首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High tree alpha-diversity in Amazonian Ecuador   总被引:14,自引:4,他引:10  
In a 1 ha square plot of terra firme forest at 260 m elevation in Amazonian Ecuador, all trees with diameter at breast height (dbh) 5 cm were studied. There were 1561 individuals, 473 species, 187 genera and 54 families. Of these, 693 individuals, 307 species, 138 genera and 46 families had a dbh 10 cm. This is the highest number of tree species ever recorded for a tropical rain forest sample of this size. In both dbh classes, the most species-rich families were: Fabaceae sensu lato (including Mimosaceae and Caesalpiniaceae), Lauraceae and Sapotaceae; the most species-rich genera, were Pouteria, Inga and Protium. The vertical space was partitioned among species: 166 species were found only in the 5–10 dbh cm class and were mostly sub-canopy treelets, and 307 species with dbh 10 cm were mostly large canopy trees.  相似文献   

2.
Spatial pattern of trees in kerangas forest,Sarawak   总被引:1,自引:0,他引:1  
The 64 most abundant species (10 cm dbh) in a 400×480 m plot of predominantly kerangas forest in Sarawak were individually investigated for two-dimensional pattern by spectral analysis using the basal areas of trees in 20×20 m contiguous quadrats. All species had individuals in the upper canopy.30 species showed pattern with clumps. The most frequent scales of clump size were between 35 and 55 m across. Patterned species were less abundant in the plot, had a greater proportion of smaller (10–20 cm dbh) trees and had a lower ratio of upper to lower canopy trees than species without pattern.Trend across the plot between dipterocarp and kerangas forest types matched the change in soil from red-yellow podzol (oxisol and ultisol) to medium gleyic and bleached sand podzols (spodosol). However, soil differences and small scale (ca. 50 m) changes in topography did not account for patterns.The scale of pattern matches the size of gaps produced by windthrow. It is suggested that patterned species are light-demanding and grow from seeds in gaps, whereas non-patterned species are shade tolerant, growing within closed forest to sapling size and eventually maturing by filling smaller single tree gaps.D. McC. N. thanks the Deutsche Akademische Austauschdienst for a scholarship and the British Council for travel funds to work at Hamburg. We are grateful to A. Weiscke for entry of the 1963 field records on the computer, T. W. Schneider for helpful discussions and T. C. Whitmore for commenting on earlier drafts.Nomenclature for three species follows Whitmore (1972, 1973), Ng (1978) and Ashton (1982).  相似文献   

3.
The tree community of both canopy gaps and mature forest was surveyed in a 5 ha plot of cloud forest in the Ibitipoca Range, south-eastern Brazil, aiming at: (a) comparing the tree community structure of canopy gaps with that of three strata of the mature forest, and (b) relating the tree community structure of canopy gaps with environmental and biotic variables. All saplings of canopy trees with 1–5 m of height established in 31 canopy gaps found within the plot were identified and measured. Mature forest trees with dbh 3 cm were sampled in four 40×40 quadrats laid on the four soil sites recognised in the local soil catena. All surveyed trees were identified, measured and distributed into three forest strata: understorey (<5 m of height), sub-canopy (5.1–15 m) and canopy (15.1–30 m). The following variables were obtained for each gap: mode of formation, age, soil site, slope grade, size, canopy openness and abundance of bamboos and lianas. A detrended correspondence analysis indicated that the tree community structure of gaps in all soil sites was more similar to that of the mature forest understorey, suggesting that the bank of immatures plays an important role in rebuilding the forest canopy and that gap phases may be important for understorey shade-tolerant species. There was evidence of gap-dependence for establishment for only one canopy tree species. Both canonical correspondence analysis and correlation analysis demonstrated for a number of tree species that the distribution of their saplings in canopy gaps was significantly correlated with two variables: soil site and canopy openness. The future forest structure at each gap is probably highly influenced by both the present structure of the adjacent mature forest and the gap creation event.  相似文献   

4.
The total number of vascular plant species was counted and growth form distribution was studied in the Chocó area on the Pacific coast of Colombia, in two transects 400×10m and ten transects 2×50m, for a total sampled area of 0.9ha. The species count of the ten transects (442 species in 0.1ha) appears to be the highest number of species recorded with this methodology. There were 970 species for the total area (0.9ha). Ninety to ninety-five percent of the species were under 10cm dbh and 70–86% under 2.5cm dbh, epiphytes and small trees and treelets 10cm dbh being the most diverse growth forms. The most species-rich families and genera were those represented by herbaceous plants and treelets. Individuals were counted only in the ten 2 × 50 m transects (0.1 ha), where 4459 individuals were found. Palms and ferns were the most abundant growth forms. Arguments are presented against the way diversity is usually measured. Recommendations are made to include other growth forms besides trees when assessing alpha diversity for conservation purposes.  相似文献   

5.
Studies were undertaken on the floristic composition and stand structure of four 1 hectare plots in the lowland forests of Kurupukari, Guyana. A total of 3897 trees, covering 153 species and 31 plant families were recorded at greater than 5 cm diameter at breast height (dbh). The number of species per hectare ranged from 61 to 84 (>5.0 cm dbh) and 50–71 (>10.0 cm dbh). The total number of trees per hectare varied two-fold between study plots, with 45–50% of the trees within the 5–10 cm size-class. Mean total basal area varied from 32.39–34.63 m2 per 100 m2. The four most dominant plant families represented 43.8% of the total number of trees, while representing only 11.2% of the species. No one plant family dominated in more than one of the four study plots, and all four plots held at least one plant family with more than 20% of the total number of trees. Although 14 tree species were common to all four plots, only 26%–35% of the species were represented by a single tree. Between three and seven species represented 50% of the trees within all size-classes, with species dominance occurring within the highest density plot.These tropical forest types of central Guyana may represent some of the lowest diversity forests in the neotropics, whereby the total number of tree species is relatively limited, typically with six dominant canopy species, but the relative abundance of these species is highly variable between the forest types. Mechanisms influencing the competitive interactions associated with species dominance are discussed in relation to the importance of mycorrhizae and the persistence of species dominance.  相似文献   

6.
Abstract. Regeneration levels, size class distributions and a nearest neighbour technique were used to describe apreliminary dynamics frameworkfortheplateauforests. Taken over a large area, most of the canopy dominants have a negative exponential distribution of stems > 10 cm dbh per size class. In small (0.04 ha) plots, if present as more than one stem, most species are present as both canopy (> 25 cm dbh) and understorey (10–15 cm dbh) individuals. The canopy dominants maintain their rank in the bank of advance regeneration (> 5 cm height < 10 cm dbh). However, relative numbers of all regeneration of most canopy individuals are not strongly correlated with canopy closure or local abundance of conspecific adults. The mean area of nearest neighbour polygons of canopy individuals around saplings of the more common species are small. In conclusion, most species appearto be shade tolerant and locally persistent conferring a fine grain on this forest. We support recent questioning of universality of the gaps/non gaps paradigm.  相似文献   

7.
Dezzeo  Nelda  Hernández  Lionel  Fölster  Horst 《Plant Ecology》1997,132(2):197-209
Canopy dieback in patches was discovered in an otherwise undisturbed very humid lower montane forest on a quartzitic sandstone plateau of the middle Caroní river basin, Venezuela. The patches vary in size from about 0.1 to 2 ha (50 to 700 upper story dead trees per ha). Preliminary inventories were carried out at 3 selected sites comparing 4 dieback patches (M) with adjacent not affected (V) forests. In the M plots, 40 to 61% of all trees with dbh 10 cm were dead. They consisted mostly (81–100%) of the endemic tree species Terminalia quintalata of the upper story (dbh > 20 to 60 cm, height up to 30 m), which is much sparser in the V stands. Data on stand structure and species composition are presented. They seem to indicate a spatial variation in the density of Terminalia quintalata, but also of other dominant species, and reproductive problems of Terminalia, which is hardly present in the diameter classes below 10 cm dbh. V and M stands grow on similar soils with a perched high water table. They are practically free of clay and rich in humus. The exchange complex is dominated by H+. Low pH and dilution of base cations represent the main chemical stress factors. Different concepts of the dieback process are discussed, including cyclic reproductive patterns, nutrient sequestering and drought frequency.  相似文献   

8.
The population structure and regeneration of canopy species were studied in a 4 ha plot in an old-growth evergreen broad-leaved forest in the Aya district of southwestern Japan. The 200 m × 200 m plot contained 50 tree species, including 22 canopy species, 3,904 trees (dbh5 cm) and a total basal area of 48.3 m2/ha. Forty one gaps occurred within the plot, and both the average gap size (67.3 m2) and the total area of gap to plot area (6.9%) were small. Species found in the canopy in the plot were divided into three groups (A, B, C) based on size and spatial distribution patterns, and density in each tree size. Group A (typical species: Distylium racemosum, Persea japonica) showed a high density, nearly random distribution and an inverse J-shaped size distribution. Species in group B (Quercus salicina, Quercus acuta, Quercus gilva) were distributed contagiously with conspicuous concentration of small trees (<5 cm dbh) around gaps. However, the species in this group included few trees likely to reach the canopy in the near future. Group C included fast-growing pioneer and shade intolerant species (e.g. Cornus controversa, Carpinus tschonoskii, Fagara ailanthoides), which formed large clumps. Most gaps were not characterized by successful regeneration of group B and C but did appear to accelerate the growth of group A. Group B species appear to require long-lived or large gaps while group C species require large, catastrophic disturbances, such as landslides, for regeneration.  相似文献   

9.
Demography, spatial pattern, and diversity of canopy and subcanopy trees, shrubs, and lianas were compared in two cool and two warm temperate North American forests, paired at 30° and 40° north latitudes. All woody stems 1 cm dbh in 16 randomly located, non-contiguous plots totalling 1 ha at each of the four sites were measured, mapped, and identified. Basal area and overall density did not differ between latitudes. Demographic and spatial analyses revealed remarkable similarity in spatial dispersion, irrespective of density or species composition. At all sites, dispersion of canopy trees was random but all understory stems were uniformly distributed relative to all canopy trees. Species diversity and vertical structure differed between the warm and cool temperate sites, especially in species composition of individual strata. Associations of understory species relative to canopy species were more random at 30° than at 40° north, where a higher degree of association between canopy and understory species' patterns, coupled with their size class distributions, suggested more lengthy regeneration cycles and an alternation of species assemblages. The forests at 30°, those subject to periodic canopy disturbance by hurricanes, had more vertical mixing of species (i.e., canopy species represented in all size classes), more tree saplings, and significantly more shrub and liana species.  相似文献   

10.
The structure and dynamics of approximately 64 ha of undisturbed gallery forest were studied over six years. Trees from 31 cm gbh (c. 10 cm dbh) were measured every three years from 1985. They were in 151 (10×20 m) permanent plots in the Gama forest in the Federal District of Brazil. Natural regeneration (individuals under 31 cm gbh) was measured in subplots (of 2×2 m, 5×5 m and 10×10 m) within the 200 m2 plots. The total tree flora (gbh31 cm) consisted of 93 species, 81 genera and 44 families in 1985. The Leguminosae, Myrtaceae and Rubiaceae were the families richest in number of species. Most individuals and species were under 45 cm diameter and 20 m high while the maximum diameter per species ranged from 30 to 95 cm. The density structure of trees and natural regeneration was similar, in which the densities of c. 80% of the species represented less than 1% of the total density. The periodic mean annual diameter increment for trees from 10 cm dbh, was c. 0.25 cm/year. Variability was high with coefficients of variation c. 100% or more. The Gama community may maintain tree diversity and structure in undisturbed conditions. Regeneration of c. 80% of the species was found in the establishing phase (poles); the diameter structure was typical of native forests with the number of individuals decreasing with increasing size classes and showing little change over the six years; recruitment compensated for the mortality of most of the abundant species. The soils in Gama gallery forest were dystrophic with high aluminium content. Multivariate analysis suggested the stream, natural gaps and edges as the main causes of floristic differentiation at the community level.  相似文献   

11.
Koponen  Piia  Nygren  Pekka  Sabatier  Daniel  Rousteau  Alain  Saur  Etienne 《Plant Ecology》2004,173(1):17-32
Diversity of tree association and forest structure were analysed in relation to microtopography and flooding intensity in a tropical freshwater swamp forest in the Sinnamary river basin, French Guiana. A 530-m-long vegetation transect was established through a hummock-hollow terrain. Nine 10 m× 50 m sample plots, perpendicular to the main transect, were located so that each was as microtopographically uniform as possible. Trees with dbh (diameter at 1.3 m) 10 cm were censused in all plots and trees with 2 cm dbh < 10 cm in three plots. Sixty tree species belonging to 39 genera and 30 families were recorded. The study area was divided into low and high sites according to microtopography and flooding intensity. According to the Czekanowski similarity matrix, the tree association in low, most frequently flooded, sites differed from that in the high sites under intermediate or low flooding intensity. The low sites had higher stand density and lower species richness than the high sites. Trees with dbh 10 cm in low sites were small and stand basal area (SBA) was about the same in low (69.6 m2 ha–1) and high (64.3 m2 ha–1) sites. The low areas were dominated by Pterocarpus officinalis (38% of stems with dbh 10 cm and 36% of SBA) and Malouetia tamaquarina (26 and 15%). Diospyros guianensis (13.4% of stems with dbh 10 cm and 6.1% of SBA), a Caraipa sp. (14.0 and 7.9%), Lecythis corrugata (6.6 and 3.5%) and emergent Caryocar microcarpum (0.9 and 13.9%) were abundant in high sites. Nodulated legume trees, P. officinalis, Hydrochorea corymbosa and Inga disticha, comprised 44% of stems in the low sites. The abundant nodulation suggests that symbiotic dinitrogen fixation may be an adaptation to N-depleted waterlogged soils. Other adaptive responses were litter accumulation between the buttresses of P. officinalis, which formed hummocks above surface water, and clonal growth habit of M. tamaquarina, which resulted in formation of monospecific groves in low sites.  相似文献   

12.
Webb  Edward L.  Fa'aumu  Siaifoi 《Plant Ecology》1999,144(2):257-274
We report tree community diversity, guild composition, and forest structure from three 1.2 ha (100 m × 120 m) permanent forest research plots on Tutuila, American Samoa, an isolated volcanic island in the South Pacific Ocean. Plots were established in three habitat types of lowland hill forest: two in mature tracts that differed in substrate type (talus vs non-talus), and a third in a 30–40 year-old abandoned plantation on non-talus soil. We encountered a total of 57 tree species 10 cm dbh. Richness was similar across sites, but composition differed substantially. We were able to classify with confidence 24 tree species into four distinct guilds based on forest-type preference: early successional or persistent successional (disturbed forest), generalist (no preference), or mature-phase. Sample size limitations or interactions between site age and substrate precluded categorization of all species. Thirty-eight percent (9/24) of the tree species were successional, a result which contrasts sharply with data from (formerly) continental forest in Panama. Spatial distributions of 33 species revealed 17 species exhibiting clumping or hyperdispersion (i.e., regular spacing) in at least one site. Possible non-anthropogenic mechanisms promoting clumping in the plots were (a) topography (edaphic), (b) gap affiliation, (c) inefficient or altered patterns of propagule dispersal, and (d) lack of natural seedling predators. Forest structure differed across site type, with stem densities highest in regenerating forest; conversely, regenerating forest had the lowest basal areas. Steep talus forest sequestered the most carbon (344.3 Mg ha–1), and secondary forest sustained only 42% of levels found in talus forest (145.5 Mg ha–1). Mature forest on non-talus soil sequestered the majority of carbon in mid-sized trees (30–50 cm dbh). Future assessments of land-use cover and biomass will provide for a complete estimate of the carbon budget of Tutuila. Finally, the results of this study suggest that conservation of the native fauna is essential in retaining the potential for regeneration of native forest after large-scale disturbance.  相似文献   

13.
We studied the tree communities in primary forest and three different land use systems (forest gardens, ca. 5-year-old secondary forests, cacao plantations) at 900–1200 m elevation in the environs of Lore Lindu National Park, Central Sulawesi. The primary forests had ca. 150 tree species 10 cm diameter at breast height (dbh) per hectare, which is unusually high for forests at this elevation in southeast Asia. Basal area in the primary forest was 140 m2 ha–1, one of the highest values ever recorded in tropical forests worldwide. Tree species richness declined gradually from primary forest to forest gardens, secondary forests, and cacao plantations. This decline was paralleled by shifts in tree family composition, with Lauraceae, Meliaceae, and Euphorbiaceae being predominant in primary forests, Euphorbiaceae, Rubiaceae and Myristicaeae dominating in the forest gardens and Euphorbiaceae, Urticaceae, and Ulmaceae in the secondary forests. Cacao plantations were composed almost exclusively of cacao trees and two species of legume shade trees. Forest gardens further differed from primary forests by a much lower density of understorey trees, while secondary forests had fewer species of commercial interest. Comparative studies of birds and butterflies demonstrated parallel declines of species richness, showing the importance of trees in structuring tropical forest habitats and in providing resources.  相似文献   

14.
Tropical montane cloud forest exhibits great heterogeneity in speciescomposition and structure over short geographic distances. In central Veracruz,Mexico, the conservation priority of seven cloud forest fragments was assessedby considering differences in woody plant species richness and complementarityof species among sites, forest structure, tree mortality, and timber andfirewood extraction as indicators of anthropogenic disturbance. Densities oftrees 5 cm dbh (360–1700 trees/ha) weredifferent among the sites, but basal area (35.3–89.3m2/ha) did not differ among fragments. The number of dead trees rangedfrom 10–30 to 170–200 trees/ha. The fragments'species composition was different but complementary. The Morisita–Hornindex indicated low similarity between fragments. A non-parametric estimator ofspecies richness indicated that more sampling effort would be necessary tocomplete the inventory (15 additional trees and two understory shrub species).Unfortunately, most of the fragments are threatened with deforestation. The numberof cut trees was similar among sites (0–15 cut trees/0.1 ha).Sites with immediate need for conservation were close to settlements, with highnumbers of cut trees and no legal protection. The selected sites represent thevariety of situations that exist in the region. Given the high complementarityobserved between fragments, a regional conservation approach will be required topreserve the last repositories of part of the tremendous biodiversity of theonce continuous forest in this region.  相似文献   

15.
Tang  Cindy Q.  Ohsawa  Masahiko 《Plant Ecology》1999,145(2):221-233
Altitudinal distribution of evergreen broad-leaved trees and changes in their leaf sizes were studied on a humid subtropical mountain, Mt. Emei (3099 m a.s.l., 29°34.5 N, 103°21.5 E), Sichuan, China. Among the total woody flora of ca. 540 species, evergreen broad-leaved trees account for 88 species in 39 genera and 23 families, corresponding to the northern limit of subtropical evergreen broad-leaved trees. The number of evergreen broad-leaved tree species greatly decreased from the low-altitudinal, evergreen broad-leaved forest zone (600–1500 m) to the mid-altitudinal, mixed forest zone (1500–2500 m), and to the high-altitudinal, coniferous forest zone (2500–3099 m). The overall trend of reduced leaf size toward upper zones was analyzed and documented in detail. The 88 species were assigned to three leaf-size classes: notophylls (48%), microphylls (36%), and mesophylls (16%). The leaf size was relatively small and the specific leaf weight (SLW, mg cm–2) was much larger in high altitude as compared to low altitude. No overall correlation was found between leaf size and SLW, but leaf size decreased as SLW increased toward high altitude for certain species having relatively wide altitudinal ranges. Moreover, leaf size varied with forest stratification: canopy trees were predominantly notophyllous species, while subcanopy and understorey trees were mainly microphyllous species. The tendency is compatible with the trend found in other mountains of East Asia.  相似文献   

16.
Liana diversity was inventoried in four tropical dry evergreen forest sites that are characterized by numerous trees, of short stature and small diameter, and a varying degree of anthropogenic disturbance, on the Coromandel coast of south India. A 1-ha plot was established in each of the four sites and was subdivided into 100 quadrats of 10 m× 10 m. All lianas 1 cm diameter at breast height (dbh) rooted within the plot were enumerated. The species richness and density of lianas, with respect to site disturbance and forest stature, varied across the sites. Liana density totaled 3307 individuals (range 497–1163 individuals ha–1) and species richness totaled 39 species (range 24–29 species ha–1) representing 34 genera and 24 families. Combretaceae, Asclepiadaceae, Capparaceae and Vitaceae were the well-represented families. The top five species Strychnos minor, Combretum albidum, Derris ovalifolia, Jasminum angustifolium and Reissantia indica contributed 55% of total density. The slopes of the species–area curves were different for each of the four sites and the curve stabilized in only one site. Of the four climbing modes recognized among the total 39 species, 18 were twiners (56% of the total density). Eight species (24% of density) were tendril climbers and 12 species (16% of density) were scramblers. Hugonia mystax was the only hook climber. All the 39 species and 88% of liana density were encountered within a category of 6 cm dbh or less, and a similar pattern prevailed in the individual sites. Of the three diaspore dispersal modes found among the 39 liana species, animal (64%) and wind (23%) dispersal were predominant over the autochorous mode (13%). Liana diversity and distribution in dry forest communities appear to be influenced by forest stature and site disturbance levels. In the light of the extent of liana diversity and sacred grove status of the study sites, the need for forest conservation, involving local people, is emphasized.  相似文献   

17.
Biodiversity of woody species was investigated in Ialong and Raliangsacred groves of the Jaintia hills in Meghalaya, northeast India. These grovesrepresent the climax subtropical broad-leaved forest of the area. A total of 738individuals belonging to 82 species, 59 genera and 39 families was identified ina 0.5 ha plot of the Ialong sacred grove, whereas the same area in theRaliang sacred grove had 469 individuals of 80 species, 62 genera and 41families. About 32% species were common to both groves. Lauraceae, with10–17 species, was the dominant family. The canopy and subcanopy stratawere respectively composed of 28 and 33% of the total tree species in theforest. The number of species as well as stem density were greater for the treesof lower dbh (5–15 cm) class compared to the higher (> 66cm) dbh class. The majority of the species showed a contagiousdistribution pattern and low frequency. The basal area varied from 57.4 to 71.4m2 ha–1. Species richness within theforest varied from 3 to 15 per 100 m2 in Ialong and 3 to 12 per 100m2 in Raliang. The dominance–distribution curves showed highequitability and low dominance in both groves.  相似文献   

18.
The development of the Hawaiian montane rainforest was investigated along a 4.1-million-year soil age gradient at 1200 m elevation under two levels of precipitation, the mesic (c. 2500 mm annual rainfall) vs. wet (>4000 mm) age gradient. Earlier analyses suggested that soil fertility and foliar nutrient concentrations of common canopy species changed unimodally on the same gradients, with peak values at the 20,000–150,000 yr old sites, and that foliar concentrations were consistently lower under the wet than under the mesic conditions. Our objectives were to assay the influences of soil aging and moisture on forest development using the patterns and rates of species displacements. The canopies at all sites were dominated by Metrosideros polymorpha. Mean height and dbh of upper canopy Metrosideros trees increased from the youngest site to peak values at the 2100–9000 yr sites, and successively declined to older sites. A detrended correspondence analysis applied to mean species cover values revealed that significant variation among sites occurred only on one axis (axis 1), for both soil-age gradients. Sample scores along axis 1 were perfectly correlated with soil age on the mesic gradient, and significantly correlated on the wet gradient. Higher rainfall appeared to be responsible for the higher rates of species turnover on the wet gradient probably through faster rock weathering and greater leaching of soil elements. We concluded that the changes in species cover values and size of the canopy species was a reflection of the changing pattern of nutrient availability associated with soil aging.  相似文献   

19.
Lianas (woody climbers) are structural parasites of trees that compete with them for light and below‐ground resources. Most studies of liana–tree interactions are based on ground‐level observations of liana stem density and size, with these assessments generally assumed to reflect the amount of liana canopy cover and overall burden to the tree. We tested this assumption in a 1‐ha plot of lowland rainforest in tropical Australia. We recorded 1072 liana stems (≥1 cm diameter at breast height {dbh}) ha?1 across all trees (≥10 cm dbh) on the plot and selected 58 trees for detailed study. We estimated liana canopy cover on selected trees that hosted 0–15 liana individuals, using a 47‐m‐tall canopy crane. Notably, we found no significant correlations between liana canopy cover and three commonly used ground‐based measurements of liana abundance as follows: liana stem counts per tree, liana above‐ground biomass per tree and liana basal area per tree. We also explored the role of tree size and liana infestation and found that larger trees (≥20 cm dbh) were more likely to support lianas and to host more liana stems than smaller trees (≤20 cm dbh). This pattern of liana stem density, however, did not correlate with greater liana coverage in the canopy. Tree family was also found to have a significant effect on likelihood of hosting lianas, with trees in some families 3–4 times more likely to host a liana than other families. We suggest that local ground‐based measures of liana–tree infestation may not accurately reflect liana canopy cover for individual trees because they were frequently observed spreading through neighbouring trees at our site. We believe that future liana research will benefit from new technologies such as high‐quality aerial photography taken from drones when the aim is to detect the relative burden of lianas on individual trees.  相似文献   

20.
Population structure and ecological characteristics of component species of a riparian Ulmus-Quercus forest in central Japan were analyzed with special reference to riparian disturbance regime. Though the dbh distribution of the whole community was L-shaped, those of several component tree populations had several modes, suggesting intermittent regeneration periods in the past. Correlation of spatial distributions among tree populations and subpopulations showed 6 major groups reflecting riparian disturbances in the past and different establishment patterns among species. A cluster of small-sized tree populations (Salix sachalinensis, Alnus hirsuta and Populus maximowiczii <30 cm dbh) were distributed on the lower terrace along the active river channel, while large-sized subpopulations (dbh 60 cm) of Quercus crispula and Ulumus davidiana var. japonica occurred on the higher terrace. The Phellodendron amurense population also occurred on the higher terrace in small clumps though the trees were small (less than 55 cm dbh). Subpopulations of intermediate-sized individuals (30 dbh < 60 cm) of Q. crispula and U. davidiana var. japonica, together with Betula and Acer spp. populations occurred on the intermediate terrace. Dendrochronological analyses indicated that the large and intermediate-sized tree groups were established about 330 and 90 years ago, respectively, while the small-sized tree group established about 35 years ago. A survey of historical disturbances showed that these periods of establishment of the former two groups almost coincided with the historically major floods occurring in 1662 and 1902. However, the disturbance that resulted in the establishment of the youngest group could not be precisely identified. Thus, the forest is a mosaic of three differently-aged patches, which is closely related to the frequency and scale of riparian disturbances. Longevity of trees and the preferred conditions for seed germination and/or seedling establishment were particularly important for the guild structure in this forest community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号