首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Key enzymes of ketone body metabolism (3-hydroxybutyrate de-hydrogenase, 3-oxo-acid: CoA transferase, acetoacetyl-CoA thiolase) and glucose metabolism (hexokinase, lactate dehydrogenase, pyruvate dehydrogenase, citrate synthase) have been measured in the brains of foetal, neonatal and adult guinea pigs and compared to those in the brains of neonatal and adult rats. The activities of the guinea pig brain ketone-body-metabolising enzymes remain relatively low in activity throughout the foetal and neonatal periods, with only slight increases occurring at birth. This contrasts with the rat brain, where three- to fourfold increases in activity occur during the suckling period (0–21 days post partum), followed by a corresponding decrease in the adult. The activities of the hexokinase (mitochondrial and cytosolic), pyruvate dehydrogenase, lactate dehydrogenase and citrate synthase of guinea pig brain show marked increases in the last 10–15 days before birth, so that at birth the guinea pig possesses activities of these enzymes similar to the adult state. This contrasts with the rat brain where these enzymes develop during the late suckling period (10–15 days after birth). The development of the enzymes of aerobic glycolytic metabolism correlate with the onset of neurological competence in the two species, the guinea pig being a "precocial" species born neurologically competent and the rat being a "non-precocial" species born neurologically immature. The results are discussed with respect to the enzymatic activities required for the energy metabolism of a fully developed, neurologically competent mammalian brain and its relative sensitivity to hypoxia.  相似文献   

2.
Rat, Mouse, and Guinea Pig Brain Development and Microtubule Assembly   总被引:4,自引:3,他引:1  
The development of in vitro microtubule assembly and of tubulin concentration have been studied during brain maturation in the mouse and the rat, two species which have postnatal brain development, and in one species which is mature at birth, the guinea pig. (a) The rate of tubulin assembly is very slow soon after birth in both the mouse and rat; it increases progressively with age until adulthood. In contrast, in the guinea pig this rate is maximal at birth and slower rates are seen only at foetal stages. (b) Postnatal changes in the lag period of assembly and in the minimal concentration of tubulin (Cc) required to obtain in vitro assembly are seen in the mouse and the rat; in contrast these parameters are constant at all postnatal stages in the guinea pig with longer lag periods and lower Cc values being seen only at foetal stages. (c) Maximal rates of assembly, minimal lag periods, and minimal Cc values are restored after addition of microtubule-associated proteins to foetal guinea pig or young mouse and rat preparations, suggesting that the difference in the kinetic parameters of assembly between these species depends on differences in the concentration or activity of these proteins. (d) Maximal tubulin concentrations are observed before birth in the guinea pig and approximately at day 10 in the rat and mouse. Lennon A. M. et al. Rat, mouse, and guinea pig brain development and microtubule assembly. J. Neurochem. 35, 804–813 (1980).  相似文献   

3.
Abstract: The content and fatty acid composition of cholesterol esters of the human brain during development from 13 weeks' gestation up to 26 months of age was studied. The three major brain areas, the forebrain, cerebellum, and the brain stem, were studied separately. The concentration of the esters in each brain region was the highest at the earliest fetal age of 13 weeks and fell during growth. However, transient rises in the concentration were observed, at about birth in the forebrain and at 4–5 months after birth in the cerebellum The peak concentration during the transient period (125–150 μg/g fresh tissue of forebrain and 100–125 μg/g of cerebellum) was similar to the concentrations observed in the two parts respectively during early fetal ages. The brain stem also showed similar transient peak at about a few weeks before birth, but only when the esters were expressed as amount per cell. In absolute terms, a clear transient period was evident in the forebrain between birth and 9 months, while in the cerebellum or the brain stem, the total amount of the esters increased up to about 1 year of age and then remained almost unchanged. The major fatty acids of the esters were palmitic, palmitoleic, stearic, oleic, linoleic and arachidonic acid. Most of these fatty acids showed certain changes in relative proportions during development. Thus, in the forebrain, palmitic and oleic acid decreased from about 32% and 40% (weight percentages) at 13–15 weeks of gestation to about 20% and 25% respectively at 26 months of age. During this period, linoleic and arachidonic acid increased from about 3% and S% to about 10% and 24%, respectively. Most of these changes occurred after birth. The cerebellum and the brain stem differed only slightly from the forebrain in either the fatty acid composition or the pattern of the developmental changes in the composition.  相似文献   

4.
Abstract: The fatty acid composition of phosphatidylethanolamine (PE), ethanolamine plasmalogens (EPs), phosphatidylserine (PS), phosphatidylcholine (PC), and sphingomyelin was studied in 22 human forebrains, ranging in age from 26 prenatal weeks to 8 postnatal years. Phospholipids were separated by two-dimensional TLC, and the fatty acid methyl esters studied by capillary column GLC. Docosahexaenoic acid (22:6n-3) increased with age in PE and PC, whereas arachidonic acid (20:4n-6) remained quite constant. In EP, 22:6n-3 increased less markedly than 20:4n-6, adrenic (22:4n-6) and oleic (18:1n-9) acids being the predominant fatty acids during postnatal age. In PS, 18:1n-9 increased dramatically throughout development, and 20:4n-6 and 22:4n-6 increased only until ∼6 months of age. Although 22:6n-3 kept quite constant during development in PS, its percentage decreased due to the accretion of other polyunsaturated fatty acids (PUFAs). As a characteristic myelin lipid, sphingomyelin was mainly constituted by very long chain saturated and monounsaturated fatty acids. Among them, nervonic acid (24:1n-9) was the major very long chain fatty acid in Sp, followed by 24:0, 26:1n-9, and 26:0, and its accretion after birth was dramatic. As myelination advanced, 18:1n-9 increased markedly in all four glycerophospholipids, predominating in EP, PS, and PC. In contrast, 22:6n-3 was the most important PUFA in PE in the mature forebrain.  相似文献   

5.
6.
The seed oils of three species (Litsea cubeba (Lour.) Pers, L. auriculata Chien et Cheng, L. subcoriacea Yang et P. H. Huang) were examined and the fatty acid composition of these oils was determined by GLC. Their major fatty acid was identified as lauric acid, Its amount ranged from 34.6%–75.4%. The major acid of the fruit coat oil from L. subcoriacea Y. H. Huang was different from that of the seed oil. The former contained 50% linoleic acid. The unsaturated C10, C12, C14 acids of the seed oil from L. cubeba (Lour.) Pers were separated by distillation, column chromatography and were identified by Periodate-Perman-ganate oxidation, IR, NMR and MS. They are cis-4-decenoic, cis-4-dodecenoic and cis-4-tetradecenoic acids respectively.  相似文献   

7.
The effect of moderate and deeper hypothermia on the phospholipid (PL) and fatty acid (FA) composition of synaptic membranes (synaptosomes) in the rat brain was investigated. As hypothermia deepened, phosphatidylcholine (PC) and phosphatidylserine (PS) levels decreased while those of phosphatidylethanolamine (PEA) remained intact. We attribute the differences both to a peculiar localization of these PL in the synaptic membrane and to a specificity of their function. Under hypothermal exposure, the saturated FA (SFA) level in the FA repertoire of total synaptosomal PL slightly decreased (by 9%) while that of polyunsaturated FA (PUFA) considerably increased, leading to a rise in the lipid unsaturation index (LUI) (by 47%) and promoting the maintenance of synaptic membrane fluidity. For three basic PL (PC, PS and PEA), the tendency was opposite: the SFA level increased while that of PUFA decreased, leading to a fall in the LUI and promoting a higher packing order of PL within the synaptic membrane. In the FA repertoire of the plasmalogen form of PEA (p-PEA), enforced hypothermia led to elevated levels both of SFA and PUFA as well as to a particularly high LUI, typical for this PL. These changes are supposed to be aimed at maintaining optimal membrane fluidity. We consider all the observed changes in lipid characteristics as adaptive, allowing the synaptic function in homeotherms to be supported as body temperature falls.  相似文献   

8.
Cellular Fatty Acid Composition of Selected Pseudomonas Species   总被引:13,自引:4,他引:13       下载免费PDF全文
The cellular fatty acid composition of 10 reference strains representing eight species of Pseudomonas was determined by gas-liquid chromatography. A variety of acids were detected in these organisms, including branched and straight-chained acids, cyclopropane, and hydroxy acids. Comparison of the presence and relative amounts of these acids among strains was useful for distinguishing various Pseudomonas species.  相似文献   

9.
The fatty acid composition of a thermophilic Bacillus sp. was altered by the addition of isobutyrate, isovalerate, alpha-methylbutyrate, leucine, and isoleucine to the growth medium. With isobutyrate, 81% of the fatty acids had 16 carbon atoms and 79% were iso-fatty acids with an even number of carbon atoms. With leucine, 58% of the fatty acids had 15 carbon atoms and 86% were iso-fatty acids with an odd number of carbon atoms. With isoleucine, 72% of the fatty acids had 17 carbon atoms and 88% were anteiso-fatty acids with an odd number of carbon atoms. Thus, by altering the composition of the growth medium, cells were produced in which the majority of the fatty acids had either 15, 16, or 17 carbons and belonged to each of the three groups of branched-chain fatty acids. The wide variation observed in the fatty acid composition makes it unlikely that any specific branched-chain fatty acid is required for vital functions.  相似文献   

10.
Studies on the relationship between cell synthesis and energy utilization in Hydrogenomonas eutropha have shown that the amount of oxidative energy required for synthetic reactions depends on the conditions of growth. The energy of hydrogen oxidation was most efficiently used when growth conditions were optimal (continuous culture, cells in exponential growth phase) and when the rate of growth was limited by H(2) or O(2) supply. Under these conditions, 2 to 2.5 atoms of oxygen were consumed by the oxyhydrogen reaction for the concomitant conversion of 1 mole of CO(2) to cell matter. This conversion efficiency, expressed as the O/C energyyield value, was observed with continuous cultures. A less efficient conversion was found with batch cultures. With limiting concentrations of CO(2) the rate of hydrogen oxidation was relatively high, and the O/C value was dependent on the growth rate. With nonlimiting concentrations of CO(2), the rate of hydrogen oxidation was strictly proportional to the rate of CO(2) fixation, and the O/C value was independent of growth rate. This proportionality between the rate of H(2) oxidation and the rate of CO(2) fixation suggested that energy supply regulates the (maximum) rate of growth. From the energy-yield measurements, we concluded that the oxidation of 1 mole of H(2) yields the equivalent of 2 moles of adenosine triphosphate for H. eutropha, and that at least 5 moles of this high-energy phosphate is required for the conversion of 1 mole of CO(2) into cellular constituents.  相似文献   

11.
A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of commercial interest, because they can be used for production of transportation fuels, bulk chemicals, nutraceuticals (ω-3 fatty acids), and food commodities. To develop commercial applications, reliable analytical methods for quantification of fatty acid content and composition are needed. Microalgae are single cells surrounded by a rigid cell wall. A fatty acid analysis method should provide sufficient cell disruption to liberate all acyl lipids and the extraction procedure used should be able to extract all acyl lipid classes.With the method presented here all fatty acids present in microalgae can be accurately and reproducibly identified and quantified using small amounts of sample (5 mg) independent of their chain length, degree of unsaturation, or the lipid class they are part of.This method does not provide information about the relative abundance of different lipid classes, but can be extended to separate lipid classes from each other.The method is based on a sequence of mechanical cell disruption, solvent based lipid extraction, transesterification of fatty acids to fatty acid methyl esters (FAMEs), and quantification and identification of FAMEs using gas chromatography (GC-FID). A TAG internal standard (tripentadecanoin) is added prior to the analytical procedure to correct for losses during extraction and incomplete transesterification.  相似文献   

12.
The present study deals with the concentration and fatty acid composition of cholesterol esters in rat brains infected experimentally with measles virus to induce acute encephalitis. The left side of the cerebrum, as well as other portions of the brain, when inoculated percutaneously contained a large amount of cholesterol esters. The major fatty acids from the esters in the brain were C16:0, C16:1, C18:0, and C18:1; those from the serum were C18:1, C18:2, and C20:4. This result indicates that cholesterol esters may not come from serum but can be synthesized in situ, even in the brain with acute viral infection.  相似文献   

13.
Modifications of plasma membrane acyl-linked phospholipid fatty acid composition were produced by supplementing the culture medium with essential fatty acids. The plasma membrane fraction was purified by Percoll gradient centrifugation from dissociated fetal rat brain cells grown in a serum-free culture medium. Both the concentration dependence and the time course of the modifications were examined. Supplementation of the medium with essential polyunsaturated fatty acid, linolenic acid (18:3 omega 3) or linoleic acid (18:2 omega 6), produced incorporation of the elongated and desaturated products of omega 3 or omega 6 class, respectively, i.e., the incorporation was class specific. Within each class, the most unsaturated and elongated members, i.e., terminal members, were preferentially incorporated until they reached a maximum concentration within 6-7 days. At higher concentrations of supplemented fatty acids, additional class specific incorporation in plasma membrane was produced by an increase in the concentration of intermediate members. At the same time, the concentration of monounsaturated fatty acids declined and that of saturated fatty acids remained unchanged. The modifications in fatty acid composition were reversible, with the time course similar to that of incorporation. The total plasma membrane phospholipid and sterol contents did not change with alterations of fatty acid composition, but did change with time in culture. This preparation should prove useful for investigating the role of polyunsaturated fatty acids in brain cell functions, including neuronal excitability.  相似文献   

14.
Free Fatty Acid Composition of Human and Rat Peripheral Nerve   总被引:7,自引:6,他引:1  
Abstract: The free fatty acid (FFA) composition of peripheral nerve resembles that of erythrocytes but the composition of both is different from that of brain and other tissues. Approximately 75% of FFAs of nerve and erythrocytes are saturated and <5% are polyunsaturated whereas in brain and other tissues, 30-45% of FFAs are saturated and 25-50% are polyunsaturated. Approximately 10-15% of the total FFA of nerve have very long chain lengths [C24, C26, C28, and C30]. The presence of these very long-chain FFAs in endoneurium cannot be accounted for by the retention of erythrocytes or by lipid degradation. During Wallerian degeneration a significant increase of 18:1, associated with a decrease of saturated FFAs, was found in rat sciatic endoneurium, but normal values were approached when fiber regeneration was well under way. The FFA composition with chain length ≥C26 were not, however, significantly altered with degeneration or repair of nerves. The metabolic significance of this striking difference between nerve and brain FFA composition is unknown but may reflect different functional properties.  相似文献   

15.
豚鼠高脂血症模型的建立及机制探讨   总被引:2,自引:1,他引:1  
目的建立豚鼠高脂血症模型,探讨模型形成机制并与大鼠模型进行比较。方法豚鼠模型和大鼠模型1组用低胆固醇(0.1%)饲料诱导,大鼠模型2组用高胆固醇(1%)饲料诱导,连续诱导4周。第3、4周分别取血测定血清脂质水平及CETP表达,4周末剖取肝脏检测肝脏FC、TG、ACAT、CYP7A1等指标。动态观察两种动物形成高脂血症状况。结果与对照组比较,豚鼠模型组于第3周血清TC、LDL-C、TG分别升高3.92倍、3.75倍和1.24倍,4周末血清CETP表达、肝脏ACAT活性明显增加,但肝CYP7A1水平变化不大。大鼠模型1组经低胆固醇饲料诱导4周,血脂水平变化不明显,模型2组经高胆固醇饲料诱导于第3周血清TC、LDL-C分别升高1.24倍和1.54倍,明显低于同期豚鼠模型组,4周末大鼠两个模型组肝CYP7A1活性显著增强,血清TG、CETP水平、肝ACAT活性均未见明显变化。结论豚鼠对高脂饲料较大鼠敏感,是一种比大鼠更理想的高血脂模型动物,模型形成机制与血清CETP表达、肝ACAT及CYP7A1活性变化密切相关。  相似文献   

16.
Myelin proteolipid protein (PLP) is modified after translation by the attachment of long-chain fatty acids to several cysteine residues. In this study, the amount and pattern of fatty acids covalently bound to rat PLP were determined during brain development and in myelin subfractions. For this purpose, PLP was isolated by gel-filtration chromatography in organic solvents, subjected to alkaline methanolysis, and the released fatty acid methyl esters were analyzed by gas-liquid chromatography. At all ages examined, PLP had the same amount of covalently-bound fatty acids (3–4% w/w) and palmitate, oleate and stearate were always the major acyl chains. In contrast to myelin lipids, the fatty acid composition of PLP showed only minor changes between 15-days and 90-days of age. The amount and pattern of fatty acids bound to PLP prepared from three myelin subfractions were also indistinguishable. The conservation of a characteristic PLP-fatty acid make-up during brain development and in various myelin compartments suggests that this post-translational modification is essential for the normal functioning of the protein.  相似文献   

17.
The phospholipid composition of membranes can influence the physiological functioning of the cell or subcellular organelle. This association has been previously demonstrated in skeletal muscle, where cellular or subcellular membrane, specifically mitochondria, phospholipid composition is linked to muscle function. However, these observations are based on whole mixed skeletal muscle analysis, with little information on skeletal muscles of differing fiber-type compositions. These past approaches that used mixed muscle may have misidentified outcomes or masked differences. Thus, the purpose of this study was to compare the phospholipid fatty acid composition of subsarcolemmal (SS) mitochondria isolated from slow-twitch postural (soleus), fast-twitch highly oxidative glycolytic locomotory (red gastrocnemius), and fast-twitch oxidative glycolytic locomotory (plantaris) skeletal muscles. The main findings of the study demonstrated unique differences between SS mitochondrial membranes from postural soleus compared to the other locomotory skeletal muscles examined, specifically lower percentage mole fraction of phosphatidylcholine (PC) and significantly higher percentage mole fraction of saturated fatty acids (SFA) and lower n6 polyunsaturated fatty acids (PUFA), resulting in a lower unsaturation index. We also found that although there was no difference in the percentage mole fraction of cardiolipin (CL) between skeletal muscle types examined, CL of soleus mitochondrial membranes were approximately twofold more SFA and approximately two-thirds less PUFA, resulting in a 20–30% lower unsaturation and peroxidation indices. Thus, the results of this study indicate unique membrane lipid composition of mitochondria isolated from different skeletal muscle types, a potential consequence of their respective duty cycles.  相似文献   

18.
19.
Abstract: The phospholipid profile of different chick embryo brain regions was studied from 11 to 21 days of development, revealing interesting changes in content and distribution. Total phospholipid phosphorus (P), in micrograms of P per microgram of DNA, increases significantly during development of cerebral hemispheres (CHs), optic lobes (OLs), and brainstem (BS). Compared with CH and OL, the BS shows at all stages a significantly higher concentration of phospholipid P, which in contrast decreases in the cerebellum (CB) during development. Moreover, the data show interesting differences between the right and the left portion of the brain. The distribution of phospholipid P and the fatty acid composition of phospholipids were asymmetric between left and right OL and CH, as were the concentrations of DNA and cholesterol, demonstrating lateralized neurochemical development in these structures, i.e., left OL, right OL, left CH, and right CH. The data are discussed also in relation to the potential importance of neurochemical lateralization for determining lateralized embryonic and postnatal behavior of this species.  相似文献   

20.
Fatty acid composition of adipose tissue (AT) is an established long-term biomarker for fatty acid (FA) intake and status, but AT samples are not easily available. Nonesterified FA composition in plasma (pNEFA) may be a good indicator of AT FA composition, because pNEFA are mainly generated by AT lipolysis. We investigated the correlation of 42 pNEFA and subcutaneous as well as visceral AT FA in 27 non-diabetic women with a median BMI of 36 kg/m2 (Q0.25: 25 kg/m2; Q0.75: 49 kg/m2). Close correlations of pNEFA and AT FA were found for odd-chain FA (15∶0 r = 0.838 and 0.862 for subcutaneous and visceral AT, respectively) and omega-3 FA (22∶6 r = 0.719/0.535), while no significant or low correlations were found for other FA including 18∶1 (r = 0.384/0.325) and 20∶4 (r = 0.386/0.266). Close correlations of pNEFA and AT FA were found for essential fatty acids, like 18∶2 (r = 0.541/0.610) and 20∶5 (r = 0.561/0.543). The lower correlation for some pNEFA species with AT FA indicates that the variation of most pNEFA is significantly affected by other FA sources and flux of FA to tissue, in addition to release from AT. A relevant influence of BMI on the level of correlation was shown for saturated FA. NEFA analysis in fasted plasma can serve as a virtual AT biopsy for some FA, and as a biomarker for intake of dairy products and sea fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号