共查询到20条相似文献,搜索用时 0 毫秒
1.
A method is described for studying the coupling ratio of the Na+/K+ pump, i.e., the ratio of pump-mediated fluxes of Na+ and K+, in a reconstituted system. The method is based on the comparison of the pump-generated current with the rate of K+ transport. Na+/K+-ATPase from kidney is incorporated into the membrane of artificial lipid vesicles; ATPase molecules with outward-oriented ATP-binding site are activated by addition of ATP to the medium. Using oxonol VI as a potential-sensitive dye for measuring transmembrane voltage, the pump current is determined from the change of voltage with time t. In a second set of experiments, the membrane is made selectively K+-permeable by addition of valinomycin, so that the membrane voltage U is equal to the Nernst potential of K+. Under this condition, dU/dt reflects the change of intravesicular K+ concentration and thus the flux of K+. Values of the Na+/K+ coupling ratio determined in this way are close to 1.5 in the experimental range (10-75 mM) of extravesicular (cytoplasmic) Na+ concentrations. 相似文献
2.
Xia L Yuwen L Jie L Huilin L Xi Y Cunxin W Zhiyong W 《Journal of enzyme inhibition and medicinal chemistry》2004,19(4):333-338
Na+/K+-ATPase (EC 3.6.1.3) is an important membrane-bound enzyme. In this paper, kinetic studies on Na+/K+-ATPase were carried out under mimetic physiological conditions. By using microcalorimeter, a thermokinetic method was employed for the first time. Compared with other methods, it provided accurate measurements of not only thermodynamic data (deltarHm) but also the kinetic data (Km and Vmax). At 310.15K and pH 7.4, the molar reaction enthalpy (deltarHm) was measured as -40.514 +/- 0.9kJmol(-1). The Michaelis constant (Km) was determined to be 0.479 +/- 0.020 mM and consistent with literature data. The reliability of the thermokinetic method was further confirmed by colorimetric studies. Furthermore, a simple and reliable kinetic procedure was presented for ascertaining the true substrate for Na+/K+-ATPase and determining the effect of free ATP. Results showed that the MgATP complex was the real substrate with a Km value of about 0.5mM and free ATP was a competitive inhibitor with a Ki value of 0.253 mM. 相似文献
3.
Reconstitution of (Na+ + K+)-ATPase into phospholipid vesicles with full recovery of its specific activity 总被引:3,自引:0,他引:3
(Na+ + K+)-ATPase from rectal glands of the spiny dogfish has been reconstituted into phospholipid vesicles. The nonionic detergent octaethyleneglycoldodecyl monoether ( C12E8 ) is used to dissolve both the enzyme and the lipids and reconstitution is accomplished by subsequent removal of the detergent by adsorption to polystyrene beads. About 60% of the enzyme incorporates in the right-side-out orientation (r/o). The fraction of molecules in the inside-out orientation (i/o) increases from about 10% to about 30% with a parallel decrease in the fraction of 'non-oriented' (n-o) molecules (both sides exposed) when the protein/lipid ratio decreases from 1:10 to 1:75. The orientation of enzyme molecules detected from vanadate binding is the same as measured from activity, i.e., the turnover of the enzyme molecule in the different orientations is the same. The recovery of the specific activity of the incorporated enzyme increases with an increase in the protein/lipid ratio and is 100% with a protein/lipid ratio of about 1:20 or higher. Full recovery is only obtained provided a proper lipid composition is chosen which includes both negatively charged phospholipids, preferably phosphatidylinositol, and cholesterol. The ATP-dependent, K+-stimulated Na+-influx is found to be about 35 mumol Na+ per mg (i/o)-protein per min at 22 degrees C in 1:10 protein/lipid liposomes. The specific activity corresponds to 3 Na+ transported per ATP molecule hydrolyzed. 相似文献
4.
R L Jackson A J Verkleij E J van Zoelen L K Lane A Schwartz L L van Deenen 《Archives of biochemistry and biophysics》1980,200(1):269-278
Purified lamb kidney Na+, K+-ATPase, consisting solely of the Mτ = 95,000 catalytic subunit and the Mτ~- 44,000 glycoprotein, was solubilized with Triton X-100 and incorporated into unilamellar phospholipid vesicles. Freeze-fracture electron microscopy of the vesicles showed intramembranous particles of approximately 90–100 Å in diameter, which are similar to those seen in the native Na+,K+-ATPase fraction. Digestion of the reconstituted proteins with neuraminidase indicated that the glycoprotein moiety of the Na+,K+-ATPase was asymmetrically oriented in the reconstituted vesicles, with greater than 85% of the total sialic acid directed toward the outside of the vesicles. In contrast, in the native Na+,K+-ATPase fraction, the glycoprotein was symmetrically distributed. Purified glycoprotein was also asymmetrically incorporated into phospholipid vesicles using Triton X-100 and without detergents as described by R. I. MacDonald and R. L. MacDonald (1975, J. Biol. Chem.250, 9206–9214). The glycoprotein-containing vesicles were 500–1000 Å in diameter, unilamellar, and, in contrast to the vesicles containing the Na+,K+-ATPase, did not contain the 90- to 100-Å intramembranous particles. These results indicate that the intramembranous particles observed in the native Na+,K+-ATPase and in the reconstituted Na+,K+-ATPase are not due to the glycoprotein alone, but represent either the catalytic subunit, or the catalytic plus the glycoprotein subunit. 相似文献
5.
Isozymes of the Na+/K+-ATPase 总被引:51,自引:0,他引:51
K J Sweadner 《Biochimica et biophysica acta》1989,988(2):185-220
6.
Captopril has been reported to inhibit ouabain-sensitive Na+/K+-ATPase activity in erythrocyte membrane fragments. We investigated the effect of captopril on two physiological measures of Na+/K+ pump activity: 22Na+ efflux from human erythrocytes and K+-induced relaxation of rat tail artery segments. Captopril inhibited 22Na+ efflux from erythrocytes in a concentration-dependent fashion, with 50% inhibition of total 22Na+ efflux at a concentration of 4.8 X 10(-3) M. The inhibition produced by captopril (5 X 10(-3) M) and ouabain (10(-4) M) was not greater than that produced by ouabain alone (65.3 vs. 66.9%, respectively), and captopril inhibited 50% of ouabain-sensitive 22Na+ efflux at a concentration of 2.0 X 10(-3) M. Inhibition by captopril of ouabain-sensitive 22Na efflux was not explained by changes in intracellular sodium concentration, inhibition of angiotensin-converting enzyme or a sulfhydryl effect. Utilizing rat tail arteries pre-contracted with norepinephrine (NE) or serotonin (5HT) in K+-free solutions, we demonstrated dose-related inhibition of K+-induced relaxation by captopril (10(-6) to 10(-4) M). Concentrations above 10(-4) M did not significantly inhibit K+-induced relaxation but did decrease contractile responses to NE, although not to 5HT. Inhibition of K+-induced relaxation by captopril was not affected by saralasin, teprotide or indomethacin. We conclude that captopril can inhibit membrane Na+/K+-ATPase in intact red blood cells and vascular smooth muscle cells. The mechanism of pump suppression is uncertain, but inhibition of ATPase should be considered when high concentrations of captopril are employed in physiological studies. 相似文献
7.
Activated B61.SF.1 and CTLL-2 T lymphocyte clones which are strictly dependent on interleukin-2 (IL-2) for growth were used to study the activation of Na+/K+-ATPase. 50% of [3H]thymidine maximal incorporation was obtained when the extracellular concentration of Na+ or K+ was reduced to 50 or 2 mM, respectively. 'Quiescent' CTL clones stimulated with IL-2 showed an increase of 48-380% in ouabain-sensitive 86Rb uptake. Furthermore, this stimulation was completely inhibited by a monoclonal antibody PC.61 directed at the IL-2 receptor. The activation of the pump was dependent on the dose of IL-2, took place at the same doses of IL-2 that were required to stimulate cell proliferation and was linear for at least 30 min. 相似文献
8.
Reconstitution of the mitochondrial non-selective Na+/H+ (K+/H+) antiporter into proteoliposomes 总被引:1,自引:0,他引:1
Mitochondria contain two Na+/H+ antiporters, one of which transports K+ as well as Na+. The physiological role of this non-selective Na+/H+ (K+/H+) antiporter is to provide mitochondrial volume homeostasis. The properties of this carrier have been well documented in intact mitochondria, and it has been identified as an 82,000-dalton inner membrane protein. The present studies were designed to solubilize and reconstitute this antiporter in order to permit its isolation and molecular characterization. Proteins from mitoplasts made from rat liver mitochondria were extracted with Triton X-100 in the presence of cardiolipin and reconstituted into phospholipid vesicles. The reconstituted proteoliposomes exhibited electroneutral 86Rb+ transport which was reversibly inhibited by Mg2+ and quinine with K0.5 values of approximately 150 and 300 microM, respectively. Incubation of reconstituted vesicles with dicyclohexylcarbodiimide resulted in irreversible inhibition of 86Rb+ uptake into proteoliposomes. Incubation of vesicles with [14C]dicyclohexylcarbodiimide resulted in labeling of an 82,000-dalton protein. These properties, which are also characteristic of the native Na+/H+ (K+/H+) antiporter, lead us to conclude that this mitochondrial carrier has been reconstituted into proteoliposomes with its known native properties intact. 相似文献
9.
Two K+
ATP channel blockers, 5-hydroxydecanoate (5-HD) and glyburide, are often used to study cross-talk between Na+/K+-ATPase and these channels. The aim of this work was to characterize the effects of these blockers on purified Na+/K+-ATPase as an aid to appropriate use of these drugs in studies on this cross-talk. In contrast to known dual effects (activating
and inhibitory) of other fatty acids on Na+/K+-ATPase, 5-HD only inhibited the enzyme at concentrations exceeding those that block mitochondrial K+
ATP channels. 5-HD did not affect the ouabain sensitivity of Na+/K+-ATPase. Glyburide had both activating and inhibitory effects on Na+/K+-ATPase at concentrations used to block plasma membrane K+
ATP channels. The findings justify the use of 5-HD as specific mitochondrial channel blocker in studies on the relation of this
channel to Na+/K+-ATPase, but question the use of glyburide as a specific blocker of plasma membrane K+
ATP channels, when the relation of this channel to Na+/K+-ATPase is being studied. 相似文献
10.
A single Na+/K+-ATPase pumps three Na+ outwards and two K+ inwards by alternately exposing ion-binding sites to opposite sides of the membrane in a conformational sequence coupled to pump autophosphorylation from ATP and auto-dephosphorylation. The larger flow of Na+ than K+ generates outward current across the cell membrane. Less well understood is the ability of Na+/K+ pumps to generate an inward current of protons. Originally noted in pumps deprived of external K+ and Na+ ions, as inward current at negative membrane potentials that becomes amplified when external pH is lowered, this proton current is generally viewed as an artifact of those unnatural conditions. We demonstrate here that this inward current also flows at physiological K+ and Na+ concentrations. We show that protons exploit ready reversibility of conformational changes associated with extracellular Na+ release from phosphorylated Na+/K+ pumps. Reversal of a subset of these transitions allows an extracellular proton to bind an acidic side chain and to be subsequently released to the cytoplasm. This back-step of phosphorylated Na+/K+ pumps that enables proton import is not required for completion of the 3 Na+/2 K+ transport cycle. However, the back-step occurs readily during Na+/K+ transport when external K+ ion binding and occlusion are delayed, and it occurs more frequently when lowered extracellular pH raises the probability of protonation of the externally accessible carboxylate side chain. The proton route passes through the Na+-selective binding site III and is distinct from the principal pathway traversed by the majority of transported Na+ and K+ ions that passes through binding site II. The inferred occurrence of Na+/K+ exchange and H+ import during the same conformational cycle of a single molecule identifies the Na+/K+ pump as a hybrid transporter. Whether Na+/K+ pump–mediated proton inflow may have any physiological or pathophysiological significance remains to be clarified. 相似文献
11.
The linear pentadecapeptide gramicidin A forms an ion channel in the lipid bilayer to selectively transport monovalent cations. Nevertheless, we have surprisingly found that gramicidin A directly inhibits mammalian Na(+)/K(+)-ATPase. Gramicidin A inhibited ATP hydrolysis by Na(+)/K(+)-ATPase from porcine cerebral cortex at the IC(50) value of 8.1 microM, while gramicidin S was approximately fivefold less active. The synthetic gramicidin A analog lacking N-terminal formylation and C-terminal ethanolamine exhibited a weaker inhibitory effect on the ATP-hydrolyzing activity of Na(+)/K(+)-ATPase than gramicidin A, indicating that these end modifications are necessary for gramicidin A to inhibit Na(+)/K(+)-ATPase activity. Moreover, Lineweaver-Burk analysis showed that gramicidin A exhibits a mixed type of inhibition. In addition to the most well-studied ionophore activity, our present study has disclosed a novel biological function of gramicidin A as a direct inhibitor of mammalian Na(+)/K(+)-ATPase activity. 相似文献
12.
F M Schuurmans Stekhoven Y S Zou H G Swarts J Leunissen J J De Pont 《Biochimica et biophysica acta》1989,982(1):103-114
(1) Ethylenediamine is an inhibitor of Na+- and K+-activated processes of Na+/K+-ATPase, i.e. the overall Na+/K+-ATPase activity, Na+-activated ATPase and K+-activated phosphatase activity, the Na+-activated phosphorylation and the Na+-free (amino-buffer associated) phosphorylation. (2) The I50 values (I50 is the concentration of inhibitor that half-maximally inhibits) increase with the concentration of the activating cations and the half-maximally activating cation concentrations (Km values) increase with the inhibitor concentration. (3) Ethylenediamine is competitive with Na+ in Na+-activated phosphorylation and with the amino-buffer (triallylamine) in Na+-free phosphorylation. Significant, though probably indirect, effects can also be noted on the affinity for Mg2+ and ATP, but these cannot account for the inhibition. (4) Inhibition parallels the dual protonated or positively charged ethylenediamine concentration (charge distance 3.7 A). (5) Direct investigation of interaction with activating cations (Na+, K+, Mg+, triallylamine) has been made via binding studies. All these cations drive ethylenediamine from the enzyme, but K+ and Mg+ with the highest efficiency and specificity. Ethylenediamine binding is ouabain-insensitive, however. (6) Ethylenediamine neither inhibits the transition to the phosphorylation enzyme conformation, nor does it affect the rate of dephosphorylation. Hence, we provisionally conclude that ethylenediamine inhibits the phosphoryl transfer between the ATP binding and phosphorylation site through occupation of cation activation sites, which are 3-4 A apart. 相似文献
13.
J Hernández-R 《Neurochemistry international》1992,20(1):1-10
A long period of experimental work has led to the conclusion that Na+/K(+)-ATPase is the enzymatic version of the Na+/K+ pump. This enzymatic system is in charge of various important cell functions. Among them cationic equilibrium and recovering of resting membrane potential in neurons is relevant. A tetrameric ensemble of peptides conform the system known as alpha and beta subunits. The alpha subunit is subdivided in alpha 1, alpha 2 and alpha 3, according to different location and properties. Regulatory factors intrinsic to the Na+/K(+)-ATPase system are: ATP, Na+ and Mg2+ concentrations inside the cell, and K+ outside. The enzyme activity is also regulated by extrinsic factors like some hormones (insulin and thyroxine). Induction of gene expression or post-translational modifications of the preexisting pool of the enzyme are the basic mechanisms of regulation proposed. Other extrinsic factors that seem to regulate the enzyme activity are some neurotransmitters. Among them the most extensively studied are catecholamines, mainly norepinephrine (NE) and lately serotonin (5-HT). The mechanism suggested for NE activation of the enzyme seems to involve specific receptors or a non-specific chelating action related to the catechol group that would relieve the inhibition by divalent cations. Another possibility is that NE removes an endogenous inhibitory factor present in the cytoplasm. The Na+/K(+)-ATPase is activated also by 5-HT. In vivo pharmacological and nutriological manipulations of brain 5-HT are accompanied by parallel responses of Na+/K(+)-ATPase activity. Serotonin agonists do activate the enzyme and antagonists neutralize the activation. In vitro there is a different dose dependent activation, according to the brain region. The mechanism involved seems to implicate a specific receptor system. Serotonin-Na+/K(+)-ATPase interaction in the rat brain is probably of functional relevance because it disappears in amygdaloid kindling. Also it seems to influence the ionic regulation of the pigment transport mechanism in crayfish photoreceptors. In relation to other neurotransmitters, a weak response to histamine was observed with acetylcholine, GABA and glutamic acid, the results were negative. 相似文献
14.
Origin of the gamma polypeptide of the Na+/K+-ATPase 总被引:1,自引:0,他引:1
The Na+/K+-ATPase purified from lamb kidney contains a gamma polypeptide fraction which is a collection of fragments derived from the alpha and beta polypeptides of the enzyme. This fraction has the solubility characteristics of a proteolipid and was isolated either by high performance liquid chromatography (size exclusion chromatography) in 1% sodium dodecyl sulfate or by sequential organic extraction of purified lamb kidney Na+/K+-ATPase. Formation of gamma polypeptide(s) from detergent solubilized holoenzyme was accelerated by sulfhydryl containing reagents and was unaffected by addition of inhibitors of proteolytic enzymes. Treatment of the holoenzyme with the photoaffinity reagent N-(2-nitro-4-azidophenyl)[3H]ouabain ([3H]NAP-ouabain) labeled the alpha polypeptide and the gamma polypeptide fraction but not the beta polypeptide. Amino acid sequence analysis of one gamma polypeptide preparation revealed homology of one component of this fraction with the N-terminus of the beta subunit of the Na+/K+-ATPase. Amino acid analysis of two preparations of proteolipid showed similar amino acid compositions with a peptide derived from the alpha subunit. The insolubility and complexity of the gamma polypeptide(s)/proteolipid fraction appears to preclude a conclusive sequence analysis of all components of this fraction. 相似文献
15.
Na+/K+-ATPase activity was determined in striated muscles with different aerobic capacities. The underlying hypothesis was that different aerobic capacities are reflective of different contractile activity which imposes greater demands on sarcolemmal ion translocation and may thus set Na pumping capacity. The added ion translocation demands required during exercise-training on Na+/K+-ATPase activity in different muscle fiber types may require an adaptation of this enzyme. The highest and lowest Na+/K+-ATPase activity was in the heart and white gastrocnemius muscle (WG), respectively. A high linear correlation existed between Na+/K+-ATPase activity and succinate dehydrogenase activity in the six muscles studied. Exercise-training did not increase Na+/K+-ATPase activity in any of the muscles, but did increase the aerobic capacity, except in the heart and WG. It was concluded that Na+/K+-ATPase activity has a high positive correlation with the aerobic capacity of striated muscles in the rat and that the Na pump capacity does not adapt to exercise-training of 1 hr X day-1 as does aerobic capacity. 相似文献
16.
Taissa Neustadt Oliveira Ana Claudia Possidonio Carolina Pontes Soares Rodrigo Ayres Manoel Luis Costa Luis Eduardo Menezes Quintas Cláudia Mermelstein 《PloS one》2015,10(3)
The formation of a vertebrate skeletal muscle fiber involves a series of sequential and interdependent events that occurs during embryogenesis. One of these events is myoblast fusion which has been widely studied, yet not completely understood. It was previously shown that during myoblast fusion there is an increase in the expression of Na+/K+-ATPase. This fact prompted us to search for a role of the enzyme during chick in vitro skeletal myogenesis. Chick myogenic cells were treated with the Na+/K+-ATPase inhibitor ouabain in four different concentrations (0.01-10 μM) and analyzed. Our results show that 0.01, 0.1 and 1 μM ouabain did not induce changes in cell viability, whereas 10 μM induced a 45% decrease. We also observed a reduction in the number and thickness of multinucleated myotubes and a decrease in the number of myoblasts after 10 μM ouabain treatment. We tested the involvement of MEK-ERK and p38 signaling pathways in the ouabain-induced effects during myogenesis, since both pathways have been associated with Na+/K+-ATPase. The MEK-ERK inhibitor U0126 alone did not alter cell viability and did not change ouabain effect. The p38 inhibitor SB202190 alone or together with 10 μM ouabain did not alter cell viability. Our results show that the 10 μM ouabain effects in myofiber formation do not involve the MEK-ERK or the p38 signaling pathways, and therefore are probably related to the pump activity function of the Na+/K+-ATPase. 相似文献
17.
Marina Cherniavsky-Lev Ofra Golani Steven J. D. Karlish Haim Garty 《The Journal of biological chemistry》2014,289(2):1049-1059
Internalization of the Na+/K+-ATPase (the Na+ pump) has been studied in the human lung carcinoma cell line H1299 that expresses YFP-tagged α1 from its normal genomic localization. Both real-time imaging and surface biotinylation have demonstrated internalization of α1 induced by ≥100 nm ouabain which occurs in a time scale of hours. Unlike previous studies in other systems, the ouabain-induced internalization was insensitive to Src or PI3K inhibitors. Accumulation of α1 in the cells could be augmented by inhibition of lysosomal degradation but not by proteosomal inhibitors. In agreement, the internalized α1 could be colocalized with the lysosomal marker LAMP1 but not with Golgi or nuclear markers. In principle, internalization could be triggered by a conformational change of the ouabain-bound Na+/K+-ATPase molecule or more generally by the disruption of cation homeostasis (Na+, K+, Ca2+) due to the partial inhibition of active Na+ and K+ transport. Overexpression of ouabain-insensitive rat α1 failed to inhibit internalization of human α1 expressed in the same cells. In addition, incubating cells in a K+-free medium did not induce internalization of the pump or affect the response to ouabain. Thus, internalization is not the result of changes in the cellular cation balance but is likely to be triggered by a conformational change of the protein itself. In physiological conditions, internalization may serve to eliminate pumps that have been blocked by endogenous ouabain or other cardiac glycosides. This mechanism may be required due to the very slow dissociation of the ouabain·Na+/K+-ATPase complex. 相似文献
18.
Na+/K+ -ATPase, reconstituted into phospholipid vesicles, has been used to study the localisation of binding sites of ligands involved in the phosphorylation reaction. Inside-out oriented Na+/K+ -ATPase molecules are the only population in this system, which can be phosphorylated, as the rightside-out oriented as well as the non-incorporated enzyme molecules are inhibited by ouabain. In addition, the right-side-out oriented Na+/K+ -ATPase molecules have their ATP binding site intravesicularly and are thus not accessible to substrate added to the extravesicular medium. Functional binding sites for the following ligands have been demonstrated: (i) Potassium, acting at the extracellular side with high affinity (stimulating the dephosphorylation rate of the E2P conformation) and low affinity (inducing the non-phosphorylating E2K complex). (ii) Potassium, acting at the cytoplasmic side with both high and low affinity. The latter sites are also responsible for the formation of an E2K complex and complete with Na+ for its binding sites. (iii) Sodium at the cytoplasmic side responsible for stimulation of the phosphorylation reaction. (iv) Sodium (and amine buffers) at the extracellular side enhancing the phosphorylation level of Na+/K+ -ATPase where choline chloride has no effect. (v) Magnesium at the cytoplasmic side, stimulating the phosphorylation reaction and inhibiting it above optimal concentrations. 相似文献
19.
A method is described for reconstitution of a protein into lipid vesicles using one of the natural detergents lysophosphatidylcholine or lysophosphatidic acid. The intestinal microvillus enzyme, aminopeptidase N (EC 3.4.11.2) is incorporated into lipid vesicles prepared from a total lipid extract of the microvillus membrane. The method is based on fusion of aminopeptidase-lysophospholipid micelles with liposomes prepared by sonication. The incorporation of the protein into the lipid bilayer is analyzed by gel permeation chromatography and sucrose density gradient centrifugation. The coincidence of the protein and lipid profiles is used to evaluate protein incorporation. The incorporation is visualized by electron microscopy with negative staining. The method has the advantage of using natural detergents, lysophospholipids, which are minor but natural constituents of biological membranes. The method could be of value as a tool in studies of mechanisms of insertion of newly synthesized proteins into biological membranes. 相似文献
20.
E. A. Skverchinskaya T. V. Tavrovskaya A. V. Novozhilov 《Journal of Evolutionary Biochemistry and Physiology》2013,49(2):183-192
Na+/K+-ATPase (sodium, potassium adenosine triphosphatase, EC 3.6.3.9) activity has been studied in whole erythrocytes from rats over time of total food deprivation for 1, 3, 5, 7–8, and 10–12 days with free access to water. Changes in Na+/K+-ATPase activity have been found to be phase-specific, i.e., associated with periods of certain metabolism level. After the hunger state and accommodation to endogenous nutrition (phases 0-I), from the 3rd to the 7th–8th day a period of compensated accommodation begins (phase II characterized by a stable euglycemic state, while the level of plateau of protein losses and hormonal stimulation are achieved). The Na+/K+-ATPase activity changes during the phase II were insignificant (p > 0.05), but potassium loss was observed in erythrocytes and blood plasma from the 5th day of starvation onwards. The phase III (the 10th–12th days) is an onset of the terminal period characterized by the lower activities of Na+/K+-ATPase (ouabain-sensitive activity) and Mg2+-ATPase (ouabain-independent activity) and by reduced sodium plasma levels that previously had remained virtually unchanged. There are considered possible causes of the observed decrease in the Na+/K+-ATPase activity during prolonged starvation, such as aging of the circulating erythrocyte population (the absence of reticulocytes and young erythrocytes), depletion of cell energy resources (hypoglycemia and glycopenia), effect of endogenous ouabain, and endotoxemia. 相似文献