首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
目的:利用Mini—Tn5转座系统在葡糖杆菌中表达山梨糖脱氢酶(SDH)。方法:分离得到从山梨醇产糖的快生型小菌Y25K2,利用PCR方法扩增并分析快生型小菌的16SrDNA;构建pUT-mini—Tn5-Tet转座载体,将SDH基因(sdh)插入该载体,利用接合转移,将sdh整合至快生型小菌Y25K2的染色体,通过Western印迹检测SDH的表达。结果:16SrDNA鉴定结果初步表明快生型小菌为葡糖杆菌;构建得到pUT-mini—Tn5-Tet-sdh,将sdh整合至快生型菌Y25K2基因组,并检测到其在快生型小菌Y25K2中的表达。结论:利用Mini—Tn5转座系统在葡糖杆菌中表达了山梨糖脱氢酶。  相似文献   

2.
目的:从氧化葡糖杆菌H763中克隆sndh-sdh基因簇,在大肠杆菌和氧化葡糖杆菌621H中分别表达山梨酮脱氢酶-山梨糖脱氢酶(SNDH-SDH),并检测其活性。方法与结果:以氧化葡糖杆菌H763基因组DNA为模板,PCR扩增包括启动子、结构基因及终止序列在内的sndh-sdh基因簇,回收3533 bp的扩增产物,连入pMD18T载体,转化至大肠杆菌DH5α中表达;以山梨糖或木糖为底物,DCIP法检测菌体裂解液,DCIP检测液颜色由蓝绿色变为黄色,表明大肠杆菌表达产物具有脱氢酶活性。构建pBBR1MCS2-sndh-sdh载体,通过接合转移导入氧化葡糖杆菌621H,重组葡糖杆菌在以山梨醇或山梨糖为底物的培养基中培养,采用薄层层析检测法检测其培养上清中的代谢产物,层析板上显示了2-酮基-L-古龙酸斑点。结论:重组大肠杆菌DH5α和氧化葡糖杆菌621H中均表达了有脱氢酶活性的SNDH-SDH。  相似文献   

3.
吡咯喹啉醌(Pyrroloquinoline quinone,PQQ)是一种重要的氧化还原酶辅基,具有多种生理生化功能,在食品、医药卫生及农业等领域具有广泛的应用。文中采用重组氧化葡萄糖酸杆菌生物合成吡咯喹啉醌。首先构建丙酮酸脱羧酶基因GOX1081敲除的重组菌G. oxydans T1,减少副产物乙酸的形成。然后利用筛选的内源性组成型启动子P0169融合表达pqqABCDE基因簇及tldD基因,构建重组菌G. oxydans T2。最后对发酵培养基添加物和发酵条件进行优化。结果显示重组菌G. oxydans T1、G. oxydans T2生物量较野生菌分别提高43.02%和38.76%,而PQQ的产量分别是野生菌的4.82倍和20.5倍。进一步优化G. oxydans T2碳源及培养条件,最终PQQ产量达(51.3241±0.8997)mg/L,是野生菌的345.62倍。通过基因工程手段,可以有效提高氧化葡萄糖酸杆菌的生物量和合成PQQ的产量,为改善PQQ生物合成效率奠定基础。  相似文献   

4.
甲基营养菌MP688萄糖脱氢酶基因分离鉴定及性质研究   总被引:1,自引:0,他引:1  
目的:鉴定甲基营养菌MP688中的葡萄糖脱氢酶基因。方法:对甲基营养菌MP688基因组序列进行比对和分析,找到与已知细菌葡萄糖脱氢酶同源性最高的基因序列mpq_2164,且该基因所编码蛋白经分析具有跨膜结构域。设计51物扩增mpq_2164和缺失跨膜区域序列的s-mpq_2164,将PCR产物克隆到表达载雄pET-15b上,在大肠杆菌BL21中完成异源重组表达,然后通过组氨酸标签镍柱亲和层析纯化,采用DCIP法测定葡萄糖脱氢酶的活力。结果:分离了甲基营养菌MP688中的葡糖糖脱氢酶基因,并实现了s-mpq_2164的高效异源重组表达;MPQ2164的氯基酸序列与已知的葡萄糖脱氢酶相似性很低,但酶活测定结果表明S-MPQ-2164具有很高的葡糖糖脱氢酶活性。结论:MPQ_2164是-个依赖于吡咯喹啉醌的葡萄糖脱氢酶,去掉跨膜结构域有利于该蛋白的异源嘉{大,  相似文献   

5.
目的:在乙酸钙不动杆菌Y2004中表达山梨糖脱氢酶。方法:将酮古龙酸菌山梨糖脱氢酶基因sdh以及从pWH1266质粒上扩增的复制原点ori先后酶切连接到pBBR1MCS2质粒上,构建pBBR1MCS2-ori-sdh穿梭质粒;再以pBBR1MCS2-ori-sdh/DH5α为供体菌、乙酸钙不动杆菌Y2004为受体菌、pRK2013/HB101为辅助菌进行三亲本接合转移;从氨苄青霉素和卡那霉素双抗平板上挑取转化子进行培养,通过菌落PCR和提取质粒复转筛选阳性克隆,再通过活性电泳和体外糖酸转化实验检测阳性克隆的山梨糖脱氢酶活性。结果:构建了pBBRMCS2-ori-sdh质粒并转入乙酸钙不动杆菌Y2004中,活性电泳和体外实验证实阳性克隆具有山梨糖脱氢酶活性。结论:实现了山梨糖脱氢酶在乙酸钙不动杆菌Y2004中的表达,为单菌糖酸转化的进一步研究奠定了基础。  相似文献   

6.
万慧  康振  李江华  周景文 《微生物学报》2016,56(10):1656-1663
【目的】研究高浓度的2-KLG对其生产菌株氧化葡萄糖酸杆菌生产过程中关键的脱氢酶合成基因、辅因子合成基因及其转运蛋白编码基因的影响。【方法】测定高浓度梯度2-KLG下氧化葡萄糖酸杆菌的生长情况,确定合适的添加浓度对氧化葡萄糖酸杆菌进行胁迫。使用实时定量PCR技术检测2-KLG合成中关键山梨醇脱氢酶基因sld AB、关键辅因子PQQ合成基因pqq ABCDE及5个潜在转运蛋白合成基因的变化。【结果】根据氧化葡萄糖酸杆菌在2-KLG高浓度梯度下生长测定实验结果,选定40、80和120 g/L 2-KLG作为添加浓度。实时定量PCR结果显示,在高浓度的2-KLG压力下,PQQ合成基因pqq ABCDE未受到显著影响,山梨醇脱氢酶基因sld AB以及部分PQQ潜在转运蛋白编码基因的表达均显著下调。【结论】高浓度2-KLG会抑制氧化葡萄糖酸杆菌中山梨醇脱氢酶基因的表达,有可能会影响辅酶PQQ的转运,但不会显著影响辅酶PQQ的合成。  相似文献   

7.
氧化葡糖杆菌(Gluconobacter oxydans)来源的山梨醇脱氢酶可催化N-羟乙基葡萄糖胺合成6-脱氧-6-氨基(N-羟乙基)-α-L-呋喃山梨糖,即合成降血糖药物米格列醇的关键中间体。本文采用适应性驯化策略,以甘油为唯一碳源,通过40 g/L、60 g/L、80 g/L和100 g/L甘油梯度连续传代培养,筛选获得了一株以甘油为碳源的高活力菌株G.oxydans A-3-D,扫描电镜结果表明该细胞表面褶皱较原始菌株有显著增加。在80 g/L甘油培养基摇瓶培养24 h后,菌体浓度为4.58 g DCW/L,山梨醇脱氢酶的发酵体积酶活与比酶活分别为原始菌株G.oxydans ZJB-605的1.3倍及1.5倍。此外,在摇瓶培养条件下对影响催化反应进程的关键因素进行了考查,结果表明在摇瓶体系中,G.oxydans A-3-D的最适催化反应条件为80.0 g/L底物、2.0 g DCW/L菌体细胞、20 mmol/L Mg~(2+)浓度,15℃反应48 h后底物转化率达到90.8%,6NSL累积浓度为72.6 g/L,较G.oxydans ZJB-605有显著提升。  相似文献   

8.
维生素C发酵中伴生菌对氧化葡糖杆菌的影响   总被引:16,自引:0,他引:16  
通过分析维生素C二步发酵过程中活菌数、产酸量、pH、糖酸转化活力等 ,研究了蜡状芽孢杆菌 (俗称大菌 )对氧化葡糖杆菌 (俗称小菌 )生长和产酸的影响。结果表明 ,在大菌存在情况下 ,小菌的活菌数约为单菌培养条件下的 5倍 ,产酸量为单菌培养条件下的 2~ 3倍 ,糖酸转化活力为单菌培养条件下的 2~ 3倍 ,提示在混合菌发酵条件下大菌仅仅是通过刺激小菌的生长而促进小菌产酸。用小菌休止细胞进行的糖酸转化实验结果也表明 ,无论大菌的发酵上清液还是破碎的菌体 ,都未发现对小菌产酸产生直接影响。  相似文献   

9.
【目的】获得葡萄糖酸氧化杆菌(Gluconobacter oxydans CGMCC 1.637)的木糖醇脱氢酶基因,研究其酶学性质及碳源特别是D-阿拉伯醇和木糖醇对该酶活性的影响。【方法】通过已报道序列的木糖醇脱氢酶的保守区设计引物,用聚合酶链式反应(polymerase chain reaction,PCR)扩增获得目的基因片段。根据获得的片段序列设计引物克隆目的基因的5’和3’片段,将所获得的片段拼接,获得完整的木糖醇脱氢酶基因。通过构建工程菌获得重组蛋白,并利用氧化还原反应测定重组酶的活性。用含不同碳源的培养基培养G.oxydans CGMCC 1.637,并测定其破胞上清液木糖醇脱氢酶氧化木糖醇的活性;用不同碳源培养的G.oxydans CGMCC 1.637转化木酮糖,用高效液相色谱法测定木糖醇的产量。【结果】获得一个新的798bp的木糖醇脱氢酶基因,所编码的木糖醇脱氢酶含265个氨基酸,属于短链脱氢酶家族。酶学性质研究发现,该木糖醇脱氢酶催化木糖醇氧化的最适合条件为35℃、pH 10.0,最高活性为23.27 U/mg,催化木酮糖还原为木糖醇的最适条件为30℃、pH 6.0。最高活性为255.55 U/mg;该木糖醇脱氢酶的对木糖醇的Km和Vmax分别为78.97 mmol/L和40.17 U/mg。碳源诱导实验表明,d-山梨醇对G.oxydans CGMCC 1.637木糖醇脱氢酶的活性有明显的促进作用,而葡萄糖、果糖、木糖、木糖醇、D-阿拉伯醇对木糖醇脱氢酶活性有明显的抑制作用。而在转化实验中,用d-甘露糖培养的G.oxydans CGMCC 1.637的转化能力明显高于其他碳源培养的G.oxydans CGMCC 1.637的转化能力,其中,用阿拉伯醇培养的G.oxydans CGMCC 1.637的转化能力最低,仅为对照的35%。【结论】克隆自G.oxydans CGMCC 1.637的木糖醇脱氢酶基因是一个新的基因,用阿拉伯醇培养的G.oxydans CGMCC 1.637破胞液木糖醇脱氢酶活性低;且阿拉伯醇对G.oxydans CGMCC 1.637木酮糖的还原能力具有抑制作用。  相似文献   

10.
根据NCBI上的报道的基因序列设计引物,以氧化葡萄糖酸杆菌(Gluconobacter oxydans)H24的基因组为模板,获得5-葡萄糖酸脱氢酶(Ga5DH)基因,将其与表达载体pET-28a连接,构建重组质粒pET-28a-Ga5DH,并转化大肠杆菌Rosetta进行表达。SDS-PAGE检测结果显示,表达蛋白的分子大小为26.5 kD,纯化后酶活达7.83 U/mg。酶学性质分析表明,该酶的最适反应温度为40℃,最适pH为11。在pH 9-11的缓冲中保温8 h,酶活力仍有80%以上的残余。该酶对多种有机溶剂具有良好的耐受性。  相似文献   

11.
以氧化葡萄糖酸杆菌(Gluconobacter oxydans)NH-10基因组DNA为模板,扩增得到D-阿拉伯糖醇脱氢酶基因arDH,将其克隆到大肠杆菌表达载体JM109(DE3)中进行诱导表达。SDS-PAGE电泳分析ArDH的分子量约为30 kDa,是一个短链脱氢酶,既能催化D-阿拉伯糖醇氧化为D-木酮糖,又能催化D-木酮糖还原为D-阿拉伯糖醇。催化氧化反应时,对D-阿拉伯糖醇的Km为60.67 mmol/L,Vmax为0.803 U/mg;它能同时依赖于NAD+和NADP+,但是更加偏好辅酶NAD+;最适pH为12.0。还原反应对D-木酮糖的 Km为36.39 mmol/L,Vmax为1.71 U/mg;最优pH为7.0,最适温度均为30℃。  相似文献   

12.
A NADP-dependent d-arabitol dehydrogenase gene was cloned from Gluconobacter oxydans CGMCC 1.110 and functionally expressed in Escherichia coli. With d-arabitol as sole carbon source, E. coli transformants grew rapidly in minimal medium, and produced d-xylulose. The enzymatic properties of the 29kDa enzyme were documented. The DNA sequence surrounding the gene suggested that it is part of an operon with several components of a sugar alcohol transporter system, and the d-arabitol dehydrogenase gene belongs to the short-chain dehydrogenase family.  相似文献   

13.
氧化葡萄糖酸杆菌Gluconobacter oxydans NH-10能够转化D-阿拉伯糖醇,经木酮糖生成木糖醇,但该菌中存在的NAD+型D-阿拉伯糖醇脱氢酶可将中间产物D-木酮糖还原成D-阿拉伯糖醇,从而影响木糖醇的积累.利用同源重组基因敲除的方法构建G.oxydans NH-10 NAD+型D-阿拉伯糖醇脱氢酶( sArDH)基因敲除突变株.PCR结果显示:sArDH基因在1株重组菌中完全被卡那抗性基因替代,表明sArDH基因敲除突变体构建成功.生物学特性鉴定显示:突变菌在菌落形态,生长状态方面与原始菌无明显差异.静息细胞转化D-阿拉伯糖醇结果显示,突变株不存在还原D-木酮糖产D-阿拉伯糖醇的逆反应,终产物木糖醇的产量有所提高.  相似文献   

14.
本研究构建了四株含有氧化葡萄糖酸杆菌山梨醇脱氢酶基因的重组大肠杆菌,并初步探究SldB和SldA亚基在山梨醇脱氢酶转化甘油反应中的作用。将pET28a、pETduet与PCR扩增的目的基因连接,构建单启动子调控重组质粒pET28a-sldB、pET28a-sldA、pET28a-sldBA和双启动子调控重组质粒pETduet-sldB'-sldA'。只有含pET28a-sldBA和pETduet-sldB'-sldA'的重组菌具有转化甘油的活性,表明G.oxydans WD的山梨醇脱氢酶催化甘油脱氢需要SldB和SldA亚基的共同作用。串联基因sldBA的蛋白表达结果与双启动子控制sldB和sldA基因蛋白表达结果基本相同,表明位于sldB基因末端的sldA的RBS序列可被E.coli C43的核糖体识别。  相似文献   

15.
During the fermentation process from glycerol to 1,3-dihydroxyacetone (DHA) by Gluconobacter oxydans, the increase in the concentration of glycerol shows obvious inhibition on the cell growth and DHA production. Researches on the interaction mechanism between glycerol and glycerol dehydrogenase (sldha) are important to improve the conversion rate from glycerol to DHA and to enhance the strains tolerance to glycerol. At present, the 3D structure of sldha is still unknown. So we analysed the 3D structure and then found the binding sites of glycerol with sldha. In the present study, we constructed the 3D structure of sldha by the homology modelling method based on Modeller 9v6 software. Four proteins, 1yiqA, 1kb0A, 1kv9A and 1lrwA, from Protein Data Bank were chosen as templates, since they have the highest similarities with sldha in Protein Data Bank which is 38%, 37%, 39% and 38%, respectively. The molecular dynamics simulation of constructed 3D structure of sldha by Gromacs 4.0.5 was carried out. Finally, the binding sites of Ala715 and H719 were found through the molecular docking simulation between glycerol and sldha by using Autodock 4.2.  相似文献   

16.
The 2-ketoreductase from Gluconobacter oxydans (SC 13851) catalyzes the reduction of 2-pentanone to (S)-(+)-2-pentanol. The 2-ketoreductase was purified 295-fold to homogeneity from G. oxydans cell extracts. The purified 2-ketoreductase had a molecular mass of 29 kDa with a specific activity of 17.7 U/mg. (S)-(+)-2-pentanol was prepared on a pilot scale (3.2 kg of 2-pentanone input) using Triton X-100-treated G. oxydans cells. After 46 h, 1.06 kg (32.3 M%) of (S)-(+)-2-pentanol of >99% enantiomeric excess (ee) was produced. Journal of Industrial Microbiology & Biotechnology (2000) 25, 171–175. Received 01 May 2000/ Accepted in revised form 28 June 2000  相似文献   

17.
NADP-Dependent shikimate dehydrogenae (SKDH, EC 1.1.1.25) was purified from Gluconobacter oxydans IFO 3244. SKDH showed a single protein band on native-PAGE accompanying enzyme activity. It required NADP exclusively and catalyzed only the shuttle reaction between shikimate and 3-dehydroshikimate. The optimum pH for shikimate oxidation and 3-dehydroshikimate reduction was found at pH 10 and 7 respectively. SKDH proved to be a useful catalyst for shikimate production from 3-dehydroshikimate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号