首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The frequent production of the hepatotoxin microcystin (MC) and its impact on the lifestyle of bloom-forming cyanobacteria are poorly understood. Here, we report that MC interferes with the assembly and the subcellular localization of RubisCO, in Microcystis aeruginosa PCC7806. Immunofluorescence, electron microscopic and cellular fractionation studies revealed a pronounced heterogeneity in the subcellular localization of RubisCO. At high cell density, RubisCO particles are largely separate from carboxysomes in M. aeruginosa and relocate to the cytoplasmic membrane under high-light conditions. We hypothesize that the binding of MC to RubisCO promotes its membrane association and enables an extreme versatility of the enzyme. Steady-state levels of the RubisCO CO2 fixation product 3-phosphoglycerate are significantly higher in the MC-producing wild type. We also detected noticeable amounts of the RubisCO oxygenase reaction product secreted into the medium that may support the mutual interaction of M. aeruginosa with its heterotrophic microbial community.  相似文献   

2.
Microcystins are the most common cyanobacterial toxins found in freshwater lakes and reservoirs throughout the world. They are frequently produced by the unicellular, colonial cyanobacterium Microcystis aeruginosa; however, the role of the peptide for the producing organism is poorly understood. Differences in the cellular aggregation of M. aeruginosa PCC 7806 and a microcystin-deficient Delta mcyB mutant guided the discovery of a surface-exposed protein that shows increased abundance in PCC 7806 mutants deficient in microcystin production compared to the abundance of this protein in the wild type. Mass spectrometric and immunoblot analyses revealed that the protein, designated microcystin-related protein C (MrpC), is posttranslationally glycosylated, suggesting that it may be a potential target of a putative O-glycosyltransferase of the SPINDLY family encoded downstream of the mrpC gene. Immunofluorescence microscopy detected MrpC at the cell surface, suggesting an involvement of the protein in cellular interactions in strain PCC 7806. Further analyses of field samples of Microcystis demonstrated a strain-specific occurrence of MrpC possibly associated with distinct Microcystis colony types. Our results support the implication of microcystin in the colony specificity of and colony formation by Microcystis.  相似文献   

3.
Fermentation in the unicellular cyanobacterium Microcystis PCC7806   总被引:3,自引:0,他引:3  
The cyanobacterium Microcystis PCC7806 fermented endogenously stored glycogen to ethanol, acetate, CO2, and H2 when incubated anaerobically in the dark. The switch from photoautotrophic to fermentative metabolism did not require de novo protein synthesis, and fermentation started immediately after cells had been transferred to dark anoxic conditions. From the molar ratios of the products and from enzyme activities in cell-free extracts, it was concluded that glucose derived from glycogen was degraded via the Embden-Meyerhof-Parnas pathway. In addition, CoA-dependent pyruvate:ferredoxin oxidoreductase, alcohol dehydrogenase, acetate kinase, and hydrogenase were present. The specific activities of these enzymes were sufficiently high to account for the rates of product formation by cell suspensions.  相似文献   

4.
Abstract The cyanobacterium Microcystis PCC7806 was found to possess an NAD-dependent lactate dehydrogenase (EC 1.1.1.27) which catalyzes the reduction of pyruvate to l-lactate. The enzyme required fructose 1,6-bisphosphate for activity and displayed positive cooperativity towards pyruvate. Lactate was not formed during fermentation by cell suspensions, possibly due to low intracellular concentrations of fructose 1,6-bisphosphate and/or pyruvate.  相似文献   

5.
Ferric uptake regulator (Fur) proteins are widely recognized as repressors that in many prokaryotes regulate a large number of genes involved in iron homeostasis and oxidative stress response. In our study, we were able to identify the complete sequence of the fur gene from Microcystis aeruginosa using inverse-polymerase chain reaction. DNA sequence analysis confirmed the presence of a 183 amino-acid open reading frame that showed high identity with Fur proteins reported for cyanobacteria. The recombinant Fur protein has been purified and electrophoretical mobility shift assays shown to be active. Mn2+ and dithiothreitol enable Fur to bind to its promoter, with dithiothreitol being more potent. The expression of Fur in Microcystis was induced about twofold in iron-deficient conditions.  相似文献   

6.
Toxic and nontoxic peptides were isolated from the cyanobacterium Microcystis aeruginosa PCC 7806 by a procedure including extraction of cells with water-saturated 1-butanol, chromatography of the extract on silica gel plates and high performance liquid chromatography (HPLC) on Partisil-5. The toxin was shown to be only a minor constituent, being negatively charged and thus separable by electrophoresis, within the HPLC-purified fraction. It contained erythro-β-methyl-D-Asp, D-Glu, D-Ala, L-Leu, and L-Arg known to be part of the Microcystis peptide-toxin with Mr 994. The major part of the HPLC-purified fraction was assigned, however, to a nontoxic peptide with a Mr of 956. Partial hydrolysis studies of the nontoxic peptide(s) revealed amino acid sequences composed of D-Glu, N-methyl-Phe, and 3,4-dehydro-Pro, aside from the common L-amino acids. Cyclic linkage in the nontoxic peptide(s) appears likely.  相似文献   

7.
Microcystis aeruginosa is the key symptom of water eutrophication and produces persistent microcystins. Our special attention was paid to the isocitrate dehydrogenase (IDH) of M. aeruginosa (MaIDH) because it plays important roles in energy and biosynthesis metabolisms and its catalytic product 2-oxoglutarate provides the carbon skeleton for ammonium assimilation and also constitutes a signaling molecule of nitrogen starvation in cyanobacteria. Sequence alignment showed that MaIDH shared significant sequence identity with IDHs from other cyanobacteria (>80 %) and other bacteria (>45 %). The subunit molecular weight of MaIDH was determined to be 52.6 kDa by filtration chromatography, suggesting MaIDH is a typical homodimer. The purified recombinant MaIDH was completely NADP+-dependent and no NAD+-linked activity was detectable. The K m values for NADP+ were 32.24 and 71.71 μM with Mg2+ and Mn2+ as a sole divalent cation, and DL-isocitrate linked K m values were 32.56 μM (Mg2+) and 124.3 μM (Mn2+), respectively. As compared with Mn2+, MaIDH showed about 2.5-times and 4-times higher affinities (1/K m) to NADP+ and dl-isocitrate with Mg2+. The optimum activity of MaIDH was found at pH 7.5, and its optimum temperature was 45 °C (Mn2+) and 50 °C (Mg2+). Heat-inactivation studies showed that heat treatment for 20 min at 45 °C caused a 50 % loss of enzyme activity. MaIDH was completely divalent cation dependent as other typical dimeric IDHs and Mn2+ was its best activator. Our study is expected to give a better understanding of primary metabolic enzymes in M. aeruginosa. This would provide useful basic information for the research of controlling the blue-green algae blooms through biological techniques.  相似文献   

8.
Four putative type IV pilus genes from the toxic, naturally transformable Microcystis aeruginosa PCC7806 were identified. Three of these genes were clustered in an arrangement which is identical to that from other cyanobacterial genomes. Type IV pilus-like appendages were also observed by electron microscopy.  相似文献   

9.
10.
Four putative type IV pilus genes from the toxic, naturally transformable Microcystis aeruginosa PCC7806 were identified. Three of these genes were clustered in an arrangement which is identical to that from other cyanobacterial genomes. Type IV pilus-like appendages were also observed by electron microscopy.  相似文献   

11.
The adverse effects of microcystin (MC) produced by cyanobacteria have drawn considerable attention from the public. Yet it remains unclear whether MC confers any benefits to the cyanobacteria themselves. One suggested function of MC is complexation, which may influence the bioaccumulation and toxicity of trace metals. To test this hypothesis, we examined Cd toxicity to wild-type Microcystis aeruginosa PCC 7806 (WT) and its MC-lacking mutant (MT) under nutrient-enriched (+NP), phosphorus-limited (-P), and nitrogen-limited (-N) conditions. The accumulation of Cd and the biochemical parameters associated with its detoxification [total phosphorus (TP), inorganic polyphosphate (Poly-P), and glutathione (GSH) in the cells as well as intra- and extra-cellular carbohydrates] were quantified. Although the –P cyanobacteria accumulated less Cd than their +NP and –N counterparts, the different nutrient-conditioned cyanobacteria were similarly inhibited by similar free ion concentration of Cd in the medium ([Cd2+]F). Such good toxicity predictability of [Cd2+]F was ascribed to the synchronous decrease in the intracellular concentrations of Cd and TP. Nevertheless, Cd toxicity was still determined by the intracellular Cd to phosphorus ratio (Cd/P), in accordance with what has been reported in the literature. On the other hand, the concentrations of TP, Poly-P, and carbohydrates went up, but GSH concentration dropped down with the enhancement of [Cd2+]F, indicating their association with Cd detoxification. Although the inactivation of MC peptide synthetase gene had some nutrient and Cd concentration dependent effects on the parameters above, both cyanobacterial strains showed the same Cd accumulation ability and displayed similar Cd sensitivity. These results suggest that MC cannot affect metal toxicity either by regulating metal accumulation or by altering the detoxification ability of the cyanobacteria. Other possible functions of MC need to be further investigated.  相似文献   

12.
三种柑橘类果皮提取物对铜绿微囊藻生长的影响   总被引:1,自引:0,他引:1  
通过分析测定生物量、叶绿素a含量以及叶绿素荧光参数,研究了3种柑橘类果皮甲醇提取液对铜绿微囊藻生长的影响。结果表明,3种提取液都能有效抑制铜绿微囊藻的生长、叶绿素a合成与光合系统Ⅱ(PSⅡ)活性,并且抑制效果随着作用浓度增加而增强。3种提取液抑制作用强弱的顺序为:蜜橘〉西柚〉脐橙。当蜜橘皮提取液浓度大于1.10g/L时,抑藻效果显著(P〈0.05),培养9d后对铜绿微囊藻生长的抑制率达到86.4%,且在实验期间抑制作用没有减弱。当脐橙皮与西柚皮提取液的浓度大于3.31g/L时,抑藻效果显著(P〈0.05),但培养5d后抑制作用开始减弱。据此推测,3种柑橘类果皮提取液中存在一类或几类物质,能够抑制铜绿微囊藻的叶绿素a合成,降低PSⅡ活性,从而降低其光合作用效率,导致铜绿微囊藻的生长受到抑制。且这类物质能自然降解,随着作用时间的延长,其抑藻效果也逐渐消失。  相似文献   

13.
The paper describes the characterization of proteases in the whole body homogenate of Moina macrocopa, which can possibly be inhibited by the extracts of Microcystis aeruginosa PCC7806. With the use of oligopeptide substrates and specific inhibitors, we detected the activities of trypsin, chymotrypsin, elastase and cysteine protease. Cysteine protease, the predominant enzyme behind proteolysis of a natural substrate, casein, was partially purified by gel filtration. The substrate SDS-polyacrylamide gel electrophoresis of body homogenate revealed the presence of nine bands of proteases (17-72 kDa). The apparent molecular mass of an exclusive cysteine protease was 60 kDa, whereas of trypsin, it was 17-24 kDa. An extract of M. aeruginosa PCC7806 significantly inhibited the activities of trypsin, chymotrypsin and cysteine protease in M. macrocopa body homogenate at estimated IC(50) of 6- to 79-microg dry mass mL(-1). Upon fractionation by C-18 solid-phase extraction, 60% methanolic elute contained all the protease inhibitors, and these metabolites could be further separated by reverse-phase liquid chromatography. The metabolites inhibitory to M. macrocopa proteases also inhibited the corresponding class of proteases of mammalian/plant origin. The study suggests that protease inhibition may contribute to chemical interaction of cyanobacteria and crustacean zooplankton.  相似文献   

14.
Batch culture experiments with the cyanobacterium Microcystis aeruginosa PCC 7806 were performed in order to test the hypothesis that microcystins (MCYSTs) are produced in response to a relative deficiency of intracellular inorganic carbon (C(i,i)). In the first experiment, MCYST production was studied under increased C(i,i) deficiency conditions, achieved by restricting sodium-dependent bicarbonate uptake through replacement of sodium bicarbonate in the medium with its potassium analog. The same experimental approach was used in a second experiment to compare the response of the wild-type strain M. aeruginosa PCC 7806 with its mcyB mutant, which lacks the ability to produce MCYSTs. In a third experiment, the impact of varying the C(i,i) status on MCYST production was examined without suppressing the sodium-dependent bicarbonate transporter; instead, a detailed investigation of a dark-light cycle was performed. In all experiments, a relative C(i,i) deficiency was indicated by an elevated variable fluorescence signal and led to enhanced phycocyanin cell quotas. Higher MCYST cell quotas (in the first and third experiments) and increased total (intracellular plus extracellular) MCYST production (in the first experiment) were detected with increased C(i,i) deficiency. Furthermore, the MCYST-producing wild-type strain and its mcyB mutant showed basically the same response to restrained inorganic carbon uptake, with elevated variable fluorescence and phycocyanin cell quotas with increased C(i,i) deficiency. The response of the wild type, however, was distinctly stronger and also included elevated chlorophyll a cell quotas. These differences indicate the limited ability of the mutant to adapt to low-C(i,i) conditions. We concluded that MCYSTs may be involved in enhancing the efficiency of the adaptation of the photosynthetic apparatus to fluctuating inorganic carbon conditions in cyanobacterial cells.  相似文献   

15.
《Harmful algae》2011,10(6):613-619
Photosynthetic response of Microcystis aeruginosa PCC7806 to different concentrations of phosphorus supply was studied so as to elucidate if the declining process of Microcystis bloom under freshwater ecosystem is related to soluble reactive phosphorus (SRP) decrease in water volume. Growth rate of M. aeruginosa PCC7806 was significantly reduced under P-deficient conditions, and its photosynthetic activity in terms of rETRmax (maximum electron transport rate) decreased significantly after 48 h growth, while it kept elevating and reached to a relative stable value when supplied with rich phosphorus of 0.6 mg/L. With the increasing actinic irradiance along the rapid light curves of M. aeruginosa PCC7806 cultured under low-phosphorus level, qP (photochemical quenching) and rETR (relative electron transport rate) decreased greatly, and the increase in qN (non-photochemical quenching) and ΦPS (actual photochemical efficiency of PSII) was obviously inhibited. The affinity of M. aeruginosa PCC7806 to inorganic carbon was reduced evidently in 0.02 mg/L P compared with in 0.6 mg/L P. When P was reduced from 0.6 to 0.02 mg/L, the decreasing rate of rETRmax (77%) was significantly greater than that of photosynthetic carbon assimilation (22%), which indicated that down-regulation of CO2 affinity caused by P-deficiency was, but not the only reason that resulted in the decline of photosynthetic efficiency. Instantaneous low-temperature significantly limited rETRmax under rich-P condition but had no effect on it when P was insufficient, and 1% ethanol could enhance rETRmax at low-P level but did not influence it at rich-P level. These two results proved that the decrease in thylakoid membrane fluidity caused by P-deficiency was another important reason that results in the decline of photosynthetic efficiency of M. aruginosa PCC7806.  相似文献   

16.
Batch culture experiments with the cyanobacterium Microcystis aeruginosa PCC 7806 were performed in order to test the hypothesis that microcystins (MCYSTs) are produced in response to a relative deficiency of intracellular inorganic carbon (Ci,i). In the first experiment, MCYST production was studied under increased Ci,i deficiency conditions, achieved by restricting sodium-dependent bicarbonate uptake through replacement of sodium bicarbonate in the medium with its potassium analog. The same experimental approach was used in a second experiment to compare the response of the wild-type strain M. aeruginosa PCC 7806 with its mcyB mutant, which lacks the ability to produce MCYSTs. In a third experiment, the impact of varying the Ci,i status on MCYST production was examined without suppressing the sodium-dependent bicarbonate transporter; instead, a detailed investigation of a dark-light cycle was performed. In all experiments, a relative Ci,i deficiency was indicated by an elevated variable fluorescence signal and led to enhanced phycocyanin cell quotas. Higher MCYST cell quotas (in the first and third experiments) and increased total (intracellular plus extracellular) MCYST production (in the first experiment) were detected with increased Ci,i deficiency. Furthermore, the MCYST-producing wild-type strain and its mcyB mutant showed basically the same response to restrained inorganic carbon uptake, with elevated variable fluorescence and phycocyanin cell quotas with increased Ci,i deficiency. The response of the wild type, however, was distinctly stronger and also included elevated chlorophyll a cell quotas. These differences indicate the limited ability of the mutant to adapt to low-Ci,i conditions. We concluded that MCYSTs may be involved in enhancing the efficiency of the adaptation of the photosynthetic apparatus to fluctuating inorganic carbon conditions in cyanobacterial cells.  相似文献   

17.
18.
19.
20.
To elucidate the changes in the proportions of microcystin (MC)-producing Microcystis, non-MC-producing Microcystis and Anabaena strains during cyanobacteria blooms, we compared their fitness under different initial biomass ratios. Culture experiments were carried out with three cyanobacterial strains: single-celled toxic Microcystis aeruginosa PCC7806 (Ma7806), single-celled nontoxic Microcystis wesenbergii FACHB-929 (Mw929) and filamentous Anabaena PCC7120 (An7120). Growth curves expressed as biovolume, Ma7806 microcystin-LR (MC-LR) content (detected with HPLC and ELISA), and the culture medium dissolved total nitrogen and dissolved total phosphorous (DTP) were measured to monitor nutrient uptake. Results suggest that the dominant strain in competition experiments between Ma7806 and An7120 was mainly controlled by the initial biomass ratio of the two strains, but there was also evidence for allelopathic interactions, where MC-LR produced by Ma7806 played an important role in the competition process. However, Mw929 was always less competitive when co-cultured with An7120 regardless of initial biomass ratio. Culture medium DTP showed significant differences between competition experiments in all sets, suggesting that Mw929 could be more suited to low phosphorus environments than Ma7806 and An7120. Overall, the competitive ability of Ma7806 was stronger than Mw929 when co-cultured with An7120 in the case of excess nutrients and the results could well unravel the seasonal succession process of cyanobacteria blooms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号