首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli K-12, polAl(-) is a mutant strain whose extracts are deficient in Kornberg deoxyribonucleic acid (DNA) polymerase activity. We have compared the mutant and parental strains on the basis of a number of responses to ultraviolet (UV) and X-irradiation. For both types of radiation, the mutant is more sensitive by approximately the same factor as measured by reduction in colony formation, depression of DNA synthesis, and enhancement of DNA degradation. The rate of repair of X-ray-induced single-strand breaks in the mutant is also slower, as is the repair of breaks after excision repair of UV damage. On the other hand, the mutant has a significant capability to reactivate UV-irradiated lambda phage, although it is almost totally deficient in the ability to carry out UV reactivation. The data indicate that the polAl mutation leaves the cells with some ability to perform excision and strand-rejoining repair but that an exonuclease, whose identity remains obscure, is the agent responsible for the extensive breakdown of the DNA in polAl(-) cells after irradiation.  相似文献   

2.
A group of genetically related ultraviolet (UV)-sensitive mutants of Saccharomyces cerevisiae has been examined in terms of their survival after exposure to UV radiation, their ability to carry out excision repair of pyrimidine dimers as measured by the loss of sites (pyrimidine dimers) sensitive to a dimer-specific enzyme probe, and in terms of their ability to effect incision of their deoxyribonucleic acid (DNA) during post-UV incubation in vivo (as measured by the detection of single-strand breaks in nuclear DNA). In addition to a haploid RAD+ strain (S288C), 11 different mutants representing six RAD loci (RAD1, RAD2, RAD3, RAD4, RAD14, and RAD18) were examined. Quantitative analysis of excision repair capacity, as determined by the loss of sites in DNA sensitive to an enzyme preparation from M. luteus which is specific for pyrimidine dimers, revealed a profound defect in this parameter in all but three of the strains examined. The rad14-1 mutant showed reduced but significant residual capacity to remove enzyme-sensitive sites as did the rad2-4 mutant. The latter was the only one of three different rad2 alleles examined which was leaky in this respect. The UV-sensitive strain carrying the mutant allele rad18-1 exhibited normal loss of enzyme-sensitive sites consistent with its assignment to the RAD6 rather than the RAD3 epistatic group. All strains having mutant alleles of the RAD1, RAD2, RAD3, RAD4, and RAD14 loci showed no detectable incubation-dependent strand breaks in nuclear DNA after exposure to UV radiation. These experiments suggest that the RAD1, RAD2, RAD3, RAD4 (and probably RAD14) genes are all required for the incision of UV-irradiated DNA during pyrimidine dimer excision in vivo.  相似文献   

3.
The mus(2)201 locus in Drosophila is defined by two mutant alleles that render homozygous larvae hypersensitive to mutagens. Both alleles confer strong in vivo somatic sensitivity to treatment by methyl methanesulfonate, nitrogen mustard and ultraviolet radiation but only weak hypersensitivity to X-irradiation. Unlike the excision-defective mei-9 mutants identified in previous studies, the mus(2)201 mutants do not affect female fertility and do not appear to influence recombination proficiency or chromosome segregation in female meiocytes.—Three independent biochemical assays reveal that cell cultures derived from embryos homozygous for the mus(2)D1 allele are devoid of detectable excision repair. 1. Such cells quantitatively retain pyrimidine dimers in their DNA for 24 hr following UV exposure. 2. No measurable unscheduled DNA synthesis is induced in mutant cultures by UV treatment. 3. Single-strand DNA breaks, which are associated with normal excision repair after treatment with either UV or N-acetoxy-N-acetyl-2-aminofluorene,* are much reduced in these cultures. Mutant cells possess a normal capacity for postreplication repair and the repair of single-strand breaks induced by X-rays.  相似文献   

4.
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that is activated by binding to DNA breaks induced by ionizing radiation or through repair of altered bases in DNA by base excision repair. Mice lacking PARP-1 and, in certain cases, the cells derived from these mice exhibit hypersensitivity to ionizing radiation and alkylating agents. In this study we investigated base excision repair in cells lacking PARP-1 in order to elucidate whether their augmented sensitivity to DNA damaging agents is due to an impairment of the base excision repair pathway. Extracts prepared from wild-type cells or cells lacking PARP-1 were similar in their ability to repair plasmid DNA damaged by either X-rays (single-strand DNA breaks) or by N-methyl-N′-nitro-N-nitrosoguanidine (methylated bases). In addition, we demonstrated in vivo that PARP-1-deficient cells treated with N-methyl-N′-nitro-N-nitrosoguanidine repaired their genomic DNA as efficiently as wild-type cells. Therefore, we conclude that cells lacking PARP-1 have a normal capacity to repair single-strand DNA breaks inflicted by X-irradiation or breaks formed during the repair of modified bases. We propose that the hypersensitivity of PARP-1 null mutant cells to γ-irradiation and alkylating agents is not directly due to a defect in DNA repair itself, but rather results from greatly reduced poly(ADP-ribose) formation during base excision repair in these cells.  相似文献   

5.
Chromosomeless “minicells” are formed by misplaced cell fissions near the polar extremities of an Escherichia coli K-12 mutant strain. Resistance (R)-factor deoxyribonucleic acid (DNA) can be introduced into minicells by segregation from an R+ (R64-11) derivative of the original mutant. We have assessed the ability of R+ minicells to correct defects produced in their plasmid DNA by ultraviolet (UV) and gamma radiations. Minicells harboring plasmid DNA, in comparison with their repair-proficient minicell-producing parents, possess (i) an equal competence to rejoin single-strand breaks induced in DNA by gamma rays, (ii) a reduced capacity for the photoenzymatic repair of UV-induced pyrimidine dimers, and (iii) a total inability to excise dimers, apparently owing to a deficiency in UV-specific endonuclease activity responsible for mediating the initial incision step in excision repair. Assuming that the DNA repair properties of R+ minicells reflect the concentration of repair enzymes located in the plasmid-containing polar caps of entire cells, these findings suggest that: (i) the enzymes responsible for rejoining single-strand breaks are distributed throughout the cell; (ii) photoreactivating enzyme molecules tend to be concentrated near bacterial DNA and to a lesser extent near plasmid DNA; and (iii) UV-specific endonuclease molecules are primarily confined to the central region of the E. coli cell and, thus, seldom segregate with R-factor DNA into minicells.  相似文献   

6.
Using strains of Escherichia coli K-12 that are deleted for the polA gene, we have reexamined the role of DNA polymerase I (encoded by polA) in postreplication repair after UV irradiation. The polA deletion (in contrast to the polA1 mutation) made uvrA cells very sensitive to UV radiation; the UV radiation sensitivity of a uvrA delta polA strain was about the same as that of a uvrA recF strain, a strain known to be grossly deficient in postreplication repair. The delta polA mutation interacted synergistically with a recF mutation in UV radiation sensitization, suggesting that the polA gene functions in pathways of postreplication repair that are largely independent of the recF gene. When compared to a uvrA strain, a uvrA delta polA strain was deficient in the repair of DNA daughter strand gaps, but not as deficient as a uvrA recF strain. Introduction of the delta polA mutation into uvrA recF cells made them deficient in the repair of DNA double-strand breaks after UV irradiation. The UV radiation sensitivity of a uvrA polA546(Ts) strain (defective in the 5'----3' exonuclease of DNA polymerase I) determined at the restrictive temperature was very close to that of a uvrA delta polA strain. These results suggest a major role for the 5'----3' exonuclease activity of DNA polymerase I in postreplication repair, in the repair of both DNA daughter strand gaps and double-strand breaks.  相似文献   

7.
Two mutants at the pyr 1 locus have been used to study the radiation sensitivity of pyrimidine auxotrophs of U. maydis. The mutant pyr 1-1 has a reduced level of thymidine nucleotides, and this is a likely basis of the sensitivity. This strain is able to excise pyrimidine dimers from its DNA and is cross-sensitive to γ-rays and nitrosoguanidine (NG) as well as to UV. A diploid heteroallelic at the pyr 1 locus was UV-sensitive but not deficient in UV-induced mitotic recombination. The results suggest that the UV sensitivity may be due to the failure of a repair DNA polymerase to fill post-excision single-strand gaps in the DNA.The mutant pyr 1-1 exhibits the property of UV recovery, and this is shown to be dependent on the presence of dimers in the DNA. A mechanism for UV recovery is proposed in which a repair system, possibly involving recombination, is induced by the UV irradiation.  相似文献   

8.
Summary The effect of the ligts-7 mutation on cell survival and the extent of DNA repair after UV (254 nm) irradiation was determined for wild-type and uvrB5 cells of E. coli K-12 at 30° and 42°C. At the restrictive temperature (42°C) the ligts-7 mutation resulted in (i) a decrease in the extent of repair of DNA incision breaks arising during the excision repair process, and (ii) a decrease in the extent of post-replicational repair of gaps in newly-synthesized DNA. These deficiencies in DNA repair correlated with increases in cellular sensitivity to killing by UV radiation. Thus, DNA ligase plays an important role in vivo in both the excision and post-replicational repair processes.  相似文献   

9.
DNA lesions caused by UV radiation are highly recombinogenic. In wild-type cells, the recombinogenic effect of UV partially reflects the processing of UV-induced pyrimidine dimers into DNA gaps or breaks by the enzymes of the nucleotide excision repair (NER) pathway. In this study, we show that unprocessed pyrimidine dimers also potently induce recombination between homologs. In NER-deficient rad14 diploid strains, we demonstrate that unexcised pyrimidine dimers stimulate crossovers, noncrossovers, and break-induced replication events. The same dose of UV is about six-fold more recombinogenic in a repair-deficient strain than in a repair-proficient strain. We also examined the roles of several genes involved in the processing of UV-induced damage in NER-deficient cells. We found that the resolvase Mus81p is required for most of the UV-induced inter-homolog recombination events. This requirement likely reflects the Mus81p-associated cleavage of dimer-blocked replication forks. The error-free post-replication repair pathway mediated by Mms2p suppresses dimer-induced recombination between homologs, possibly by channeling replication-blocking lesions into recombination between sister chromatids.  相似文献   

10.
Homologous recombination is a crucial process for the maintenance of genome integrity. The two main recombination pathways in Escherichia coli (RecBCD and RecF) differ in the initiation of recombination. The RecBCD enzyme is the only component of the RecBCD pathway which acts in the initiation of recombination, and possesses all biochemical activities (helicase, 5′-3′ exonuclease, χ cutting and loading of the RecA protein onto single-stranded (ss) DNA) needed for the processing of double stranded (ds) DNA breaks (DSB). When the nuclease and RecA loading activities of the RecBCD enzyme are inactivated, the proteins of the RecF recombination machinery, i.e., RecJ and RecFOR substitute for the missing 5′-3′ exonuclease and RecA loading activity respectively. The above mentioned activities of the RecBCD enzyme are regulated by an octameric sequence known as the χ site (5′-GCTGGTGG-3′). One class of recC mutations, designated recC*, leads to reduced χ cutting in vitro. The recC1004 strain (a member of the recC* mutant class) is recombination proficient and resistant to UV radiation. In this paper, we studied the effects of mutations in RecF pathway genes on DNA repair (after UV and γ radiation) and on conjugational recombination in recC1004 and recC1004 recD backgrounds. We found that DNA repair after UV and γ radiation in the recC1004 and recC1004 recD backgrounds depends on recFOR and recJ gene products. We also showed that the recC1004 mutant has reduced survival after γ radiation. This phenotype is suppressed by the recD mutation which abolishes the RecBCD dependent nuclease activity. Finally, the genetic requirements for conjugational recombination differ from those for DNA repair. Conjugational recombination in recC1004 recD mutants is dependent on the recJ gene product. Our results emphasize the importance of the canonical χ recognition activity in DSB repair and the significance of interchange between the components of two recombination machineries in achieving efficient DNA repair.  相似文献   

11.
Summary The mutation recL152 leads to a reduction of excision repair as measured by an increase in the time required to close uvrA uvrB dependent incision breaks, and by a reduction of host cell reactivation ability. Postreplication repair is also delayed when measured in a uvrB5 recL152 double mutant. Such a determination could not be made using the recL152 single mutant because the excision defect led to an accumulation of breaks in the unlabeled high molecular weight DNA to which the labeled DNA synthesized after irradiation must attach in order to achieve normal high molecular weight. Further, the recL gene product seems to be required to rejoin breaks in parental strand DNA which are generated during postreplication repair, since such gaps accumulate in a recL152 uvrB5 double mutant but not in a recL + uvrB5 single mutant. We have noticed a striking phenotypic similarity between recL152 and polA1 and suggest that recL152 is required for full in vivo activity of DNA polymerase I.  相似文献   

12.
The size of the DNA synthetized after treatment of an excision defective E. coli strain with cis-dichlorodiammineplatinum(II) (cis-PDD) was examinated using sedimentation in alkaline sucrose gradients. DNA synthetized during a 10 minutes pulse after treatment with cis-PDD sediments with a molecular weight lower than control DNA from untreated cells. Post treatment incubation of the cells leads to an increase in the sedimentation rate of this DNA which approaches that of normal DNA. This last process is partially abolished in a uvr B5 rec B21 double mutant.These results suggest that single strand breaks or gaps are produced during treatment and are filled in during further reincubation as part of a post replication repair process.  相似文献   

13.
An alternative eukaryotic DNA excision repair pathway.   总被引:7,自引:2,他引:5       下载免费PDF全文
DNA lesions induced by UV light, cyclobutane pyrimidine dimers, and (6-4)pyrimidine pyrimidones are known to be repaired by the process of nucleotide excision repair (NER). However, in the fission yeast Schizosaccharomyces pombe, studies have demonstrated that at least two mechanisms for excising UV photo-products exist; NER and a second, previously unidentified process. Recently we reported that S. pombe contains a DNA endonuclease, SPDE, which recognizes and cleaves at a position immediately adjacent to cyclobutane pyrimidine dimers and (6-4)pyrimidine pyrimidones. Here we report that the UV-sensitive S. pombe rad12-502 mutant lacks SPDE activity. In addition, extracts prepared from the rad12-502 mutant are deficient in DNA excision repair, as demonstrated in an in vitro excision repair assay. DNA repair activity was restored to wild-type levels in extracts prepared from rad12-502 cells by the addition of partially purified SPDE to in vitro repair reaction mixtures. When the rad12-502 mutant was crossed with the NER rad13-A mutant, the resulting double mutant was much more sensitive to UV radiation than either single mutant, demonstrating that the rad12 gene product functions in a DNA repair pathway distinct from NER. These data directly link SPDE to this alternative excision repair process. We propose that the SPDE-dependent DNA repair pathway is the second DNA excision repair process present in S. pombe.  相似文献   

14.
A mutant of Salmonella typhimurium strain trpC3 has been isolated which is defective in mutation frequency decline (MFD) for UV-induced suppressor revertants to tryptophan independence. Several characteristics of this mutant, PW4, suggest that it is altered in the timing or rate of the general excision repair mechanism. Survival is greater in strain PW4 when the first post-irradiation cell division is delayed by the inhibition of immediate protein synthesis. Similarly, stationary phase cells, which show an extended lag after irradiation, are more UV-resistant than lag-phase cells, which recover more rapidly. These data are consistent with the hypothesis that, in contrast with the parent strain trpC3, the time available in the mutant strain for the action of excision repair is critical in the determination of survival after UV treatment. Contransductional analysis of the mutant locus indicates close linkage to metE, a region in which excision repair genes have been located.  相似文献   

15.
A mutant of Eschirichia coli B/r designated mfd has drastically reduced ability to exhibit “mutation frequency decline” (MFD) the irreversible loss of potential suppressor mutations which occurs when protein synthesis is briefly inhibited after irradiation with U.V. We have found that the initial rate of thymine dimer excision in the mfd mutant is only about one-third that of its mfd+ parent strain after a UV dose of 400 erg/mm2. The yield of UV-induced Tyr+ revertants is 4–10 times higher in the mfd strain than in the mfd+ strain. This is comparable to the level of UV-mutability in the mfd+ strain in the presence of caffeine, an inhibitor of dimer excision. UV-mutability, prophage induction and Weigle reactivation of irradiated λ phage occur to a greater extent at low UV doses (10–50 erg/mm2) in the mfd strain compared to the mfd+ strain. We propose that the slow excision repair in the mfd mutant results in a shift in the induction threshold for these UV-inducible functions toward lower UV doses.  相似文献   

16.
Alternative excision repair (AER) is a category of excision repair initiated by a single nick, made by an endonuclease, near the site of DNA damage, and followed by excision of the damaged DNA, repair synthesis, and ligation. The ultraviolet (UV) damage endonuclease in fungi and bacteria introduces a nick immediately 5′ to various types of UV damage and initiates its excision repair that is independent of nucleotide excision repair (NER). Endo IV-type apurinic/apyrimidinic (AP) endonucleases from Escherichia coli and yeast and human Exo III-type AP endonuclease APEX1 introduce a nick directly and immediately 5′ to various types of oxidative base damage besides the AP site, initiating excision repair. Another endonuclease, endonuclease V from bacteria to humans, binds deaminated bases and cleaves the phosphodiester bond located 1 nucleotide 3′ of the base, leading to excision repair. A single-strand break in DNA is one of the most frequent types of DNA damage within cells and is repaired efficiently. AER makes use of such repair capability of single-strand breaks, removes DNA damage, and has an important role in complementing BER and NER.NER and base excision repair (BER) are the major excision repair pathways present in almost all organisms. In NER, dual incisions are introduced, the damaged DNA between the incised sites is then removed, and DNA synthesis fills the single-stranded gap, followed by ligation. In BER, an AP site, formed by depurination or created by a base damage-specific DNA glycosylase, is recognized by an AP endonuclease that introduces a nick immediately 5′ to the AP site, followed by repair synthesis, removal of the AP site, and final ligation. Besides these two fundamental excision repair systems, investigators have found another category of excision repair—AER—an example of which is the excision repair of UV damage, initiated by an endonuclease called UV damage endonuclease (UVDE). UVDE introduces a single nick immediately 5′ to various types of UV lesions as well as other types of base damage, and this nick leads to the removal of the lesions by an AER process designated as UVDE-mediated excision repair (UVER or UVDR). Genetic analysis in Schizosaccharomyces pombe indicates that UVER provides cells with an extremely rapid removal of UV lesions, which is important for cells exposed to UV in their growing phase.Endo IV–type AP endonucleases from Escherichia coli and budding yeast and the Exo III–type human AP endonuclease APEX1 are able to introduce a nick at various types of oxidative base damage and initiate a form of excision repair that has been designated as nucleotide incision repair (NIR). Endonuclease V (ENDOV) from bacteria to humans recognizes deaminated bases, introduces a nick 1 nucleotide 3′ of the base, and leads to excision repair initiated by the nick. These endonucleases introduce a single nick near the DNA-damage site, leaving 3′-OH termini, and initiate repair of both the DNA damage and the nick. The mechanisms of AER may be similar to those of single-strand break (SSB) repair or BER except for the initial nicking process. However, how DNA damage is recognized determines the repair process within the cell. This article discusses the mechanisms and functional roles of AER. We begin with AER of UV damage, because genetic analysis has shown functional differences between this AER and NER in S. pombe.  相似文献   

17.
The persistence of Porphyromonas gingivalis in the inflammatory environment of the periodontal pocket requires an ability to overcome oxidative stress. DNA damage is a major consequence of oxidative stress. Unlike the case for other organisms, our previous report suggests a role for a non-base excision repair mechanism for the removal of 8-oxo-7,8-dihydroguanine (8-oxo-G) in P. gingivalis. Because the uvrB gene is known to be important in nucleotide excision repair, the role of this gene in the repair of oxidative stress-induced DNA damage was investigated. A 3.1-kb fragment containing the uvrB gene was PCR amplified from the chromosomal DNA of P. gingivalis W83. This gene was insertionally inactivated using the ermF-ermAM antibiotic cassette and used to create a uvrB-deficient mutant by allelic exchange. When plated on brucella blood agar, the mutant strain, designated P. gingivalis FLL144, was similar in black pigmentation and beta-hemolysis to the parent strain. In addition, P. gingivalis FLL144 demonstrated no significant difference in growth rate, proteolytic activity, or sensitivity to hydrogen peroxide from that of the parent strain. However, in contrast to the wild type, P. gingivalis FLL144 was significantly sensitive to UV irradiation. The enzymatic removal of 8-oxo-G from duplex DNA was unaffected by the inactivation of the uvrB gene. DNA affinity fractionation identified unique proteins that preferentially bound to the oligonucleotide fragment carrying the 8-oxo-G lesion. Collectively, these results suggest that the repair of oxidative stress-induced DNA damage involving 8-oxo-G may occur by a still undescribed mechanism in P. gingivalis.  相似文献   

18.
A polA1 exrA strain of Escherichia coli K-12 was constructed. It was found to be more sensitive to aerobic or anoxic X irradiation than were mutants containing either polA1 or exrA alone. The ability of polA1 exrA and related strains to repair X-ray-induced single-strand breaks in deoxyribonucleic acid DNA was examined. The polA1 strain was deficient in type II (buffer) repair but not in type III (growth medium-dependent) repair. The exrA strain was not deficient in type II repair but was deficient in type III repair (similar to rec strains). The double mutant polA1 exrA was deficient in both type II and type III repair. Thus, the increased X-ray sensitivity of the polA1 exrA double mutant was correlated with its decreased ability to repair X-ray-induced single-strand breaks in DNA. We have tested the hypothesis that polA rec double mutants are not viable because they lack the types II and III systems for the repair of DNA single-strand breaks. Since the polA1 exrA strain is viable and is deficient in both of these repair processes, this hypothesis seems not to be correct.  相似文献   

19.
Summary Some aspects of DNA repair in several radiation-resistant and radiation-sensitive strains of Dictyostelium discoideum were investigated by using alkaline sucrose gradients to analyze for the production and resealing of single-strand breaks following irradiation with 254 nm UV. All radiation-resistant strains and all mutants assayed that are sensitive to both UV and 60Co gamma rays produced singlestrand breaks in their nuclear DNA after a UV fluence of 15 J/m2. Mutants at the radC locus which are sensitive to UV but as resistant as their parental strains to 60Co gamma rays produced many fewer single-strand breaks in their DNA after irradiation with UV. Thus, the radC mutations alter a repair pathway specific for UV-induced DNA damage and presumably affect the activity of a UV-damage-specific endonuclease involved in excision repair. All radiation-resistant strains and all of our mutants sensitive to gamma rays rejoined much of their DNA during a three-hour post-UV-irradiation incubation, suggesting that these strains have at least a partially intact excision repair system.Abbreviations used UV ultraviolet light - PBS phosphate buffered saline - cpm counts per minute  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号