H+-binding domain. Nitrotyrosine was not found in tetranitromethane-treated transhydrogenase. Both 5,5′-dithiobis(2-nitrobenzoate)-accessible and buried sulfhydryl groups were modified with tetranitromethane. NADH and NADPH prevented sulfhydryl reactivity toward tetranitromethane. These data indicate that the inhibition seen with tetranitromethane results from the modification of a cysteine residue.  相似文献   

17.
The molecular size of acetylcholinesterase (EC 3.1.1.7) from the electric organ of Electrophorus electricus and erythrocyte ;ghosts' was estimated in both membrane-bound and purified preparations by irradiation inactivation. Results suggest that the form of the enzyme in the membrane is a monomer of molecular weight approx. 75000 and that multiple forms of the enzyme observed in solubilized preparations are aggregates of this monomer.  相似文献   

18.
We have developed a rapid purification method for DNA topoisomerase I from Raji cells, a human Burkitt lymphoma cell line, using ammonium sulfate fractionation followed by chromatography on a Mono S column (FPLC, Pharmacia). By this method, the enzyme could be purified to near homogeneity within one day. Electrophoresis on sodium dodecyl sulfate polyacrylamide gel revealed that the final preparation is mainly composed of a 100-kDa protein. The major enzyme activity sedimented through a glycerol density gradient at 5.7S, accompanied with a minor peak at 8.7S. The former may correspond to the monomer of the 100-kDa polypeptide, and the latter, to its dimeric form. The gel filtration study of the crude extract revealed an active molecular species of 200 kDa, in addition to 100 kDa, and lower molecular weight forms. These results suggest that DNA topoisomerase I is largely in monomeric form, but also has a minor population of the dimeric form.  相似文献   

19.
CTP:phosphacholine cytidylyltransferase (EC 2.7.7.15) was purified from rat liver according to the method of Weinhold et al. (Weinhold, P. A., Rounsifer, M. E., and Feldman, D. A. (1986) J. Biol. Chem. 261, 5104-5110). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis with or without beta-mercaptoethanol revealed a single major band of 42,000 daltons. This band corresponds to the 45-kDa catalytic subunit isolated by Feldman and Weinhold (Feldman, D. A., and Weinhold, P. A. (1987) J. Biol. Chem. 262, 9075-9081). A minor component of 84,000 daltons was intensified in nonreducing gels when the sulfhydryl reducing agent, dithiothreitol, was removed from the enzyme preparation by dialysis. Reduction with dithiothreitol and electrophoresis in the second dimension showed that this 84-kDa protein was derived from the 42-kDa protein. This result suggested that the 42 kDa protein can be converted to an 84-kDa protein by disulfide bond formation. Reaction with the thiol-cleavable cross-linking reagents, dithiobis(succimidyl propionate) or dimethyl-3,3'-dithiobispropionimidate, converted the 42-kDa cytidylyltransferase subunit into a diffuse band approximately twice its molecular mass. Disulfide reduction and electrophoresis in the second dimension showed that this band was derived exclusively from the 42-kDa subunit. This cross-linking pattern was observed when cytidylyltransferase was bound to a Triton X-100 micelle or when bound to a membrane vesicle containing phosphatidylcholine, oleic acid, and Triton X-100. Reaction of the fully reduced enzyme with glutaraldehyde also generated a cross-linked dimer. All three cross-linking reagents inactivated the enzyme. Reduction of the disulfide cross-linkers with dithiothreitol partially reactivated the transferase. When Triton was removed from the enzyme preparation by DEAE-Sepharose chromatography, reaction of the detergent-depleted enzyme with glutaraldehyde generated a band corresponding to a hexamer and higher molecular weight aggregates. The dimeric form was regenerated by addition of either Triton X-100 or phosphatidylcholine-oleic acid vesicles. We conclude that the purified, native cytidylyltransferase, when bound to a detergent micelle or membrane vesicle, is a dimer composed of two noncovalently linked 42-kDa subunits. In the absence of a membrane or micelle, the dimers self-aggregate in a reversible manner.  相似文献   

20.
Dextransucrases from Leuconostoc mesenteroides NRRL B-1416 and B-1375 strains were purified to electrophoretically homogeneous preparations. After successive column chromatographies, the enzyme fractions were treated with endodextranase, then subjected to preparative polyacrylamide gel electrophoresis. The purified dextransucrase from each strain had a dimeric structure of molecular weight 130,000~133,000. Alkaline treatment (pH 10.5) dissociated these dimer forms into the respective monomer forms having molecular weight of 64,000~68,000. The two enzymes were closely similar to each other in optimum conditions and thermal and pH stabilities. The purified B-1416 enzyme was activated 4.35-fold by the addition of exogenous dextran (0.5%), while the B-1375 enzyme was activated 2.76-fold. In the absence of exogenous dextran, both enzymes gave 5~10 min lag periods for reaction, which were abolished by the clinical dextran.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号