首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyruvate kinase type M(2) from Morris hepatoma 7777 tumour cell nuclei and cytosol, in contrast to types L and M(2) from nuclei and cytosol of normal rat liver, shows the histone H(1) kinase activity. Moreover, in the presence of L-cysteine and without ADP it converts 2-phosphoenolpyruvate (PEP) to pyruvate while in the presence of L-arginine or L-histidine does not. L-Cysteine markedly stimulates the activity of histone H(1) kinase transferring a phosphate group from PEP to, as results suggested, the epsilon -amino group of L-lysine of histone H(1). This, L-cysteine which is known to inhibit the activity of pyruvate kinase type M(2) from neoplastic cells transfering a phosphate from PEP to ADP, can act as a control factor champing the direction of enzymatic reaction in cancer cells.  相似文献   

2.
Two isoenzyme of beta-glucuronidase from a rat basophil leukaemia tumour were co-purified 4067-fold by (NH4)2SO4 precipitation and sequential chromatography on concanavalin A--Sepharose, Sephadex G-200, DEAE-cellulose, CM-cellulose and phosphocellulose. The purity of the mixture was established by the coincidence of the peaks of enzyme activity and protein at a molecular weight of 300 000 on Bio-Gel P-300, the presence of only two protein bands, both of them enzymically active, in polyacrylamide gels after electrophoresis under non-denaturing conditions, and the presence of a single subunit species, of mol.wt. 75 000, after electrophoresis in polyacrylamide gels under a denaturing conditioning. The major isoenzyme co-migrated with the L form from rat liver during electrophoresis in alkaline polyacrylamide gels, whereas the minor isoenzyme migrated more rapidly than either the lysosomal form or the rat liver microsomal form and was designated the tumour (T) isoenzyme. A mixture of the purified isoenzymes from two preparations had an average specific activity of 1389 units/mg for phenolphthalein beta-D-glycopyranosiduronic acid. The L and T isoenzymes, which had pI5.9 and 5.7 respectively, could be obtained free of cross-contamination by isoelectric focusing and had similar specific activities. Although the T isoenzyme could be a catabolic product of the M or the L form, it could also be a unique tumour product, because it was not detected in extracts of normal rat tissues.  相似文献   

3.
The hepatocyte and haematopoietic cell contents of the liver of the foetal guinea pig were measured over the latter half of gestation. Hepatocytes represented about 30% of liver volume at mid-gestation and this increased to 70-80% by term; cell volume remained fairly constant until 5-7 days before term, then more than doubled. Haematopoietic cells represented about 5% of liver volume at mid-gestation and this progressively fell to <1% by term. At 75% of gestation hepatocytes and haematopoietic cells were prepared from perfused foetal livers by collagenase digestion. Enzyme activity of the hepatocyte was, without exception, similar to that of the whole liver. In general, enzyme activity in the haematopoietic cells was similar to that in erythrocytes, with relatively low values for aldolase, glycerol 3-phosphate dehydrogenase, phosphoglycerate mutase, enolase, lactate dehydrogenase, phosphoenolpyruvate carboxykinase, fructose 1,6-bisphosphatase, isocitrate dehydrogenase, ;malic' enzyme, glutamate dehydrogenase and aspartate aminotransferase. The haematopoietic cell contribution to total enzyme activity in the foetal liver was usually much less than 10% and could thus not account for the major changes in hepatic enzyme activity over the latter half of gestation. Hepatocytes contained hexokinase isoenzymes I and III, aldolase isoenzymes A and B and pyruvate kinase isoenzymes 1, 2 and 4. The haematopoietic cells contained hexokinase isoenzyme I and two additional bands of activity with slightly greater mobility, aldolase isoenzyme A and pyruvate kinase isoenzymes 2 and 4.  相似文献   

4.
To determine which of the major isoenzymes of pyruvate kinase pancreatic islet pyruvate kinase most resembled, it was compared to pyruvate kinase from other tissues in kinetic and immunologic studies. The pattern of activation by fructose bisphosphate and the patterns of inhibition by alanine and phenylalanine were most similar to those of the M2 isoenzyme from kidney and were dissimilar to those of the isoenzymes from skeletal muscle (type M1) and liver (type L). The islet pyruvate kinase was inhibited by anti-M1 pyruvate kinase serum (which crossreacts with the M2 isoenzyme), but not by anti-L pyruvate kinase. These results are most consistent with islets possessing predominantly, if not exclusively, the M2 isoenzyme of pyruvate kinase. We previously showed that rat pancreatic islet cytosol contains protein kinases that can catalyze a calcium-activated phosphorylation of an endogenous peptide that has properties, such as subunit molecular weight and isoelectric pH, that are identical to those of the M2 and M, isoenzymes of pyruvate kinase, and that islet cytosol can catalyze phosphorylation of muscle pyruvate kinase. In the present study it was shown that incubating islet cytosol with ATP under conditions known to permit phosphorylation and inhibition of liver pyruvate kinase did not affect the islet pyruvate kinase activity. It is concluded that phosphorylation of the islet pyruvate kinase has no immediate effect on enzyme activity.Abbreviations EGTA ethylene glycos his (-aminoethyl ether)-N,N,NN-tetraacetic acid - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid  相似文献   

5.
Thymidine kinase (TK) activity was measured in relation to the cell cycle of in vivo growing ascites tumour cells. The cells were synchronized by means of centrifugal elutriation and the cell cycle composition of the cell fractions was determined by flow cytometry. TK activity was low in G1, increased during S phase and declined in G2. A half-life of TK activity of about 45 min was found throughout the cell cycle. Four isoenzymes at pI values of 4.1, 5.3, 6.9 and 8.3, denoted as isoenzymes 1-4, were identified using isoelectric focusing. Isoenzymes 3 and 4 were responsible for the profound cell cycle related changes in the TK activity. Corresponding isoenzymes were also found in the fetal mouse liver. In the adult mouse liver isoenzyme 2 was the dominating isoenzyme. The half-life of the isoenzymes was in the same range as for the total TK activity. We conclude that the low TK activity in G1 is due to degradation of the enzyme in G2 at a normal rate combined with an arrest in the synthesis of TK. We also conclude that isoenzyme 4 and the intermediate isoenzyme 3, which had earlier been suggested to be a mitochondrial form of TK, in fact represent cytoplasmatic forms of TK. According to cell cycle and pI studies, isoenzyme 2 belongs to the mitochondrial form. Studies with various phosphor donors and specific substrates, however, indicate that it also contains a cytoplasmic component.  相似文献   

6.
1. Six monoclonal antibodies specific to the pyruvate kinase from the foot muscle of the common limpet P. caerulea were produced. 2. They also exhibited specificity against the mouse liver where the L-type isoenzyme of pyruvate kinase is present. They did not react with the mouse skeletal muscle, heart or red blood cells isoenzymes of pyruvate kinase (PK). One of these, the monoclonal antibody B did not react with any PK isoenzymes of the mouse tissues. 3. The presence of the isoenzymic type of PK which was recognized by the monoclonals, (type L), was traced in five phyla of marine invertebrates by the application of the monoclonal antibodies A, B and C. 4. In two phyla the majority of the animals were found to possess an L-type PK isoenzyme in their muscles while in quite a few of them a different isoenzymic type was present in the other tissues. The results of this study are compared with the existing literature, and the use of monoclonal antibodies in the study of enzymic systems is considered in the discussion.  相似文献   

7.
Mitochondrial extracts of dog, cat, rat and mouse liver contain two forms of alanine-glyoxylate aminotransferase (EC 2.6.1.44): one, designated isoenzyme 1, has mol.wt. approx. 80 000 and predominates in dog and cat liver; the other, designated isoenzyme 2, has mol.wt. approx. 175 000 and predominates in rat and mouse liver. In rat and mouse liver, isoenzyme 1 activity was increased by the injection in vivo of glucagon, but not isoenzyme 2 activity. Isoenzyme 1 was purified and characterized from liver mitochondrial extracts of the four species. Both rat and mouse enzyme preparations catalysed transamination between a number of L-amino acids and glyoxylate, and with L-alanine as amino donor the effective amino acceptors were glyoxylate, phenylpyruvate and hydroxypyruvate. In contrast, both dog and cat enzyme preparations were specific for L-alanine and L-serine with glyoxylate, and used glyoxylate and hydroxypyruvate as effective amino acceptors with L-alanine. Evidence that isoenzyme 1 is identical with serine-pyruvate aminotransferase (EC 2.6.1.51) was obtained. Isoenzyme 2 was partially purified from mitochondrial extracts of rat and mouse liver. Both enzyme preparations were specific for L-alanine and glyoxylate. On the basis of physical properties and substrate specificity, it was concluded that isoenzyme 2 is a separate enzyme. Some other properties of isoenzymes 1 and 2 are described.  相似文献   

8.
The subcellular distribution and properties of four aldehyde dehydrogenase isoenzymes (I-IV) identified in 2-acetylaminofluorene-induced rat hepatomas and three aldehyde dehydrogenases (I-III) identified in normal rat liver are compared. In normal liver, mitochondria (50%) and microsomal fraction (27%) possess the majority of the aldehyde dehydrogenase, with cytosol possessing little, if any, activity. Isoenzymes I-III can be identified in both fractions and differ from each other on the basis of substrate and coenzyme specificity, substrate K(m), inhibition by disulfiram and anti-(hepatoma aldehyde dehydrogenase) sera, and/or isoelectric point. Hepatomas possess considerable cytosolic aldehyde dehydrogenase (20%), in addition to mitochondrial (23%) and microsomal (35%) activity. Although isoenzymes I-III are present in tumour mitochondrial and microsomal fractions, little isoenzyme I or II is found in cytosol. Of hepatoma cytosolic aldehyde dehydrogenase activity, 50% is a hepatoma-specific isoenzyme (IV), differing in several properties from isoenzymes I-III; the remainder of the tumour cytosolic activity is due to isoenzyme III (48%). The data indicate that the tumour-specific aldehyde dehydrogenase phenotype is explainable by qualitative and quantitative changes involving primarily cytosolic and microsomal aldehyde dehydrogenase. The qualitative change requires the derepression of a gene for an aldehyde dehydrogenase expressed in normal liver only after exposure to potentially harmful xenobiotics. The quantitative change involves both an increase in activity and a change in subcellular location of a basal normal-liver aldehyde dehydrogenase isoenzyme.  相似文献   

9.
Lactate-dehydrogenase activity was determined by the optical test method using pyruvate as substrate and the isoenzymes were separated by vertical starch gel electrophoresis. Species-specific and organ-specific characteristics of the total activity and the isoenzyme patterns of the four amphibian species are compared with those of rat and mouse. Application of gonadotropin increases the amount of soluble protein and the lactate-dehydrogenase activity in the fat body of Xenopus and the isoenzyme pattern shows a shift of intensity towards the basic bands. Testis does not respond to this treatment.  相似文献   

10.
1. The presence of a characteristic lactate-dehydrogenase isoenzyme (LD(x)) in human, mouse and dog testis and in human spermatozoa has been confirmed by electrophoresis on cellulose acetate and on polyacrylamide gel. 2. The human spermatozoal isoenzyme exhibits a much higher affinity for 2-oxobutyrate than any of the five isoenzymes found in other tissues. K(m) values of 0.05mm for pyruvate and 0.18mm for 2-oxobutyrate were obtained. 3. LD(x) differs from other lactate-dehydrogenase isoenzymes in that its properties cannot be correlated with its electrophoretic mobility. It resembles LD(1) in being strongly inhibited by 0.2mm-oxalate and relatively resistant to 2m-urea, and in being relatively stable to heat. 4. The surprisingly high activity of LD(x) with 2-oxobutyrate suggests that this substance or 2-hydroxybutyrate may play a part in spermatozoal metabolism.  相似文献   

11.
(1) l-Cysteine inhibits aerobic glycolysis and restores the Pasteur effect in Ehrlich ascites tumour cells or in their supernatants, while d-cysteine has no effect on this process. (2) Other compounds which have configuration l at the α-carbon and a thiol group in the β-position (penicillamine) or restore them in vivo (3-mercaptopyruvate, cystine or l-serine together with l-homocysteine) also show inhibitory properties. (3) dl-Homocysteine with a free thiol group in the γ-position, reduced glutathione, methionine and products of cysteine oxidation (cysteic acid, taurine) do not inhibit tumour aerobic glycolysis. (4) Glycolysis of normal tissue supernatants (mouse liver and muscle) is not sensitive to the inhibitory effect of cysteine. (5) Metabolic studies showing a cysteine-induced decrease in ATP content, coupled with cross-over of the pyruvate and 2-phosphoenolpyruvate concentrations in Ehrlich ascites tumour cells, indicate that tumour pyruvate kinase is an enzyme sensitive to cysteine inhibition. (6) Enzymatic studies carried out both after preincubation of Ehrlich ascites tumour cells with cysteine or during direct action of this substance on tumour and normal tissue supernatants indicate the presence of a cysteine-sensitive isoenzyme besides the normal cysteine-insensitive pyruvate kinase in tumour material.  相似文献   

12.
alpha-Amylase was purified to apparent homogeneity from normal pancreas and a transplantable pancreatic acinar carcinoma of the rat by affinity chromatography on alpha-glucohydrolase inhibitor (alpha-GHI) bound to aminohexyl-Sepharose 4B. Recovery was 95-100% for both pancreas and tumour alpha-amylases. They were monomeric proteins, with Mr approx. 54000 on SDS/polyacrylamide-gel electrophoresis. Isoelectric focusing of both normal and tumour alpha-amylases resolved each into two major isoenzymes, with pI 8.3 and 8.7. Tumour-derived alpha-amylase contained two additional minor isoenzymes, with pI 7.6 and 6.95 respectively. All four tumour isoenzymes demonstrated amylolytic activity when isoelectric-focused gels were treated with starch and stained with iodine. Two-dimensional electrophoresis, on SDS/10-20%-polyacrylamide-gradient gels after isoelectric focusing, separated each major isoenzyme into doublets of similar Mr values. Pancreatic and tumour-derived alpha-amylases had similar Km and Ki (alpha-GHI) values, but the specific activity of the tumour alpha-amylase was approximately two-thirds that of the normal alpha-amylase. Although amino acid analysis and peptide mapping with the use of CNBr, N-chlorosuccinimide or Staphylococcus aureus V8 proteinase gave comparable profiles for the two alpha-amylases, tryptic-digest fingerprint patterns were different. Antibodies raised against the purified pancreatic alpha-amylase and tumour alpha-amylase respectively showed only one positive band on immunoblotting after gel electrophoresis of crude extracts of rat pancreas and carcinoma, at the same position as that of the purified enzyme. More than 95% of the alpha-amylase activity in the pancreas and in the tumour was absorbed by an excess amount of either antibody, indicating that normal and tumour alpha-amylases are immunologically identical. The presence of additional isoenzymes in the carcinoma, and dissimilarity of tryptic-digest patterns, may reflect an alteration in gene expression or in the post-translational modification of this protein in this heterogeneously differentiated transplantable pancreatic acinar carcinoma.  相似文献   

13.
The isoenzyme hexokinase (HK) spectrum from normal rat large intestinal mucosa consisted of 3 isoenzymes. In tumours of this localization induced by 1,2-dimethylhydrazine there proved to be a lack or marked decrease in the most rapid anodic isoenzyme. Only one HK isoenzyme was found in the metastases. Km (glucose) for tumour HK was 2--3 times lower than for normal intestinal HK; the HK activity was detected in the serum from the 1st month of the carcinogenic administration, and by the 5th month it was found in 80% of the tumour-bearing animals. No serum HK activity was ever found in control rats.  相似文献   

14.
A reversible interconversion of two kinetically distinct forms of hepatic pyruvate kinase regulated by glucagon and insulin is demonstrated in the perfused rat liver. The regulation does not involve the total enzyme content of the liver, but rather results in a modulation of the substrate dependence. The forms of pyruvate kinase in liver homogenates are distinguished by measurements of the ratio of the enzyme activity at a subsaturating concentration of P-enolpyruvate (1.3 mM) to the activity at a saturating concentration of this substrate (6.6 mM). A low ratio form of pyruvate kinase (ratio between 0.1 and 0.2) is obtained from livers perfused with 10(-7) M glucagon or 0.1 mM adenosine 3':5'-monophosphate (cyclic AMP). A high ratio form of the enzyme is obtained from livers perfused with no hormone (ratio = 0.35 to 0.45). The regulation of pyruvate kinase by glucagon and cyclic AMP occurs within 2 min following the hormone addition to the liver. Insulin (22 milliunits/ml) counteracts the inhibition of pyruvate kinase caused by 5 X 10(-11) M glucagon, but has only a slight influence on the enzyme properties in the absence of the hyperglycemic hormone. The low ratio form of pyruvate kinase obtained from livers perfused with glucagon or cyclic AMP is unstable in liver extracts and will revert to a high ratio form within 10 min at 37 degrees or within a few hours at 0 degrees. Pyruvate kinase is quantitatively precipitated from liver supernatants with 2.5 M ammonium sulfate. This precipitation stabilizes the enzyme and preserves the kinetically distinguishable forms. The kinetic properties of the two forms of rat hepatic pyruvate kinase are examined using ammonium sulfate precipitates from the perfused rat liver. At pH 7.5 the high ratio form of the enzyme has [S]0.5 = 1.6 +/- 0.2 mM P-enolpyruvate (n = 8). The low ratio form of enzyme from livers perfused with glucagon or cyclic AMP has [S]0.5 = 2.5 +/- 0.4 mM P-enolpyruvate (n = 8). The modification of pyruvate kinase induced by glucagon does not alter the dependence of the enzyme activity on ADP (Km is approximately 0.5 mM ADP for both forms of the enzyme). Both forms are allosterically modulated by fructose 1,6-bisphosphate, L-alanine, and ATP. The changes in the kinetic properties of hepatic pyruvate kinase which follow treating the perfused rat liver with glucagon or cyclic AMP are consistent with the changes observed in the enzyme properties upon phosphorylation in vitro by a clyclic AMP-stimulated protein kinase (Ljungstr?m, O., Hjelmquist, G. and Engstr?m, L. (1974) Biochim. Biophys. Acta 358, 289--298). However, other factors also influence the enzyme activity in a similar manner and it remains to be demonstrated that the regulation of hepatic pyruvate kinase by glucagon and cyclic AMP in vivo involes a phosphorylation.  相似文献   

15.
Rat liver alcohol dehydrogenase was purified and four isoenzyme forms, demonstrated by starch gel electrophoresis, were separated by O-(carboxymethyl)-cellulose chromatography. Each of the isoenzymes had a distinct isoelectric point. All isoenzymes were active with both ethanol (or acetaldehyde) and steroid substrates, and had similar Michaelis-Menten constants for each of the substrates and coenzymes studied. The three isoenzymes with the lowest migration toward the cathode exhibited the same pH optimum of 10.7 for ethanol oxidation, a greater activity with 5 beta-androstan-3 beta-ol-17-one than with ethanol as a substrate, and an unchanged electrophoretic mobility following storage in the presence of 100 microM dithiothreitol. By contrast the isoenzyme with the highest mobility toward the cathode exhibited a pH optimum of 9.5 for ethanol oxidation, a low steroid/ethanol ratio of activity, and converted to the migrating pattern of the two isoenzymes with intermediate mobility when stored. The similarities between the isoenzymes of rat liver alcohol dehydrogenase differ considerably from differences in substrate specificity exhibited by isoenzymes of horse liver alcohol dehydrogenase.  相似文献   

16.
The cytochemical localisation and presumed isoenzyme type (based on selective inhibition experiments) of alkaline phosphatase in 5 cell lines derived frrom normal human, rat, mouse and hamster tissues, 6 human lymphoblastoid lines and 6 human and mouse tumour-derived cell lines are described. Enzyme activity varied between the cell lines. An isoenzyme inhibited by L-phenylalanine was present in 3 normal lines, 3 lymphoblastoid lines and 2 tumour lines. The presence of this isoenzyme cannot be used as a marker of neoplastic transformation.  相似文献   

17.
Summary Three distinct isoenzymes of acid phosphatase have been separated from extracts of liver tissue of rats by gel filtration. These isoenzymes have molecular weights of 180,000±35,000; 74,000±11,000 and 13,000±2,500. High molecular weight isoenzymes and a low molecular weight isoenzyme of acid phosphatase (molecular weight 13,000±2,100) were also present in extracts of normal human and mouse liver tissue, and of pathologically altered liver tissue of mice in which the activity of acid phosphatase was strongly increased as a result of intraperitoneal injections of dextran solutions. Activity of acid phosphatase was determined with three substrates. The isoenzymes showed different conversion rates for the three substrates. The high molecular weight isoenzymes split the substrates 4-methylumbelliferyl phosphate, p-nitrophenyl phosphate and naphthol AS-BI phosphate. The activity was sensitive to the inhibitors fluoride and L(+)tartrate. In the pathologically altered liver tissue, which had stored dextran, the activity of these isoenzymes was strongly increased. The low molecular weight isoenzyme split 4-methylumbelliferyl phosphate and p-nitrophenyl phosphate but not naphthol AS-BI phosphate. Therefore this isoenzyme cannot be demonstrated with histochemical techniques using the substrate naphthol AS-BI phosphate. In contrast to the activity of the high molecular isoenzymes the activity of the low molecular isoenzyme was not changed in the pathologically altered liver tissue of mice and was not sensitive to the inhibitors fluoride and L(+)tartrate.This study was supported by a grant from the Prinses Beatrix Fonds, s'Gravenhage  相似文献   

18.
Liver cell-free extracts of fish (Mugil sp.) from polluted environments show new Cu, Zn-SOD isoenzymes when analyzed by polyacrylamide gel electrophoresis or isoelectrofocusing followed by in situ staining for SOD activity. The most active isoenzymes, with pI 6.1 and 5.1, were present both in control and problem samples while the isoenzymes of intermediate pI value showed significant differences. Fish from control areas showed three intermediate isoenzymes with pI 5.7, 5.5 and 5.4 (the last one quite faint) while polluted animals showed three bands of pI 5.9, 5.45 and 5.35, this last very intense. To further characterize their utility as biomarkers, Cu, Zn-SOD isoenzymes from polluted fish livers were purified to homogeneity. Five superoxide dismutase peaks were purified, named thereafter I (pI 6.1) to V (pI 5.1) respectively. Isoenzymes I and V displayed the highest specific activity. Upon incubation with moderate H2O2 concentrations, pure isoenzyme I yielded more acidic bands with pI 5.5, 5.45 and 5.35, this last being predominant. The pure isoenzyme V generated only a new band of pI 5.0. Concomitant with oxidation, the activity of peaks I and V was lost in a H2O2 concentration-dependent manner. The pattern of the new acidic bands generated upon the oxidixing treatment of isoenzyme I closely resembles that observed in crude extracts from polluted animals.  相似文献   

19.
Changes in the activities and isoenzyme distribution of hexokinase were determined in a number of tissues during the development of the guinea pig. The total activity in the fetal liver showed a large fall during the second half of gestation to reach adult values by term. With normal diet the fetal, neonatal, and adult livers had isoenzymes I and III but little or no detectable IV (glucokinase). The fetal liver had predominantly type I, but the proportion of type III increased during development. The kinetics of the guinea pig isoenzymes were similar to those reported for the rat. Two additional isoenzymes with mobility between I and II were detected in the fetal liver and blood. They appear to have kinetic properties similar to type I. Detectable liver glucokinase activity was induced by glucose administration to adult guinea pigs. The total activity in kidney, brain and skeletal muscle showed a postnatal rise while in the fetal heart it was high and declined after birth. These tissues contained predominantly type I with varying proportions of type III hexokinase. The ratio of particulate-bound to soluble hexokinase varied from tissue to tissue. All except the liver showed a significant increase in binding after birth. The changes are discussed in relation to the control of glucose utilization in the fetal and neonatal periods.  相似文献   

20.
The intracellular distribution of the glycolytic enzymes hexokinase, glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase and the pyruvate kinase isoenzymes type M1 and type M2 within unfertilized hen eggs was studied. Most of glycolytic enzyme activities were found in the yolk fraction; 8-24% of total glycolytic enzyme activities were found in the vitelline membrane fraction. However, the specific activities of these enzymes in the vitelline membrane fraction are 19-72-fold higher (U/mg protein) and 45-178-fold more concentrated (U/g wet weight) than in the yolk fraction. The study of intracellular localization of pyruvate kinase isoenzymes shows that the blastodisc, latebra and vitelline membrane contain only pyruvate kinase type M2, whereas pyruvate kinase types M1 and M2 are found in the egg yolk. The exclusive occurrence of pyruvate kinase type M2 in the blastodisc is consistent with the concept that this isoenzyme is involved in the cell proliferation. The heterogeneous distribution of the glycolytic enzymes hexokinase, glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase, and the heterogeneous localization of the pyruvate kinase isoenzymes types M1 and M2 indicate that glycolysis is distributed heterogeneously within the unfertilized hen egg cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号