首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soybean cell cultures were challenged either by glucan elicitor from Phytophthora megasperma f.sp. glycinea or by osmotic stress (0.4 M glucose). Osmotic stress induced production of a microsomal NADPH-dependent flavone synthase (flavone synthase II) which catalyses conversion of (2S)-naringenin to apigenin. In one of our cell-lines this enzyme activity was not detected either in unchallenged cells or in cells treated with glucan elicitor. Inducibility of flavone synthase II by 0.4 M glucose was highest at the end of the linear growth phase. Changes in the activities of a number of other enzymes were determined after treatment of the cells with elicitor or 0.4 M glucose. The activities of phenylalanine ammonialyase, cinnamate 4-hydroxylase, chalcone synthase and dihydroxypterocarpan 6a-hydroxylase all increased with elicitor and with osmoticum, albeit to a different degree. The rise in enzyme activity occurred later with osmoticum than with elicitor. The prenyltransferase involved in glyceollin synthesis was induced strongly by elicitor but only very weakly by osmoticum, whereas isoflavone synthase and NADPH: cytochrome-c reductase were only induced by elicitor. The activity of glucose-6-phosphate dehydrogenase did not change with elicitor or with osmoticum. Different product patterns were also obtained: whereas with elicitor, glyceollin I was the major product, intermediates of the glyceollin pathway (7,4-dihydroxyflavanone, trihydroxypterocarpan) accumulated with osmoticum.  相似文献   

2.
A microsomal preparation from irradiated parsley cell cultures catalyses the NADPH and dioxygen-dependent hydroxylation of (S)-naringenin [(S)-5, 7, 4'-trihydroxyflavanone] to eriodictyol (5, 7, 3', 4'-tetrahydroxyflavanone). Dihydrokaempferol, kaempferol, and apigenin were also substrates for the 3'-hydroxylase reaction. In contrast prunin (naringenin 7-O-beta-glucoside) was not converted by the enzyme. The microsomal preparation, which also contains cinnamate 4-hydroxylase, did not catalyse hydroxylation of 4-coumaric acid to caffeic acid. 3'-Hydroxylase activity is partially inhibited by carbon monoxide in the presence of oxygen as well as by cytochrome c and NADP+. These properties suggest that the enzyme is a cytochrome P-450-dependent flavonoid 3'-monooxygenase. Pronounced differences in the inhibition of flavonoid 3'-hydroxylase and cinnamate 4-hydroxylase were found with EDTA, potassium cyanide and N-ethylmaleimide. Irradiation of the cell cultures led to increase of flavonoid 3'-hydroxylase activity with a maximum at about 23 h after onset of irradiation and subsequent decrease. This is similar to light-induction of phenylalanine ammonialyase and cinnamate 4-hydroxylase. In contrast, treatment of the cell cultures with a glucan elicitor from Phytophthora megasperma f. sp. glycinea did not induce flavonoid 3'-hydroxylase nor chalcone isomerase but caused a strong increase in the activities of phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, and NADPH--cytochrome reductase. The results prove that flavonoid 3'-hydroxylase and cinnamate 4-hydroxylase are two different microsomal monooxygenases.  相似文献   

3.
Two purified oligosaccharide elicitors generatable from fungal cell walls, N-acetylchitoheptaose and a tetraglucosyl glucitol from rice blast fungus (Magnaporthe grisea), synergistically activated phytoalexin biosynthesis in cultured rice cells. Inhibition experiments for the binding of radiolabeled N-acetylchitooligosaccharide elicitor to the plasma membrane from rice cells indicate that the two elicitors are recognized by different receptors. These results also indicate the presence of a positive interaction between the signal transduction cascade downstream of each elicitor/receptor, which enhances resistance against pathogens.  相似文献   

4.
5.
Elicitor-triggered transient membrane potential changes and Ca2+ influx through the plasma membrane are thought to be important during defense signaling in plants. However, the molecular bases for the Ca2+ influx and its regulation remain largely unknown. Here we tested effects of overexpression as well as retrotransposon (Tos17)-insertional mutagenesis of the rice two-pore channel 1 (OsTPC1), a putative voltage-gated Ca(2+)-permeable channel, on a proteinaceous fungal elicitor-induced defense responses in rice cells. The overexpressor showed enhanced sensitivity to the elicitor to induce oxidative burst, activation of a mitogen-activated protein kinase (MAPK), OsMPK2, as well as hypersensitive cell death. On the contrary, a series of defense responses including the cell death and activation of the MAPK were severely suppressed in the insertional mutant, which was complemented by overexpression of the wild-type gene. These results suggest that the putative Ca(2+)-permeable channel determines sensitivity to the elicitor and plays a role as a key regulator of elicitor-induced defense responses, activation of MAPK cascade and hypersensitive cell death.  相似文献   

6.
Jian Wen Wang  Jian Yong Wu   《Nitric oxide》2004,11(4):1073-306
This work was to characterize the generation of nitric oxide (NO) in Taxus chinensis cells induced by a fungal elicitor extracted from Fusarium oxysporum mycelium and the signal role of NO in the elicitation of plant defense responses and secondary metabolite accumulation. The fungal elicitor at 10-100 microg/ml (carbohydrate equivalent) induced a rapid and dose-dependent NO production in the Taxus cell culture, which exhibited a biphasic time course, reaching the first plateau within 1 h and the second within 12 h of elicitor treatment. The NO donor sodium nitroprusside potentiated elicitor-induced H2O2 production and cell death but had little influence on elicitor-induced membrane K+ efflux and H+ influx (medium alkalinization). NO inhibitors Nomega-nitro-L-arginine and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide partially blocked the elicitor-induced H2O2 production and membrane ion fluxes. Moreover, the NO inhibitors suppressed elicitor-induced activation of phenylalanine ammonium-lyase and accumulation of diterpenoid taxanes (paclitaxel and baccatin III). These results suggest that NO plays a signal role in the elicitor-induced responses and secondary metabolism activities in the Taxus cells.  相似文献   

7.
8.
The response of plant cells to invading pathogens is regulated by fluctuations in cytosolic Ca2+ levels that are mediated by Ca2+-permeable channels located at the plasma membrane of the host cell. The mechanisms by which fungal elicitors can induce Ca2+ uptake by the host cell were examined by the application of conventional patch-clamp techniques. Whole-cell and single-channel experiments on tomato (Lycopersicon esculentum L.) protoplasts revealed a race-specific fungal elicitor-induced activation of a plasma membrane Ca2+-permeable channel. The presence of the fungal elicitor resulted in a greater probability of channel opening. Guanosine 5[prime]-[[beta]-thio]diphosphate, a GDP analog that locks heterotrimeric G-proteins into their inactivated state, abolished the channel activation induced by the fungal elicitor, whereas guanosine 5[prime][[gamma]-thio]triphosphate, a nonhydrolyzable GTP analog that locks heterotrimeric G-proteins into their activated state, produced an effect similar to that observed with the fungal elicitor. Mastoparan, which stimulates GTPase activity, mimicked the effect of GTP[[gamma]]S. The addition of HA1004 (a protein kinase inhibitor) in the presence of the elicitor totally abolished channel activity, whereas okadaic acid (a protein phosphatase inhibitor) moderately enhanced channel activity, suggesting that the activation of the channel by fungal elicitors is modulated by a heterotrimeric G-protein-dependent phosphorylation of the channel protein.  相似文献   

9.
10.
Suspension-cultured barley cells responded to treatments with crude yeast extract and purified glucan preparation by rapidly and transiently (4 h postelicitation) inducing L-phenylalanine ammonia-lyase activity. Similarly, treatment of cell cultures with chitosan resulted in increased phenylalanine ammonia-lyase activity 2–4 h after elicitation, whereas a mycelium preparation of a fungal pathogen, Bipolaris sorokiniana, and purified chitin caused a more delayed induction of phenylalanine ammonia-lyase (8 h postelicitation). The most abundant of the plant cell wall degrading enzymes produced by Bipolaris sorokiniana, β-1,4-xylanase, had only a weak elicitor activity in barley cells suggesting that fungal cell wall components rather than the hydrolytic enzymes secreted by the fungus function as recognizable components that cause barley cells to induce defences. Treatment of the elicited cells with a phenylalanine ammonia-lyase inhibitor, α-aminooxy-β-phenylpropionic acid, resulted in the superinduction of the enzyme indicating the blocking of the feedback regulation mechanisms, whereas in the presence of 1 mM trans-cinnamic acid the elicitor-induction of phenylalanine ammonia-lyase was completely inhibited. Elicitor treatments increased the accumulation of wall-bound phenolics as evidenced by phloroglucinol-HCl staining and thioglycolic acid methods. However, α-aminooxy-β-phenylpropionic acid applied in combination with the elicitor did not prevent the accumulation of phenolics in barley cell walls. This suggested that phenylalanine ammonia-lyase might not play an important role in the synthesis wall-bound phenolic compounds in barley. However, cinnamic acid, whether applied alone or together with the elicitor, increased the amount of wall-bound phenolics in suspension-cultured barley cells. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
After determining that hydrogen peroxide (H2O2) accumulation induced by a fungal elicitor from Aspergillus niger was from the superoxide dismutase-catalyzed dismutation of superoxide radical, the site of H2O2 generation in cell suspension cultures of Taxus chinensis was studied. The results showed that 90% and 10% of the elicitor-induced H2O2 accumulation respectively appeared in intracellular and extracellular fractions of cells, and that the elicitor-induced H2O2 accumulation in protoplasts and plasma membranes was similar to that in intact cells, indicating that the site of H2O2 accumulation was plasma membranes but not in extracellular fraction of Taxus cells. The H2O2 forming enzyme was also investigated. The elicitor-induced H2O2 accumulation in intact cells was not changed by loss of apoplastic peroxidase (POD) by the washing, and the H2O2 accumulation in plasma membranes was inhibited by the mammalian neutrophil NAD(P)H oxidase inhibitor diphenylene iodonium (DPI), but was slightly affected by exogenous POD and its inhibitor. Furthermore, in plasma membranes, the H2O2 accumulation was more significantly enhanced by NADPH than by NADH, and the former was more obviously decreased by DPI than the latter. The present results show that NADPH oxidase in plasma membranes is involved in H2O2 accumulation in fungal elicitor-induced Taxus chinensis cell cultures.  相似文献   

12.
13.
The role of reversible phosphorylation of the host plasma membrane H+-ATPase in signal transduction during the incompatible interaction between tomato cells and the fungal pathogen Cladosporium fulvum was investigated. Tomato cells (with the Cf-5 resistance gene) or isolated plasma membranes from Cf-5 cells treated with elicitor preparations from race 2.3 or 4 of C. fulvum (containing the avr5 gene product) showed a marked dephosphorylation of plasma membrane H+-ATPase. Similar treatment with elicitor preparations from races 5 and 2.4.5.9.11 (lacking the avr5 gene product) showed no change in dephosphorylation. Elicitor (race 4) treatment of cells, but not of isolated plasma membranes, for 2 hr resulted in rephosphorylation of the ATPase via Ca2+-dependent protein kinases. The initial (first hour) rephosphorylation was enhanced by protein kinase C (PKC) activators and was prevented by PKC inhibitors. Activity of a second kinase appeared after 1 hr and was responsible for the continuing phosphorylation of the H+-ATPase. This latter Ca2+-dependent kinase was inhibited by a calmodulin (CaM) antagonist and by an inhibitor of Ca2+/CaM-dependent protein kinase II. The activation of the Ca2+/CaM-dependent protein kinase depended on the prior activation of the PKC-like kinase.  相似文献   

14.
In order to analyze intracellular signal transduction, we investigated the mechanism of chemical elicitor action by single-cell transient assay using green fluorescent protein (GFP) as a reporter gene. When the elicitor was applied from outside the cell into which the chitinase promoter and GFP reporter were introduced beforehand, fluorescence emission of GFP was observed. In contrast, when the elicitor was introduced in the cell to let the elicitor act from inside, no emission was observed. Addition of further elicitor from outside, however, did cause GFP emission. Therefore, it is clear that the elicitor does not act after entering the cell but that its signal is transduced into the cell via the cell membrane.  相似文献   

15.
The interaction between Botrytis cinerea Pers. and grapevine (Vitis vinifera L.) was studied in a model system of reduced complexity. Cultured plant cells and fragments of fungal cell wall were used to simulate some of the processes taking place upon infection of grapevine with B. cinerea. A soluble glucan elicitor was prepared from the fungal cell wall by acid hydrolysis. Like the insoluble wall preparation, the soluble fragment derived from the cell wall acted upon plant cells in eliciting stilbene formation. In grapevine cells, the interaction with the fungus led to a dramatic shut-off general protein synthesis and to the selective formation of a small set of proteins involved in induced resistance. The proteins synthesized de novo with highest rates were stilbene synthase (StiSy) and l-phenylalanine ammonia-lyase (PAL). Stilbene synthase was purified to apparent homogeneity and its molecular properties were characterized. The enzyme is a homodimer with subunit Mr 43 000 and pl = 5.4. Although there were indications of the presence of isoenzymes, these were not distinguished by charge differences. In size, the grapevine StiSy shows microheterogeneity and differs from the appreciably larger enzyme prepared from peanut. Prior to induction by fungal attack, virtually no stilbenes are formed in the plant cell. Upon induction of the pathway leading to the stilbene resveratrol, StiSy activity determines the ratelimiting step in the metabolic sequence. The highly induced grapevine cells produce and secrete resveratrol and derivatives which are known to be fungistatic.Abbreviations PAL l-phenylalanine ammonia-lyase - SDS-PAGE sodium dodecyl sulfate-polyacrylamine gel electrophoresis - StiSy stilbene synthase (resveratrol forming) The authors thank Dr. Blaich, Bundesforschungsanstalt Geilweilerhof, Siebeldingen, F.R.G., for provision of callus culture. This paper is based on research supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.  相似文献   

16.
茶条槭(Acer ginnala Maxim.)叶片中含有没食子酸,但含量较低。真菌诱导子可以增加植物中一些次生代谢产物的含量,但其机理尚不十分清楚。本研究在茶条槭细胞悬浮培养的对数期加入内生真菌(Phomopsis sp.)诱导子,茶条槭细胞中没食子酸含量在24 h后开始增加,48 h时没食子酸含量达到峰值,最高含量为12.2 mg·g-1 DW,是对照的1.58倍。茶条槭细胞对内生真菌诱导子的防御反应不同于对病原和非生物胁迫。真菌诱导子不提高培养液中pH值,也不明显增加胞内Ca2+浓度,但增大细胞膜通透性。培养液电导率差异显著,细胞核发生分裂,说明真菌诱导子可能促进茶条槭细胞核内有丝分裂,促使茶条槭细胞对培养液中的无机盐离子的吸收,以满足细胞生长的需要。PAL酶活性升高,在48 h时为对照的1.75倍,说明PAL酶可能参与了真菌诱导没食子酸的合成。  相似文献   

17.
Cell suspension cultures of Eschscholtzia californica produce relatively large amounts of benzophenanthridine alkaloids upon elicitation. Sodium orthovanadate is used as an abiotic elicitor to induce alkaloid biosynthesis in cultures of E. californica. The response of the cell culture to this abiotic elicitor is very similar to that observed after elicitation with a biotic elicitor (a carbohydrate fraction from yeast extract). Treatment with orthovanadate leads to alkalinization of the growth medium, a 20-fold induction of the key enzyme tyrosine decarboxylase and increased alkaloid formation (up to 40 mg.L–1). Cells treated with the yeast elicitor excrete a large portion of alkaloids produced into the growth medium (up to 50 % of total alkaloids) while cells treated with orthovanadate release very small amounts of alkaloids into the medium (less than 10 % of total alkaloids). These results suggest that an active transport system, possibly specific for benzophenanthridine alkaloids, is present in the plasma membrane of E. californica cells. The nature of this putative vanadate-sensitive transporter is not known at present.  相似文献   

18.
Summary Cell suspension cultures of alfalfa (Medicago sativa L.) accumulated phenolic secondary metabolites in a pattern similar to that seen in alfalfa roots. Upon treatment with a crude elicitor preparation from the bean pathogen Colletotrichum lindemuthianum, the pterocarpan phytoalexin medicarpin accumulated in cells and culture medium. The extractable activities of six enzymes involved in medicarpin biosynthesis (including three cytochrome P450 activities) were induced by treatment with elicitor, and their induction kinetics correlated with the rate of medicarpin accumulation. However, protoplasts prepared from these cultures accumulated neither medicarpin nor other secondary products after treatment with elicitor. The cytochrome P450 activities were induced during the preparation of the protoplasts, but could be further induced by treatment with fungal elicitor. The results are discussed in relation to the use of alfalfa protoplasts as a system for functional analysis of cloned defense genes.Abbreviations AUFS absorption unit full scale - CHI chalcone isomerase (EC 5.5.1.6) - CHS chalcone synthase (EC 2.3.1.74) - C40H cinnamic acid 4-hydroxylase (EC 1.14.13.11) - CLE elicitor from Colletotrichum lindemuthianum - IFOH isoflavone 2-hydroxylase - IFS isoflavone synthase - PAL L-phenylalanine ammonia-lyase (EC 4.3.1.5)  相似文献   

19.
Binding experiments as well as affinity labeling with an (125)I-labeled 2-(4-aminophenyl)ethylamino derivative of N-acetylchitooctaose revealed the presence of high-affinity binding sites/proteins for N-acetylchitooligosaccharide elicitor in the plasma membrane preparation from suspension-cultured carrot cells, barley cells and wheat leaves. Their binding specificity corresponded with the elicitor activity of N-acetylchitooligosaccharides and related sugars in these plant cells/tissues, and was similar to that reported for the binding site/protein previously reported for suspension-cultured rice cells. The molecular size of the binding proteins identified in carrot, barley and wheat was slightly smaller than that of rice. These plant cells were shown to respond to N-acetylchitooligosaccharides and generate reactive oxygen species, induced medium alkalinization, or previously shown to initiate lignification (wheat leaves, Barber et al. (1989) Physiol. Mol. Plant Pathol. 34: 3). No elicitor-binding protein nor the elicitor-induced cellular responses was detected for a cell line of tobacco BY-2 (BY-2T). On the other hand, another cell line of tobacco BY-2 (BY-2N) showed the presence of elicitor-binding protein and also elicitor-induced medium alkalinization. Thus, there was a good correlation between the existence of high-affinity binding proteins for the elicitor and elicitor-induced cellular responses among tested plant cells. These results indicated the wide distribution of N-acetylchitooligosaccharide elicitor-binding protein among various plants and added further support for the function of these plasma membrane proteins in the perception of the elicitor signal.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号