首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Changes in leaf hydraulic conductance (K) were measured using the vacuum chamber technique during dehydration and rehydration of potted plants of Ceratonia siliqua . K of whole, compound leaves as well as that of rachides and leaflets decreased by 20–30% at leaf water potentials (ΨL) of −1.5 and −2.0 MPa, i.e. at ΨL values commonly recorded in field-growing plants of the species. Higher K losses (up to 50%) were measured for leaves at ΨL of −2.5 and −3.0 MPa, i.e. near or beyond the leaf turgor loss point. Leaves of plants rehydrated while in the dark for 30 min, 90 min and 12 h recovered from K loss with characteristic times and to extents inversely proportional to the initial water stress applied. Leaf conductance to water vapour of plants dehydrated to decreasing ΨL and rehydrated at low transpiration was inversely related to loss of K, thus suggesting that leaf vein embolism and refilling (and related changes in leaf hydraulics) may play a significant role in the stomatal response.  相似文献   

2.
Hydraulic conductivity ( K ) in the soil and xylem declines as water potential ( Ψ ) declines. This results in a maximum rate of steady-state transpiration ( E crit) and corresponding minimum leaf Ψ ( Ψ crit) at which K has approached zero somewhere in the soil–leaf continuum. Exceeding these limits causes water transport to cease. A model determined whether the point of hydraulic failure (where K = 0) occurred in the rhizosphere or xylem components of the continuum. Below a threshold of root:leaf area ( A R: A L), the loss of rhizosphere K limited E crit and Ψ crit. Above the threshold, loss of xylem K from cavitation was limiting. The A R: A L threshold ranged from > 40 for coarse soils and/or cavitation-resistant xylem to < 0·20 in fine soils and/or cavitation-susceptible xylem. Comparison of model results with drought experiments in sunflower and water birch indicated that stomatal regulation of E reflected the species' hydraulic potential for extracting soil water, and that the more sensitive stomatal response of water birch to drought was necessary to avoid hydraulic failure. The results suggest that plants should be xylem-limited and near their A R: A L threshold. Corollary predictions are (1) within a soil type the A R: A L should increase with increasing cavitation resistance and drought tolerance, and (2) across soil types from fine to coarse the A R: A L should increase and maximum cavitation resistance should decrease.  相似文献   

3.
Efficient conduction of water inside leaves is essential for leaf function, yet the hydraulic-mediated impact of drought on gas exchange remains poorly understood. Here we examine the decline and subsequent recovery of leaf water potential ( Ψ leaf), leaf hydraulic conductance ( K leaf), and midday transpiration ( E ) in four temperate woody species exposed to controlled drought conditions ranging from mild to lethal. During drought the vulnerability of K leaf to declining Ψ leaf varied greatly among the species sampled. Following drought, plants were rewatered and the rate of E and K leaf recovery was found to be strongly dependent on the severity of the drought imposed. Gas exchange recovery was strongly correlated with the relatively slow recovery of K leaf for three of the four species, indicating conformity to a hydraulic-stomatal limitation model of plant recovery. However, there was also a shift in the sensitivity of stomata to Ψ leaf suggesting that the plant hormone abscisic acid may be involved in limiting the rate of stomatal reopening. The level of drought tolerance varied among the four species and was correlated with leaf hydraulic vulnerability. These results suggest that species-specific variation in hydraulic properties plays a fundamental role in steering the dynamic response of plants during recovery.  相似文献   

4.
Competition for water availability was studied in a mixed natural stand of Quercus suber L. and Quercus cerris L. growing in Sicily by measuring diurnal changes of leaf conductance to water vapour ( g L), water potential ( Ψ L) and relative water content ( RWC ) in April, July and October 1997 as well as the seasonal changes in root hydraulic conductance per unit leaf surface area ( K RL). Quercus cerris behaved as a drought-tolerant species, with strong reductions of K RL, Ψ L, and RWC in the summer. By contrast, Q. suber appeared to withstand summer drought by an avoidance strategy based on reducing g L, maintaining Ψ L and RWC high and K RL at the same level as that measured in the spring. A 'conductance ratio' ( CR ) was calculated in terms of the ratio of g L to K RL. Seasonal changes of this ratio contrasted in the two species, thus suggesting that Q. suber and Q. cerris did not really compete for available water. In the summer, when Q. suber was extracting water from the soil to maintain high leaf hydration, Q. cerris had restricted water absorption, thus suffering drought but tolerating its effects. The possibility that cohabitation of drought-tolerant with drought-avoiding species can be generalized is also discussed.  相似文献   

5.
As soil and plant water status decline, decreases in hydraulic conductance can limit a plant's ability to maintain gas exchange. We investigated hydraulic limitations for Artemisia tridentata during summer drought. Water use was quantified by measurements of soil and plant water potential ( Ψ ), transpiration and leaf area. Hydraulic transport capacity was quantified by vulnerability to water stress-induced cavitation for root and stem xylem, and moisture release characteristics for soil. These data were used to predict the maximum possible steady-state transpiration rate ( E crit) and minimum leaf xylem pressure ( Ψ crit). Transpiration and leaf area declined by ~ 80 and 50%, respectively, as soil Ψ decreased to –2·6 MPa during drought. Leaf-specific hydraulic conductance also decreased by 70%, with most of the decline predicted in the rhizosphere and root system. Root conductance was projected to be the most limiting, decreasing to zero to cause hydraulic failure if E crit was exceeded. The basis for this prediction was that roots were more vulnerable to xylem cavitation than stems (99% cavitation at –4·0 versus –7·8 MPa, respectively). The decline in water use during drought was necessary to maintain E and Ψ within the limits defined by E crit and Ψ crit.  相似文献   

6.
We examined structural and physiological traits relevant to the phenology of the tropical dry forest (TDF) pioneer tree Cochlospermum vitifolium . Despite marked seasonality in rainfall, meristem activity occurred throughout the year. Leaves were produced almost continuously during the rainy season, while leaf shedding started early during drought, before changes in soil water content were observed. Phenological activity under drought included flowering and fruiting of leafless trees; bud break and shoot extension took place before the end of the dry season. Low wood density of C. vitifolium stems (0.17 g/cm3) and lignotubers (0.14 g/cm3) provided water and starch storage needed to support phenological events such as branch extension, leaf flushing, and reproduction during the dry season, and probably also contributed to survival following mechanical damage and fire, typical of early TDF successional stages. Lignotuber water and starch contents showed substantial seasonal variation, declining from the beginning of the dry season to their lowest levels at the time of reproduction and dry-season flushing. Stems progressively replaced lignotubers as main storage organs as tree size increased. Evidence for a role of water stores in buffering daily water deficits was weak. Leaf water potentials remained above −1.2 MPa and stomatal conductance below 350 mmol/m2/s, suggesting that gas exchange during the rainy season was limited to prevent xylem cavitation. Leaf shedding occurred when early-morning and mid-day ΨL converged at the rainy–dry season transition, without changes in lignotuber or soil water content, suggesting that leaves of C. vitifolium are closely tuned to atmospheric drought.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp .  相似文献   

7.
Sap salinity effects on xylem conductivity in two mangrove species   总被引:5,自引:0,他引:5  
Xylem sap salinity and conductivity were examined in two mangrove ecosystem tree species . For Avicennia germinans , extracted xylem sap osmotic potentials ranged from −0.24 to −1.36 MPa versus −0.14 to −0.56 MPa for Conocarpus erectus. Xylem sap of Conocarpus did not vary in osmotic potential between sites nor between predawn and midday. In Avicennia , values were more negative at midday than predawn, and also more negative at hypersaline than hyposaline sites. After removing embolisms, specific conductivity ( K s) was measured as a function of salinity of the artificial xylem sap perfusion. For both species the lowest K s values, about 70% of the maximum K s, were obtained when stems were perfused with deionized water (0 m m ; 0.0 MPa) or with a 557-m m saline solution (−2.4 MPa). Higher K s values were obtained in the range from −0.3 to −1.2 MPa, with a peak at −0.82 ± 0.08 MPa for Avicennia and −0.75 ± 0.08 MPa for Conocarpus . The variations in K s values with minima both at very low and very high salt concentrations were consistent with published results for swelling and shrinking of synthetic hydrogels, suggesting native hydrogels in pit membranes of vessels could help regulate conductivity.  相似文献   

8.
The importance of xylem constraints in the distribution of conifer species   总被引:10,自引:0,他引:10  
Vulnerability of stem xylem to cavitation was measured in 10 species of conifers using high pressure air to induce xylem embolism. Mean values of air pressure required to induce a 50% loss in hydraulic conductivity (φ50) varied enormously between species, ranging from a maximum of 14.2±0.6 MPa (corresponding to a xylem water potential of −14.2 MPa) in the semi-arid species Actinostrobus acuminatus to a minimum of 2.3±0.2 MPa in the rainforest species Dacrycarpus dacrydioides . Mean φ50 was significantly correlated with the mean rainfall of the driest quarter within the distribution of each species. The value of φ50 was also compared with leaf drought tolerance data for these species in order to determine whether xylem dysfunction during drought dictated drought response at the leaf level. Previous data describing the maximum depletion of internal CO2 concentration (ci) in the leaves of these species during artificial drought was strongly correlated with φ50 suggesting a primary role of xylem in effecting leaf drought response. The possibility of a trade-off between xylem conductivity and xylem vulnerability was tested in a sub-sample of four species, but no evidence of an inverse relationship between φ50 and either stem-area specific (Ka) or leaf-area specific conductivity (K1) was found.  相似文献   

9.
Exchange rates of CO2 and H2O and metabolism of hydrogen peroxide have been measured in leaves of alfalfa ev. Aragón) under drought stress. The inhibitory effect of drought upon photosynthesis depended on the severity of the stress treatment. Leaf water potential (Ψleaf) down to,-2.8 MPa reduced CO2 availability due to stomatal closure and inhibited the rate of photosynthesis. Leaf water potential lower than,-2.8 MPa directly affected CO2 fixation, although CO2 was not limiting. Transpiration was more affected by stornatal closure than photosynthesis, which led to am apparent improvement in WUE (water use efficiency). Alfalfa leaves with Ψleaf lower than,-2.0 MPa had an increased quantum requirement, probably due to the severe stress effect on photoenergetic reactions.
Ethylene evolution from alfalfa leaves increased when they were subjected to Ψleaf of,- 1.6 MPa. Under more severe stress, the leaves showed low or almost no ethylene production. In parallel with the increase in ethyiene production, alfalfa leaves exhibited an increased membrane lipid peroxidation index (maloridialdehyde content) and an increased peroxide content. Superoxide disinutase activity (SOD; EC 1.15.1.1) was not affected by drought stress. Catalase (EC 1.11.1.6) was inhibited at slight stress, but significantly increased at a Ψleaf of -2.0 MPa. Peroxidase (EC 1.11.1.7) was progressively inhibited as drought stress developed. The possible implication of reactive O2 intermediates in drought stress-induced senescence of alfalfa leaves is discussed in the light of the pattern of enzymatic scavenging systems.  相似文献   

10.
Abstract. The diurnal cycling of leaf water potential (Ψleaf) in field-grown sunflower ( Helianthus annuus ) was used to investigate the cause of water deficitinduced limitation of net photosynthesis. Daily midafternoon decreases in Ψleaf of up to 1.5 MPa and in net photosynthesis of up to 50% were typical for irrigated sunflower during seed filling. These midafternoon values were lowered an additional 0.6 to 0.8 MPa by prolonged drought treatment. There was a nearly linear relationship between the decline in net photosynthesis and reductions in leaf conductance over the course of the day. Thus, it was unexpected to find that the low, midafternoon rates of photosynthesis were associated with the highest intercellular CO2 concentrations. These and other observations suggest that the daily decline in photosynthesis represents a 'down regulation' of the biochemical demand for CO2 that is coordinated with the diurnally developing need to conserve water, thus establishing a balanced limitation of photosynthesis involving both stomatal and non-stomatal factors. There were no indications that either short term (i.e. diurnal declines in Ψleaf) or long term (i.e. drought treatment) water deficits caused any damage or malfunctioning of photosynthesis. Rather, both the daily declines in photosynthesis and the nearly 25% decrease in leaf area induced by prolonged drought appeared to be well-controlled adaptive responses by field-grown sunflower plants to limited water availability.  相似文献   

11.
Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth   总被引:16,自引:0,他引:16  
We adopted previous N : P stoichiometric models for zooplankton relative growth to predict the relative growth rates of the leaves μ L of vascular plants assuming that annual leaf growth in dry mass is dictated by how leaf nitrogen N L is allocated to leaf proteins and how leaf phosphorus P L is allocated to rRNA. This model is simplified provided that N L scales as some power function of P L across the leaves of different species. This approach successfully predicted the μ L of 131 species of vascular plants based on the observation that, across these species, N L scaled, on average, as the 3/4 power of P L, i.e. N L ∝  P     . When juxtaposed with prior allometric theory and observations, our findings suggest that a transformation in N : P stoichiometry occurs when the plant body undergoes a transition from primary to secondary growth.  相似文献   

12.
We investigated how species identity and variation in salinity and nutrient availability influence the hydraulic conductivity of mangroves. Using a fertilization study of two species in Florida, we found that stem hydraulic conductivity expressed on a leaf area basis ( K leaf) was significantly different among species of differing salinity tolerance, but was not significantly altered by enrichment with limiting nutrients. Reviewing data from two additional sites (Panamá and Belize), we found an overall pattern of declining leaf‐specific hydraulic conductivity ( K leaf) with increasing salinity. Over three sites, a general pattern emerges, indicating that native stem hydraulic conductivity ( K h) and K leaf are less sensitive to nitrogen (N) fertilization when N limits growth, but more sensitive to phosphorus (P) fertilization when P limits growth. Processes leading to growth enhancement with N fertilization are probably associated with changes in allocation to leaf area and photosynthetic processes, whereas water uptake and transport processes could be more limiting when P limits growth. These findings suggest that whereas salinity and species identity place broad bounds on hydraulic conductivity, the effects of nutrient availability modulate hydraulic conductivity and growth in complex ways.  相似文献   

13.
We examined changes in branch hydraulic, leaf structure and gas exchange properties in coast redwood ( Sequoia sempervirens ) and giant sequoia ( Sequoiadendron giganteum ) trees of different sizes. Leaf-specific hydraulic conductivity ( k L) increased with height in S. sempervirens but not in S. giganteum , while xylem cavitation resistance increased with height in both species. Despite hydraulic adjustments, leaf mass per unit area (LMA) and leaf carbon isotope ratios ( δ 13C) increased, and maximum mass-based stomatal conductance ( g mass) and photosynthesis ( A mass) decreased with height in both species. As a result, both A mass and g mass were negatively correlated with branch hydraulic properties in S. sempervirens and uncorrelated in S. giganteum . In addition, A mass and g mass were negatively correlated with LMA in both species, which we attributed to the effects of decreasing leaf internal CO2 conductance ( g i). Species-level differences in wood density, LMA and area-based gas exchange capacity constrained other structural and physiological properties, with S. sempervirens exhibiting increased branch water transport efficiency and S. giganteum exhibiting increased leaf-level water-use efficiency with increasing height. Our results reveal different adaptive strategies for the two redwoods that help them compensate for constraints associated with growing taller, and reflect contrasting environmental conditions each species faces in its native habitat.  相似文献   

14.
This study investigated the interspecific differences in vulnerability to xylem embolism of four phreatophytes – two facultative phreatophytes ( Banksia attenuata and B. menziesii ) and two obligate phreatophytes ( B. ilicifolia and B. littoralis ). Species differences at the same position along an ecohydrological gradient on the Gnangara Groundwater Mound, Western Australia were determined in addition to intraspecific differences to water stress between populations in contrasting ecohydrological habitats. Stem- and leaf-specific hydraulic conductivity, as well as Huber values (ratio of stem to leaf area), were also determined to support these findings. We found that where water is readily accessible, there were no interspecific differences in vulnerability to water stress. In contrast both facultative phreatophyte species were more resistant to xylem embolism at the more xeric dune crest site than at the wetter bottom slope site. B. ilicifolia did not differ in vulnerability to embolism, supporting its classification as an obligate phreatophyte. Other measured hydraulic traits ( K S, K L and Huber value) showed no adaptive responses, although there was a tendency for plants at the wetter site to have higher K S and K L. This study highlights the influence site hydrological attributes can have on plant hydraulic architecture across species and environmental gradients.  相似文献   

15.
Five evergreen subtropical tree species growing under identical environmental conditions were investigated to establish which hydraulic properties are genotypically rigid and which show phenotypic plasticity. Maximum xylem-specific conductivity ( k s) correlated well with the anatomical characteristics (conduit diameter and density) for the four angiosperms Tecomaria capensis , Trichilia dregeana , Cinnamomum camphora and Barringtonia racemosa ; the anatomy of the gymnosperm Podocarpus latifolius was not assessed. Huber values (functional xylem cross-sectional area : leaf area) varied inversely with k s among species. Maximum leaf-specific conductivity was similar in the five unrelated species. Vulnerability of xylem to cavitation differed between species, as did the relationship between transpiration and water potential. Models of these parameters and isolated midday readings confirm that these trees operate at similar maximum leaf-specific conductivity ( k l) values. The data are consistent with the hypothesis that conductivity characteristics ( k l, k s) are influenced by environment, whereas vulnerability to cavitation is genetically determined.  相似文献   

16.
To investigate the contribution of different parts of the root system to total sap flow and leaf xylem abscisic acid (ABA) concentration ([X-ABA]leaf), individual sunflower ( Helianthus annuus L.) shoots were grafted onto the root systems of two plants grown in separate pots and sap flow through each hypocotyl measured below the graft union. During deficit irrigation (DI), both pots received the same irrigation volumes, while during partial root zone drying (PRD) one pot ('wet') was watered and another ('dry') was not. During PRD, once soil water content ( θ ) decreased below a threshold, the fraction of sap flow from drying roots declined. As θ declined, root xylem ABA concentration increased in both irrigation treatments, and [X-ABA]leaf increased in DI plants, but [X-ABA]leaf of PRD plants actually decreased within a certain θ range. A simple model that weighted ABA contributions of wet and dry root systems to [X-ABA]leaf according to the sap flow from each, better predicted [X-ABA]leaf of PRD plants than either [X-ABA]dry, [X-ABA]wet or their mean. Model simulations revealed that [X-ABA]leaf during PRD exceeded that of DI with moderate soil drying, but continued soil drying (such that sap flow from roots in drying soil ceased) resulted in the opposite effect.  相似文献   

17.
The study examined the relationships between whole tree hydraulic conductance ( K tree) and the conductance in roots ( K root) and leaves ( K leaf) in loblolly pine trees. In addition, the role of seasonal variations in K root and K leaf in mediating stomatal control of transpiration and its response to vapour pressure deficit ( D ) as soil-dried was studied. Compared to trunk and branches, roots and leaves had the highest loss of conductivity and contributed to more than 75% of the total tree hydraulic resistance. Drought altered the partitioning of the resistance between roots and leaves. As soil moisture dropped below 50%, relative extractable water (REW), K root declined faster than K leaf. Although K tree depended on soil moisture, its dynamics was tempered by the elongation of current-year needles that significantly increased K leaf when REW was below 50%. After accounting for the effect of D on g s, the seasonal decline in K tree caused a 35% decrease in g s and in its sensitivity to D , responses that were mainly driven by K leaf under high REW and by K root under low REW. We conclude that not only water stress but also leaf phenology affects the coordination between K tree and g s and the acclimation of trees to changing environmental conditions.  相似文献   

18.
Functional and ecological xylem anatomy   总被引:17,自引:0,他引:17  
Cohesion-tension transport of water is an energetically efficient way to carry large amounts of water from the roots up to the leaves. However, the cohesion-tension mechanism places the xylem water under negative hydrostatic pressure (Px), rendering it susceptible to cavitation. There are conflicts among the structural requirements for minimizing cavitation on the one hand vs maximizing efficiency of transport and construction on the other. Cavitation by freeze-thaw events is triggered by in situ air bubble formation and is much more likely to occur as conduit diameter increases, creating a direct conflict between conducting efficiency and sensitivity to freezing induced xylem failure. Temperate ring-porous trees and vines with wide diameter conduits tend to have a shorter growing season than conifers and diffuse-porous trees with narrow conduits. Cavitation by water stress occurs by air seeding at interconduit pit membranes. Pit membrane structure is at least partially uncoupled from conduit size, leading to a much less pronounced trade-off between conducting efficiency and cavitation by drought than by freezing. Although wider conduits are generally more susceptible to drought-induced cavitation within an organ, across organs or species this trend is very weak. Different trade-offs become apparent at the level of the pit membranes that interconnect neighbouring conduits. Increasing porosity of pit membranes should enhance conductance but also make conduits more susceptible to air seeding. Increasing the size or number of pit membranes would also enhance conductance, but may weaken the strength of the conduit wall against implosion. The need to avoid conduit collapse under negative pressure creates a significant trade-off between cavitation resistance and xylem construction cost, as revealed by relationships between conduit wall strength, wood density and cavitation pressure. Trade-offs involving cavitation resistance may explain the correlations between wood anatomy, cavitation resistance, and the physiological range of negative pressure experienced by species in their native habitats.  相似文献   

19.
Xylem conduction and cavitation in Hevea brasiliensis   总被引:2,自引:0,他引:2  
Clones of Hevea were studied in an attempt to discover the reasonsfor differences in the hydraulic performance of xylem. Differencesbetween clones were determined, including hydraulic conductivityand conduit width and length distributions. However, it hasproved difficult to reconcile anatomical differences with physiologicalperformance for use in future plant breeding programmes. When leaf relative water content (RWC) had been reduced fromabout 95% to 85%, the hydraulic conductivity of petioles decreasedsharply to about 40% of the initial value. This value correspondedwith xylem sap tensions of 1.8–2.0 MPa. Acoustic detectionexperiments revealed that this reduction in hydraulic conductivitycoincided with the greatest occurrence of cavitation. It seemsinescapable that the reduction in hydraulic conductivity wascaused by embolization; thereafter gas bubbles blocked the flowof water inside many of the conduits. There was some indicationthat eventually such bubbles might be dissolved, because thehydraulic conductivity increased again if specimens were fullyrehydrated. Apparently, the incidence of cavitation coincides with the entryof gas bubbles via ultramicroscopic pores into the conduitsthrough the walls according to the air-seeding hypothesis. Whena petiolate leaf is tested in a pressure chamber it is impossibleto make satisfactory measurements of a balancing pressure beyondc. 1.8–2.0 MPa, because air bubbles, mixed with sap andescaping from the conduits, form a persistent froth. Xylem transportin Hevea seems to be disrupted relatively easily under waterstress which is a feature of other tropical species adaptedto rainforest–type environments Key words: Hevea, xylem, cavitation, conduit, hydraulic conductivity  相似文献   

20.
To investigate the responses of pathogenesis-related (PR) proteins to the intensity of drought stress and their physiological significance in white clover ( Trifolium repens L.), the change of enzyme activity and its relationship with some physiological parameters were assessed for 28 days under well-watered (control) and water-deficit conditions. Water-deficit treatment gradually decreased leaf water potential (Ψw) to −2.33 MPa at day 28. Dry matter significantly decreased from 21 days of water-deficit treatment, while proline and ammonia concentration increased within 7 days. The increase in PR-protein activity was closely related with the decrease in Ψw. The β-1,3-glucanase (EC 3.2.1.39) activity in water-deficit leaves rapidly increased for the first 14 days (Ψw ≥ −1.67) and then slightly decreased, while the chitinase (EC 3.2.1.14) and cellulase (EC 3.2.1.4) activity continued to increase throughout the experimental period. The enhanced activation of β-1,3-glucanase, chitinase and cellulase for the period of days 0–14 was significantly ( P  ≤ 0.01) related to the increase of proline and ammonia concentrations. The results indicate that the enhanced activity of β-1,3-glucanase, cellulase and chitinase for the early period might be an act of transient tolerance to drought stress, but the activation of these enzymes during terminal stress might be a drought-stress-induced injurious symptom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号