首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Na+,K(+)-ATPase is a membrane-bound, sulfhydryl-containing protein whose activity is critical to maintenance of cell viability. The susceptibility of the enzyme to radical-induced membrane lipid peroxidation was determined following incorporation of a purified Na+,K(+)-ATPase into soybean phosphatidylcholine liposomes. Treatment of liposomes with Fenton's reagent (Fe2+/H2O2) resulted in malondialdehyde formation and total loss of Na+,K(+)-ATPase activity. At 150 microM Fe2+/75 microM H2O2, vitamin E (5 mol%) totally prevented lipid peroxidation but not the loss of enzyme activity. Lipid peroxidation initiated by 25 microM Fe2+/12.5 microM H2O2 led to a loss of Na+,K(+)-ATPase activity, however, vitamin E (1.2 mol%) prevented both malondialdehyde formation and loss of enzyme activity. In the absence of liposomes, there was complete loss of Na+,K(+)-ATPase activity in the presence of 150 microM Fe2+/75 microM H2O2, but little effect by 25 microM Fe2+/12.5 microM H2O2. The activity of the enzyme was also highly sensitive to radicals generated by the reaction of Fe2+ with cumene hydroperoxide, t-butylhydroperoxide, and linoleic acid hydroperoxide. Lipid peroxidation initiated by 150 microM Fe2+/150 microM Fe3+, an oxidant which may be generated by the Fenton's reaction, inactivated the enzyme. In this system, inhibition of malondialdehyde formation by vitamin E prevented loss of Na+,K(+)-ATPase activity. These data demonstrate the susceptibility of the Na+,K(+)-ATPase to radicals produced during lipid peroxidation and indicate that the ability of vitamin E to prevent loss of enzyme activity is highly dependent upon both the nature and the concentration of the initiating and propagating radical species.  相似文献   

2.
The role of lipids in the modulation of the ouabain-sensitivity of membrane (Na+ + K+)-ATPase from different species has been studied using a reconstitution procedure which promotes lipid exchange during detergent depletion by Sephadex chromatography. Hybrid reconstitution of delipidated (Na+ + K+)-ATPase preparations from bovine brain into the lipids obtained from crab nerve enzyme preparations significantly reduces the sensitivity of the brain enzyme to inhibition by ouabain. Conversely, reconstitution of crab nerve enzyme into the lipids from bovine brain enzyme preparations increases the sensitivity of the crab enzyme to ouabain inhibition. These opposing effects demonstrate the role of membrane lipids in modulating the enzyme-inhibition relationship in preparations from these different species.  相似文献   

3.
The Ca(2+)-ATPase from skeletal muscle sarcoplasmic reticulum was reconstituted into sealed phospholipid vesicles using the method recently developed for bacteriorhodopsin (Rigaud, J.L., Paternostre, M.T. and Bluzat, A. (1988) Biochemistry 27, 2677-2688). Liposomes prepared by reverse-phase evaporation were treated with various amounts of Triton X-100, octyl glucoside, sodium cholate or dodecyl octa(oxyethylene) glycol ether (C12E8) and protein incorporation was studied at each step of the liposome solubilization process by each of these detergents. After detergent removal by SM-2 Bio-Beads the resulting vesicles were analyzed with respect to protein incorporation by freeze-fracture electron microscopy, sucrose density gradients and Ca2+ pumping measurements. The nature of the detergent used for reconstitution proved to be important for determining the mechanism of protein insertion. With octyl glucoside, direct incorporation of Ca(2+)-ATPase into preformed liposomes destabilized by saturating levels of this detergent was observed and gave proteoliposomes homogeneous in regard to protein distribution. With the other detergents, optimal Ca(2+)-ATPase pumping activities were obtained when starting from Ca(2+)-ATPase/detergent/phospholipid micellar solutions. However, the homogeneity of the resulting recombinants was shown to be dependent upon the detergent used and in the presence of Triton X-100 or C12E8 different populations were clearly evidenced. It was further demonstrated that the rate of detergent removal drastically influenced the composition of resulting proteoliposomes: upon slow detergent removal from samples solubilized with Triton X-100 or C12E8, Ca(2+)-ATPase was found seggregated and/or aggregated in very few liposomes while upon rapid detergent removal compositionally homogeneous proteoliposomes were obtained with high Ca2+ pumping activities. The reconstitution process was further analyzed by centrifugation experiments and the results demonstrated that the different mechanisms of reconstitution were driven predominantly by the tendency for self-aggregation of the Ca(2+)-ATPase. A model for Ca(2+)-ATPase reconstitution was proposed which accounted for all our results. In summary, the advantage of the systematic studies reported in this paper was to allow a rapid and easy determination of the experimental conditions for optimal detergent-mediated reconstitution of Ca(2+)-ATPase. Proteoliposomes prepared by the present simple method exhibited the highest Ca2+ pumping activities reported to date in Ca(2+)-ATPase reconstitution experiments performed in the absence of Ca2+ precipitating agents.  相似文献   

4.
Membranous (Na+ + K+)-ATPase from the electric eel was solubilized with 3-[3-cholamidopropyl)-dimethylammonio)-1-propanesulfonate (Chaps). 50 to 70% of the solubilized enzyme was reconstituted in egg phospholipid liposomes containing cholesterol by using Chaps. The obtained proteoliposomes consisted of large vesicles with a diameter of 134 +/- 24 nm as the major component, and their protein/lipid ratio was 1.25 +/- 0.07 g protein/mol phospholipid. The intravesicular volume of these proteoliposomes is too small to consistently sustain the intravesicular concentrations of ligands, especially K+, during the assay. The decrease in K+ concentration was cancelled by the addition of 20 microM valinomycin in the assay medium. The low value of the protein/lipid ratio suggests that these proteoliposomes contain one Na+/K+-pump particle with a molecular mass of 280 kDa per one vesicle as the major component. In these proteoliposomes, the specific activity of the (Na+ + K+)-ATPase reaction was 10 mumol Pi/mg protein per min, and the turnover rate of the ATP-hydrolysis was 3500 min-1, the same as the original enzyme under the same assay condition. The ratio of transported Na+ to hydrolyzed ATP was 3, the same as that in the red cell. The proteoliposomes could be disintegrated by 40-50 mM Chaps without any significant inactivation. This disintegration of proteoliposomes nearly tripled the ATPase activity compared to the original ones and doubled the specific ATPase activity compared to the membranous enzyme, but the turnover rate was the same as the original proteoliposomes and the membranous enzyme. This disintegration of proteoliposomes by Chaps suggests the selective incorporation of the (Na+ + K+)-ATPase particle into the liposomes and the asymmetric orientation of the (Na+ + K+)-ATPase particle in the vesicle.  相似文献   

5.
The effect of the protein structure of (Na+ + K+)-ATPase on its incorporation into liposome membranes was investigated as follows: the catalytic alpha-subunit of (Na+ + K+)-ATPase was split into low-molecular weight fragments by trypsin treatment and the digested enzyme was reconstituted at the same protein concentration as intact control enzyme. The reconstitution process was quantified by the average number of intramembrane particles appearing on concave and convex fracture faces after freeze-fracture of the (Na+ + K+)-ATPase liposomes. The number of intramembrane particles as well as their distribution on concave and convex fracture faces is not modified by the proteolysis. In contrast, the ATPase activity and the transport capacity of the (Na+ + K+)-ATPase decrease progressively with increasing incubation times in the presence of trypsin and are abolished when the original 100 000 molecular weight alpha-subunit is no longer visible by sodium dodecylsulfate gel electrophoresis. Apparently, functional (Na+ + K+)-ATPase with intact protein structure and digested, non functional enzyme consisting of fragments of the alpha-subunit reconstitute in the same manner and to the same extent as judged by freeze-fracture analysis. We conclude that, while trypsin treatment modifies the (Na+ + K+)-ATPase molecule in a functional sense, it appears not to modify its interaction with the bilayer in producing intramembrane particles. On the basis of our results, we propose a lipid-lipid interaction mechanism for reconstitution of (Na+ + K+)-ATPase.  相似文献   

6.
A monoclonal antibody (mAb50c) against the native porcine renal Na+/K(+)-transporting adenosinetriphosphatase (EC 3.6.1.37, ATP phosphohydrolase) (Na+/K(+)-ATPase) was characterized. The antibody could be classified as a conformation-dependent antibody, since it did not bind to Na+/K(+)-ATPase denatured by detergent and its binding was affected by the normal conformational changes of the enzyme induced by ligands. The binding was the greatest in the presence of Na+, ATP or Mg2+ (E1 form), slightly less in the presence of K+ (E2K form) and the least when the enzyme was phosphorylated, especially in the actively hydrolyzing form in the presence of Na+, Mg2+ and ATP. The antibody inhibited both the Na+,K(+)-ATPase activity and the K(+)-dependent p-nitrophenylphosphatase activity by 25%, but it had no effect on Na(+)-dependent ATPase activity. The antibody partially inhibited the fluorescence changes of the enzyme labeled with 5'-isothiocyanatofluorescein after the addition of orthophosphate and Mg2+, and after the addition of ouabain. Proteolytic studies suggest that a part of the epitope is located on the cytoplasmic surface of the N-terminal half of the alpha-subunit.  相似文献   

7.
(Na+ + K+)-ATPase from rectal glands of the spiny dogfish has been reconstituted into phospholipid vesicles. The nonionic detergent octaethyleneglycoldodecyl monoether ( C12E8 ) is used to dissolve both the enzyme and the lipids and reconstitution is accomplished by subsequent removal of the detergent by adsorption to polystyrene beads. About 60% of the enzyme incorporates in the right-side-out orientation (r/o). The fraction of molecules in the inside-out orientation (i/o) increases from about 10% to about 30% with a parallel decrease in the fraction of 'non-oriented' (n-o) molecules (both sides exposed) when the protein/lipid ratio decreases from 1:10 to 1:75. The orientation of enzyme molecules detected from vanadate binding is the same as measured from activity, i.e., the turnover of the enzyme molecule in the different orientations is the same. The recovery of the specific activity of the incorporated enzyme increases with an increase in the protein/lipid ratio and is 100% with a protein/lipid ratio of about 1:20 or higher. Full recovery is only obtained provided a proper lipid composition is chosen which includes both negatively charged phospholipids, preferably phosphatidylinositol, and cholesterol. The ATP-dependent, K+-stimulated Na+-influx is found to be about 35 mumol Na+ per mg (i/o)-protein per min at 22 degrees C in 1:10 protein/lipid liposomes. The specific activity corresponds to 3 Na+ transported per ATP molecule hydrolyzed.  相似文献   

8.
Structural changes in the purified (Na+ + K+)-ATPase accompanying detergent inactivation were investigated by monitoring changes in light scattering, intrinsic protein fluorescence, and tryptophan to beta-parinaric acid fluorescence resonance energy transfer. Two phases of inactivation were observed using the non-ionic detergents, digitonin, Lubrol WX and Triton X-100. The rapid phase involves detergent monomer insertion but little change in protein structure or little displacement of closely associated lipids as judged by intrinsic protein fluorescence and fluorescence resonance energy transfer. Lubrol WX and Triton X-100 also caused membrane fragmentation during the rapid phase. The slower phase of inactivation results in a completely inactive enzyme in a particle of 400 000 daltons with 20 mol/mol of associated phospholipid. Fluorescence changes during the course of the slow phase indicate some dissociation of protein-associated lipids and an accompanying protein conformational change. It is concluded that non-parallel inhibition of (Na+ + K+)-ATPase and p-nitrophenylphosphate activity by digitonin (which occurs during the rapid phase of inactivation) is unlikey to require a change in the oligomeric state of the enzyme. It is also concluded that at least 20 mol/mol of tightly associated lipid are necessary for either (Na+ + K+)-ATPase or p-nitrophenylphosphatase activity and that the rate-limiting step in the slow inactivation phase involves dissociation of an essential lipid.  相似文献   

9.
Solubilization and reconstitution of the cardiac sarcolemmal Na+/Ca2+ exchanger by use of the anionic detergent cholate and its application for reconstitution of the exchanger following solubilization with zwitterionic or nonionic detergents is described. Solubilization and reconstitution with cholate provided a 32.6-fold enrichment of Na+/Ca2+ exchange activity over sarcolemmal vesicles (5.2 to 170 nmol/mg/s) with 202% recovery of total activity. In combination with asolectin, the cholate dilution technique (H. Miyamoto and E. Racker, J. Biol. Chem. 255, 2656, 1980) offers a rapid and simple means for reconstitution and provides good recovery of total and specific Na+/Ca2+ exchange activity. However, the use of anionic detergents for solubilization precludes the use of certain chromatographic procedures for protein purification. Conversely, nonionic and zwitterionic detergents permit effective use of available chromatographic techniques, but can be troublesome during reconstitution. We have combined the advantages of solubilization with nonionic and zwitterionic detergents with the advantages of reconstitution by cholate dilution. Reconstitution of the exchanger, after solubilization with 3-[(3-cholamidopropyl)-dimethyl-ammonio]-1-propanesulfonate (Chaps) or n-octyl-beta-D-glucoside, was accomplished by the addition of a cholate/asolectin medium followed by dilution. Na+/Ca2+ exchange activity was enriched 30.7-fold with 196% recovery with Chaps and 34.1-fold with 204% recovery with n-octyl-beta-D-glucoside. The presence of Chaps was found to shift the optimal asolectin concentration for reconstitution from 15 mg/ml (cholate alone) to 25 mg/ml. In addition, pelleting of proteoliposomes subsequent to reconstitution resulted in greatest recovery of total activity when volumes were kept below 1.0 ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The temperature dependence of ouabain-sensitive ATPase and phosphatase activities of membrane fragments containing the Na+/K+-ATPase were investigated in tissue from ox kidney, ox brain and from shark rectal glands. The shark enzyme was also tested in solubilized form. Arrhenius plots of the Na+/K+-ATPase activity seem to be linear up to about 20 degrees C, and non-linear above this temperature. The Arrhenius plots of mammalian enzyme (ox brain and kidney) were steeper, especially at temperatures below 20-30 degrees C, than that of shark enzyme. The Na+-ATPase activity showed a weaker temperature-dependence than the Na+/K+-ATPase activity. The phosphatase reactions measured, K+-stimulated, Na+/K+-stimulated and Na+/K+/ATP-stimulated, also showed a weaker temperature-dependence than the overall Na+/K+-ATPase activity. Among the phosphatase reactions, the largest change in slope of the Arrhenius plot was observed with the Na+/K+/ATP)-stimulated phosphatase reaction. The Arrhenius plots of the partial reactions were all non-linear. Solubilization of shark enzyme in C12E8 did not change the curvature of Arrhenius plots of the Na+/K+-ATPase activity or the K+-phosphatase activity. Since solubilization involves a disruption of the membrane and an 80% delipidation, the observed curvature of the Arrhenius plot can not be attributed to a property of the membrane as such.  相似文献   

11.
Mechanisms of detergent effects on membrane-bound (Na+ + K+)-ATPase   总被引:1,自引:0,他引:1  
Because the nonionic detergent octaethylene glycol dodecyl ether has been used extensively for studies on active solubilized preparations of (Na+ + K+)-ATPase, we tried to see if the detergent alters the properties of the membrane-bound enzyme prior to solubilization. Addition of the detergent, at concentrations below its critical micellar concentration, to reaction mixtures containing the highly purified membrane-bound enzyme reduced the K0.5 of ATP for (Na+ + K+)-dependent ATPase activity without affecting the maximal velocity or abolishing the negative cooperativity of the substrate-velocity curve. Under these conditions, however, the enzyme was not solubilized as evidenced by complete sedimentation of the membrane fragments containing the enzyme upon centrifugation at 100,000 X g for 30 min. Other nonsolubilizing effects of the detergent included an increase in K0.5 of K+, inhibition of Na+-dependent ATPase with no effect on K0.5 of ATP for this activity, and reductions in the spontaneous decomposition rates of the K+-sensitive phosphoenzyme obtained from ATP and the phosphoenzyme obtained from Pi. The nonsolubilizing effects of the detergent on the purified enzyme were obtained with no detectable lag, were readily reversible, and could be distinguished from its vesicle-opening effects on crude membrane preparations. Several other nonionic and ionic detergents had similar effects on the enzyme. The findings indicate (a) detergent binding to hydrophobic sites on extramembranous segments of enzyme subunits; (b) that occupation of these sites mimics the effects of ATP at a low-affinity regulatory site with no effect on high-affinity ATP binding to the catalytic site; and (c) that in studies on detergent-solubilized preparations, it is necessary to distinguish between the effects of solubilization per se and detergent effects at the regulatory site.  相似文献   

12.
Gastric (H+ + K+)-ATPase was reconstituted into artificial phosphatidylcholine/cholesterol liposomes by means of a freeze-thaw-sonication technique. Upon addition of MgATP, active H+ transport was observed, with a maximal rate of 2.1 mumol X mg-1 X min-1, requiring the presence of 100 mM K+ at the intravesicular site. However, in the absence of ATP an H+-K+ exchange with a maximal rate of 0.12 mumol X mg-1 X min-1 was measured, which could be inhibited by the well-known ATPase inhibitors vanadate and omeprazole, giving the first evidence of a passive K+-H+ exchange function of gastric (H+ + K+)-ATPase. An Na+-H+ exchange activity was also measured, which was fully inhibited by 1 mM amiloride. Simultaneous reconstitution of Na+/H+ antiport and (H+ + K+)-ATPase could explain why reconstituted ATPase appeared less cation-specific than the native enzyme (Rabon, E.C., Gunther, R.B., Soumarmon, A., Bassilian, B., Lewin, M.J.M. and Sachs, G. (1985) J. Biol. Chem. 260, 10200-10212).  相似文献   

13.
Myometrial (Na+ + K+)-activated ATPase and its Ca2+ sensitivity   总被引:1,自引:0,他引:1  
Ouabain-sensitive (Na+ + K+)-ATPase activity in the rat myometrial microsome fraction could only be determined following detergent treatment. The (Na+ + K+)-ATPase activity manifested by detergent treatment proved very stable even to high concentrations of NaN3, in contrast Mg+-ATPase activity was reduced to about 30 percent of the control. The major part of the Mg2+-ATPase in the myometrial membrane preparation was found to be identical with the NaN3-sensitive ATP diphosphohydrolase capable of ATP and ADP hydrolysis. This monovalent-cation-insensitive ATP hydrolysis could be extensively reduced by DMSO. Furthermore DMSO prevented the inactivation of the (Na+ + K+)-ATPase activity. 10-100 microM Ca2+ inhibited the (Na+ + K+)-ATPase activity obtained in the presence of SDS by 15-50 percent. The Ca2+ sensitivity of the enzyme was considerably decreased if the proteins solubilized by the detergent had been separated from the membrane fragments by ultracentrifugation. The inhibitory effect could be regained by combining the supernatant with the pellet. Ca2+ sensitivity of the (Na+ + K+)-ATPase activity was preserved even after removal of the solubilized proteins provided that DMSO had been applied. It appears that a factor in the plasma membrane solubilized by SDS may be responsible for the loss of Ca2+ sensitivity of the (Na+ + K+)-ATPase activity, the solubilization of which can be prevented by DMSO.  相似文献   

14.
We have shown previously that proteoliposomes reconstituted with purified Na+K+-ATPase from Ehrlich ascites tumor cells, transport Na+ with low efficiency (Spector, M., O'Neal, S. and Racker, E. (1980) J. Biol. Chem., 255, 5504-5507). We now present evidence that this low efficiency (expressed in the ratio of Na+-transported/ATP-hydrolyzed) is caused by the phosphorylation of the beta subunit of the Na+K+-ATPase by an endogenous protein kinase. On addition of [gamma-32P]ATP, crude tumor plasma membrane preparations phosphorylated the beta subunit of the ATPase, whereas crude mouse brain plasma membranes did not. However, solubilized Na+K+-ATPase from either tumor or brain wre phosphorylated by purified protein kinase from the tumor plasma membrane and dephosphorylated by a phosphatase. In both cases, the phosphorylated enzyme was inefficient; the dephosphorylated enzyme was efficient after reconstitution into liposomes. During isolation of the Na+K+-ATPase from Ehrlich ascites tumor or mouse brain, an endogenous protease partially cleaved from the beta subunit a polypeptide of 29,000 daltons that contained the phosphorylation site. The proteolytic cleavage of the beta subunit was partially inhibited by phenylmethylsulfonyl fluoride and the major site of phosphorylation was then seen in the 53,000-dalton beta subunit of the enzyme. The isolated 29,000-dalton polypeptide from mouse brain ATPase was phosphorylated by tumor protein kinase with a stoichiometry of 1 mol of phosphate/mol of protein. When this 29,000-dalton polypeptide from mouse brain was incorporated into the tumor Na+K+-ATPase after mild proteolytic digestion, a marked increase in efficiency was observed after reconstitution of the Na+ pump.  相似文献   

15.
The solubilization and delipidation of sarcoplasmic reticulum Ca2+-ATPase by different nonionic detergents were measured from changes in turbidity and recovery of intrinsic fluorescence of reconstituted ATPase in which tryptophan residues had been quenched by replacement of endogenous phospholipids with brominated phospholipids. It was found that incorporation of C12E8 or dodecyl maltoside (DM) at low concentrations in the membrane, resulting in membrane "perturbation" without solubilization, displaced a few of the phospholipids in contact with the protein; perturbation was evidenced by a parallel drop in ATPase activity. As a result of further detergent addition leading to solubilization, the tendency toward delipidation of the immediate environment of the protein was stopped, and recovery of enzyme activity was observed, suggesting reorganization of phospholipid and detergent molecules in the solubilized ternary complex, as compared to the perturbed membrane. After further additions of C12E8 or DM to the already solubilized membrane, the protein again experienced progressive delipidation which was only completed at a detergent concentration about 100-fold higher than that necessary for solubilization. Delipidation was correlated with a decrease in enzyme activity toward a level similar to that observed during perturbation. On the other hand, Tween 80, Tween 20, and Lubrol WX failed to solubilize SR membranes and to induce further ATPase delipidation when added after preliminary SR solubilization by C12E8 or dodecyl maltoside. For Tween 80, this can be related to an inability to solubilize pure lipid membrane; in contrast, Tween 20 and Lubrol WX were able to solubilize liposomes but not efficiently to solubilize SR membranes. In all three cases, insertion of the detergent in SR membranes is, however, demonstrated by perturbation of enzyme activity. Correlation between detergent structure and ability to solubilize and delipidate the ATPase suggests that one parameter impeding ATPase solubilization might be the presence of a bulky detergent polar headgroup, which could not fit close to the protein surface. We also conclude that in the active protein/detergent/lipid ternary complexes, solubilized by C12E8 or dodecyl maltoside, most phospholipids remain closely associated with the ATPase hydrophobic surface as in the membranous form. Binding of only a few detergent molecules on this hydrophobic surface may be sufficient for inhibition of ATPase activity observed at high ATP concentration, both during perturbation and in the completely delipidated, solubilized protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
B M Anner 《FEBS letters》1983,158(1):7-11
Purified Na+,K+-ATPase is treated with trypsin. The altered enzyme is then reconstituted into liposomes and the change in active and passive Na+,K+-fluxes is recorded. Trypsin treatment transforms the slow passive Na+,K+-fluxes into leaks. The leak formation is correlated with the degree of proteolysis and the associated decrease in Na+,K+-ATPase activity. The active Na+,K+-transport capacity decreases in parallel with the passive transport. It is thus proposed that the Na+,K+-ATPase molecule primarily contains unspecific transmembrane tunnels that are rendered ion-selective by transverse bars of specific length (bar model).  相似文献   

17.
Phosphorylation of Na+/K+-ATPase by cGMP-dependent protein kinase (PKG) has been studied in enzymes purified from pig, dog, sheep and rat kidneys, and in Xenopus oocytes. PKG phosphorylates the alpha-subunits of all animal species investigated. Phosphorylation of the beta-subunit was not observed. The stoichiometry of phosphorylation estimated for pig, sheep and dog renal Na+/K+-ATPase is 3.5, 2.2 and 2.1 mol Pi per mol alpha-subunit, respectively. Proteolytic fingerprinting of the pig alpha1-subunits phosphorylated by PKG using specific antibodies raised against N-terminus or C-terminus reveals that phosphorylation sites are located within the intracellular loop of the alpha-subunit between the 35 kDa N-terminal and 27 kDa C-terminal fragments. Phosphorylation sites within the alpha1-subunit of the purified Na+/K+-ATPase do not appear to be easily accessible for PKG since incorporation of Pi requires 0.2% of Triton X-100. Administration of cGMP and PKG in the presence of 5 mm ATP, which prevents inactivation of the Na+/K+-ATPase by detergent, leads to stimulation of hydrolytic activity by 61%. Administration of 50 microm of cGMP or dbcGMP in yolk-free homogenates of Xenopus oocytes leads to stimulation of ouabain-dependent ATPase activity by 130-198% and to incorporation of 33P into the alpha-subunit without the detergent. Hence, PKG plays regulatory role in active transmembraneous transport of Na+ and K+ via phosphorylation of the catalytic subunit of the Na+/K+-ATPase.  相似文献   

18.
Adding 15 mM free Mg2+ decreased Vmax of the Na+/K(+)-ATPase reaction. Mg2+ also decreased the K0.5 for K+ activation, as a mixed inhibitor, but the increased inhibition at higher K+ concentrations diminished as the Na+ concentration was raised. Inhibition was greater with Rb+ but less with Li+ when these cations substituted for K+ at pH 7.5, while at pH 8.5 inhibition was generally less and essentially the same with all three cations: implying an association between inhibition and ion occlusion. On the other hand, Mg2+ increased the K0.5 for Na(+)-activation of the Na+/K(+)-ATPase and Na(+)-ATPase reactions, as a mixed inhibitor. Changing incubation pH or temperature, or adding dimethylsulfoxide affected inhibition by Mg2+ and K0.5 for Na+ diversely. Presteady-state kinetic studies on enzyme phosphorylation, however, showed competition between Mg2+ and Na+. In the K(+)-phosphatase reaction catalyzed by this enzyme Mg2+ was a (near) competitor toward K+. Adding Na+ with K+ inhibited phosphatase activity, but under these conditions 15 mM Mg2+ stimulated rather than inhibited; still higher Mg2+ concentrations then inhibited with K+ plus Na+. Similar stimulation and inhibition occurred when Mn2+ was substituted for Mg2+, although the concentrations required were an order of magnitude less. In all these experiments no ionic substitutions were made to maintain ionic strength, since alternative cations, such as choline, produced various specific effects themselves. Kinetic analyses, in terms of product inhibition by Mg2+, require Mg2+ release at multiple steps. The data are accommodated by a scheme for the Na+/K(+)-ATPase with three alternative points for release: before MgATP binding, before K+ release and before Na+ binding. The latter alternatives necessitate two Mg2+ ions bound simultaneously to the enzyme, presumably to divalent cation-sites associated with the phosphate and the nucleotide domains of the active site.  相似文献   

19.
Oxidized metabolites of polyunsaturated fatty acids produced by lipoxygenase are among the endogenous regulators of Na+/K+-ATPase. The direct effect of lipoxygenase on Na+/K+-ATPase activity was assessed in vitro using soybean lipoxygenase. Treatment of 4.2 microg/mL Na+/K+-ATPase (from dog kidneys) with 4.2 microg/mL of soybean lipoxygenase caused 20+/-2% inhibition of ATPase activity. A 10-fold increase in lipoxygenase concentration (41.6 microg/mL) led to 30+/-0.3% inhibition. In the presence of 12 microg/mL phenidone (a lipoxygenase inhibitor) and 15.4 microg/mL glutathione (a tripeptide containing a cysteine residue) inhibition of Na+/K+-ATPase activity was blocked and an increase in ATPase activity was observed. The presence of lipoxygenase enhanced the inhibition of Na+/K+-ATPase activity caused by 20 ng/mL ouabain (31+/-2 vs. 19+/-2) but had little or no effect with higher concentrations of ouabain. These findings suggest that lipoxygenase may regulate Na+/K+-ATPase by acting directly on the enzyme.  相似文献   

20.
Na+/K+-ATPase activity was determined in striated muscles with different aerobic capacities. The underlying hypothesis was that different aerobic capacities are reflective of different contractile activity which imposes greater demands on sarcolemmal ion translocation and may thus set Na pumping capacity. The added ion translocation demands required during exercise-training on Na+/K+-ATPase activity in different muscle fiber types may require an adaptation of this enzyme. The highest and lowest Na+/K+-ATPase activity was in the heart and white gastrocnemius muscle (WG), respectively. A high linear correlation existed between Na+/K+-ATPase activity and succinate dehydrogenase activity in the six muscles studied. Exercise-training did not increase Na+/K+-ATPase activity in any of the muscles, but did increase the aerobic capacity, except in the heart and WG. It was concluded that Na+/K+-ATPase activity has a high positive correlation with the aerobic capacity of striated muscles in the rat and that the Na pump capacity does not adapt to exercise-training of 1 hr X day-1 as does aerobic capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号