首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic relationships among major clades of anuran amphibians were studied using partial sequences of three nuclear protein coding genes, Rag-1, Rag-2, and rhodopsin in 26 frog species from 18 families. The concatenated nuclear data set comprised 2,616 nucleotides and was complemented by sequences of the mitochondrial 12S and 16S rRNA genes for analyses of evolutionary rates. Separate and combined analyses of the nuclear markers supported the monophyly of modern frogs (Neobatrachia), whereas they did not provide support for the monophyly of archaic frog lineages (Archaeobatrachia), contrary to previous studies based on mitochondrial data. The Neobatrachia contain two well supported clades that correspond to the subfamilies Ranoidea (Hyperoliidae, Mantellidae, Microhylidae, Ranidae, and Rhacophoridae) and Hyloidea (Bufonidae, Hylidae, Leptodactylidae, and Pseudidae). Two other families (Heleophrynidae and Sooglossidae) occupied basal positions and probably represent ancient relicts within the Neobatrachia, which had been less clearly indicated by previous mitochondrial analyses. Branch lengths of archaeobatrachians were consistently shorter in all separate analyses, and nonparametric rate smoothing indicated accelerated substitution rates in neobatrachians. However, relative rate tests confirmed this tendency only for mitochondrial genes. In contrast, nuclear gene sequences from our study and from an additional GenBank survey showed no clear phylogenetic trends in terms of differences in rates of molecular evolution. Maximum likelihood trees based on Rag-1 and using only one neobatrachian and one archaeobatrachian sequence, respectively, even had longer archaeobatrachian branches averaged over all pairwise comparisons. More data are necessary to understand the significance of a possibly general assignation of short branches to basal and species-poor taxa by tree-reconstruction algorithms.  相似文献   

2.
During the last two decades, major taxonomic rearrangements were instituted in the anuran family Ranidae. Most of these changes were not based on phylogenetic analysis, and many are controversial. Addressing the phylogeny of Ranidae requires broader taxon sampling within the superfamily Ranoidea, the phylogenetic relationships and higher classification of which are also in a state of flux. No comprehensive attempt has yet been made to reconstruct ranid phylogeny using both morphological and molecular data. In the present contribution, data from 178 organismal characters were collated for 74 exemplar species representing the families Arthroleptidae, Hemisotidae, Hyperoliidae, Mantellidae Microhylidae, Petropedetidae, Rhacophoridae, Sooglossidae, and most subfamilies of Ranidae. These were combined with ~1 kb of DNA sequence from the mitochondrial 12S rDNA and 16S rDNA gene regions in a simultaneous parsimony analysis with direct optimization. Results support the classification of Hemisus with the brevicipitine microhylids, confirm that Arthroleptidae (and its two component subfamilies Astylosterninae and Arthroleptinae) are monophyletic, and advocate the recognition of Leptopelidae. Monophyly of Ranidae is compromised by recognition of Petropedetidae, Rhacophoridae and Mantellidae, which should be recognized as subfamilies of Ranidae at present. Furthermore, Petropedetidae was found to be grossly paraphyletic, comprising three clades which are all considered separate subfamilies of Ranidae, i.e., Petropedetinae, Phrynobatrachinae and Cacosterninae. Three well defined subfamilies of Ranidae were consistently retrieved as monophyletic in a sensitivity analysis, i.e., Tomopterninae, Ptychadeninae and Pyxicephalinae. However, Ptychadeninae and Pyxicephalinae were embedded in Raninae and Dicroglossinae, respectively. Ceratobatrachinae is removed from Dicroglossinae. Dicroglossinae is synonymized with Pyxicephalinae. A new subfamily Strongylopinae is proposed. Raninae should be conservatively treated as a “metataxon” (sensu Ford and Cannatella, 1993 ) until such time as it is fully revised. Tomopterninae is removed from synonymy with Cacosterninae. Morphological synapomorphies are reported for major monophyletic clades retrieved in the simultaneous analysis with equal weights. The present study found that many Old World clades appear to contain both African and Asian taxa, contrary to the findings of some recent biogeographical analyses. This study demonstrates the value of broad taxonomic sampling in ranid phylogeny, and highlights the immense contribution that can be made from detailed morphological data. © The Willi Hennig Society 2005.  相似文献   

3.
The phylogenetic relationships of microhylid frogs are poorly understood. The first molecular phylogeny for continental African microhylids is presented, including representatives of all subfamilies, six of the eight genera, and the enigmatic hemisotid Hemisus. Mitochondrial 12S and 16S rRNA sequence data were analysed using parsimony, likelihood and Bayesian methods. Analyses of the data are consistent with the monophyly of all sampled subfamilies and genera. Hemisus does not nest within either brevicipitines or non-brevicipitines. It is possibly the sister group to brevicipitines, in which case brevicipitines might not be microhylids. Phrynomantis and Hoplophryne potentially group with non-African, non-brevicipitine microhylids, in agreement with recent morphological and molecular data. Within brevicipitines, Breviceps is recovered as the sister group to a clade of Callulina+Spelaeophryne+Probreviceps. The relationships among the genera within this latter clade are unclear, being sensitive to the method of analysis. Optimal trees suggest the Probreviceps macrodactylus subspecies complex might be paraphyletic with respect to P. uluguruensis, corroborating preliminary morphological studies indicating that P. m. rungwensis may be a distinct species. P. m. loveridgei may be paraphyletic with respect to P. m. macrodactylus, though this is not strongly supported. Some biogeographic hypotheses are examined in light of these findings.  相似文献   

4.
The phylogenetic position of Cetacea (whales, dolphins and porpoises) is an important exemplar problem for combined data parsimony analyses because the clade is ancient and includes many well‐known and relatively complete fossil species. We combined data for 71 terminal taxa (43 extinct/28 extant) to test where Cetacea fits within Cetartiodactyla, and where various fossil hoofed mammals (e.g., ?entelodonts, “?anthracotheriids” and ?mesonychians) are positioned. We scored 635 phenotypic characters (osteology, dentition, soft tissue, behavior), approximately three times the number of characters in the last major analysis of this clade, and combined these with > 40 000 molecular characters, including new data from 10 genes. The analysis supported a topology consistent with the majority of recently published molecular studies. Cetacea was the extant sister taxon of Hippopotamidae, followed successively by Ruminantia, Suina and Camelidae. Several extinct taxa were phylogenetically unstable, upsetting resolution of the strict consensus and limiting branch support, but the positions of several key fossils were consistently resolved. The wholly extinct ?Mesonychia was more closely related to Cetacea than was any “artiodactylan.”“?Anthracotheriids” were paraphyletic, and, with the exception of one species, were more closely related to Hippopotamidae than to any other living taxon. The total evidence analysis overturned a highly nested position for Moschus supported by molecular data alone. The character partition that could be scored for the fossil taxa (osteological and dental characters) included more informative characters than most molecular partitions in our analysis, and had the fewest missing data. The osteological–dental data alone, however, did not support inclusion of cetaceans within crown “Artiodactyla.” Recently discovered ankle bones from fossil whales reinforced the monophyly of Cetartiodactyla but provided no particular evidence of derived similarities between hippopotamids and fossil cetaceans that were not shared with other “artiodactylans”. © The Willi Hennig Society 2007.  相似文献   

5.
Determining the root of the anuran Tree of Life is still a contentious and open question in frog systematics. Two genera with disjunct distributions have been traditionally considered the most basal among extant frogs: Leiopelma, which is endemic to New Zealand, and Ascaphus, which lives in North America. However, their specific phylogenetic position is rather elusive because each genus shows many autapomorphies, and together they retain many symplesiomorphic characters. Therefore, several alternative hypotheses have been proposed regarding the relative phylogenetic position of both Leiopelma and Ascaphus. In order to distinguish among these competing phylogenetic hypotheses, we sequenced the complete mitochondrial (mt) genome of Leiopelma archeyi and used it along with previously reported frog mt genomes (including that of Ascaphus truei) to infer a robust phylogeny of major anuran lineages. The reconstructed maximum likelihood and Bayesian inference phylogenies recovered identical topology, which supports the sister group relationship of Ascaphus and Leiopelma, and the placement of this clade at the base of the anuran tree. Interestingly, the mt genome of L. archeyi displays a novel gene arrangement in frog mt genomes affecting the relative position of cytochrome b, trnT, NADH dehydrogenase subunit 6, trnE, and trnP genes. The tandem duplication-random loss model of gene order change explains the origin of this novel frog mt genome arrangement, which is convergent with others reported in some fishes and salamanders. These results, together with comparative data for other available vertebrate mt genomes, provide evidence that the 5' end of the control region is a hot spot for gene order rearrangement.  相似文献   

6.
Phylogenetic relationships within the megadiverse lepidopteran superfamily Gelechioidea have been poorly understood and consequently the family level classification has been problematic. An analysis of phylogeny using 193 characters, including 241 informative character states, derived from larval, pupal and adult morphology and larval ecology, was performed to resolve the phylogeny of the Gelechioidea. 143 species representing the diversity of the putative Gelechioidea were included, supplemented with 13 species representing 11 other Ditrysian families. The monophyly of the Gelechioidea was supported, although only with homoplastic characters. The putative position of the Gelechioidea as the sister group of the Apoditrysia was not supported, since the Gelechioidea was nested within this clade. The Gelechioidea was divided into two main lineages: (1) the gelechiid lineage constituting Deoclonidae, Syringopainae, a re‐composed Coleophoridae (including Coelopoetinae and Batrachedrinae as paraphyletic with Stathmopodinae, and Coleophorinae nested within it), Momphidae, Pterolonchidae, Scythrididae, Cosmopterigidae, and Gelechiidae, and (2) the oecophorid lineage constituting the “autostichid” family assemblage (including taxa formerly assigned to Autostichinae, Holcopogoninae, Symmocinae, Glyphidoceridae and Lecithoceridae), Xyloryctidae s.l. (including a paraphyletic Xyloryctidae of authors, some oecophorids of authors, Deuterogoniinae and Blastobasinae), Oecophoridae s.s., Amphisbatidae s.s., Carcinidae, Stenomati[n/d]ae, Chimabachidae and Elachistidae (including Depressariinae s.s., Telechrysis, Ethmiinae, Hypertrophinae s.l., miscellaneous “amphisbatids”sensu authors, Aeolanthinae, Parametriotinae, Agonoxeninae and Elachistinae). Detritivory/fungivory may have evolved only twice within Gelechioidea, though the evolution of larval food substrate use frequently reverses. To avoid an unnecessary further proliferation of names, it is recommended that no further family group names are introduced within the Gelechioidea, unless based on a rigorous analysis of inter‐relationships.  相似文献   

7.
2017年末,我国的两栖动物已记录3目14科466种,其中,无尾目Anura 10科386种。蝌蚪是无尾两栖类物种的幼体,具有一系列适应水生生活的形态特征和一个特别的变态过程,是无尾目的主要标志之一。我国蝌蚪的形态特征散见于各个物种的形态描述,而对蝌蚪科级分类的系统研究却阙如。本文基于蝌蚪的8个形态学分类性状,概述了我国除亚洲角蛙科Ceratobatrachidae外9个科(铃蟾科Bombinatoridae、角蟾科Megophryidae、蟾蜍科Bufonidae、雨蛙科Hylidae、蛙科Ranidae、叉舌蛙科Dicroglossidae、浮蛙科Occidozygidae、树蛙科Rhacophoridae、姬蛙科Microhylidae)的蝌蚪分类特征,系统阐述了蝌蚪科级分类特征的分类和适应意义。  相似文献   

8.
The family Microhylidae has a large circumtropic distribution and contains about 400 species in a highly subdivided taxonomy. Relationships among its constituent taxa remained controversial due to homoplasy in morphological characters, resulting in conflicting phylogenetic hypotheses. A phylogeny based on four nuclear genes (rag-1, rag-2, tyrosinase, BDNF) and one mitochondrial gene (CO1) of representatives of all currently recognized subfamilies uncovers a basal polytomy between several subfamilial clades. A sister group relationship between the cophylines and scaphiophrynines is resolved with moderate support, which unites these endemic Malagasy taxa for the first time. The American members of the subfamily Microhylinae are resolved to form a clade entirely separate from the Asian members of that subfamily. Otophryne is excluded from the subfamily Microhylinae, and resolved as a basal taxon. The placement of the Asian dyscophine Calluella nested within the Asian Microhyline clade rather than with the genus Dyscophus is corroborated by our data. Bayesian estimates of the divergence time of extant Microhylidae (47-90 Mya) and among the subclades within the family are discussed in frameworks of alternative possible biogeographic scenarios.  相似文献   

9.
The Lower Cretaceous anuran Shomronella jordanica (Pipoidea) is represented by an assemblage of nearly 300 tadpoles of different ages. The size of the assemblage allows a reconstruction of the larval ontogeny of this species. We describe the ossification sequence and growth rates of S. jordanica and present reconstructions of tadpoles at different stages. The ontogeny of the species seems to be similar to that of extant pipids in many aspects. Larvae are similar in shape and size to those of Xenopus laevis but lack the anterior barbels that are typical for all extant pipids. The ossification sequence is closer to that of pipids than to that of other anurans. We present evidence that suggests that this species was terrestrial as an adult, and we discuss the implications of these data for the evolution of anuran development.  相似文献   

10.
Phylogenetic analysis of higher-level relationships of Odonata   总被引:3,自引:1,他引:2  
Abstract. This is the most comprehensive analysis of higher‐level relationships in Odonata conducted thus far. The analysis was based on a detailed study of the skeletal morphology and wing venation of adults, complemented with a few larval characters, resulting in 122 phylogenetically informative characters. Eighty‐five genera from forty‐five currently recognized families and subfamilies were examined. In most cases, several species were chosen to serve as exemplars for a given genus. The seven fossil outgroup taxa included were exemplar genera from five successively more distant odonatoid orders and suborders: Tarsophlebiidae (the closest sister group of Odonata, previously placed as a family within ‘Anisozygoptera’), Archizygoptera, Protanisoptera, Protodonata and Geroptera. Parsimony analysis of the data, in which characters were treated both under equal weights and implied weighting, produced cladograms that were highly congruent, and in spite of considerable homoplasy in the odonate data, many groupings in the most parsimonious cladograms were well supported in all analyses, as indicated by Bremer support. The analyses supported the monophyly of both Anisoptera and Zygoptera, contrary to the well known hypothesis of zygopteran paraphyly. Within Zygoptera, two large sister clades were indicated, one comprised of the classical (Selysian) Calopterygoidea, except that Amphipterygidae, which have traditionally been placed as a calopterygoid family, nested within the other large zygopteran clade comprised of Fraser's ‘Lestinoidea’ plus ‘Coenagrionoidea’ (both of which were shown to be paraphyletic as currently defined). Philoganga alone appeared as the sister group to the rest of the Zygoptera in unweighted cladograms, whereas Philoganga + Diphlebia comprised the sister group to the remaining Zygoptera in all weighted cladograms. ‘Anisozygoptera’ was confirmed as a paraphyletic assemblage that forms a ‘grade’ towards the true Anisoptera, with Epiophlebia as the most basal taxon. Within Anisoptera, Petaluridae appeared as the sister group to other dragonflies.  相似文献   

11.
12.
We present a higher‐level phylogenetic hypothesis for the diverse neotropical butterfly subfamily Ithomiinae, inferred from one of the largest non‐molecular Lepidoptera data sets to date, including 106 species (105 ingroup) and 353 characters (306 informative) from adult and immature stage morphology and ecology. Initial analyses resulted in 1716 most parsimonious trees, which were reduced to a single tree after successive approximations character weighting. The inferred phylogeny was broadly consistent with other past and current work. Although some deeper relationships are uncertain, tribal‐level clades were generally strongly supported, with two changes required to existing classification. The tribe Melinaeini is polyphyletic and Athesis + Patricia require a new tribe. Methona should be removed from Mechanitini into the restored tribe Methonini. Dircennini was paraphyletic in analyses of all data but monophyletic based on adult morphology alone, and its status remains to be confirmed. Hypothyris, Episcada, Godyris, Hypoleria and Greta are paraphyletic. A simulation analysis showed that relatively basal branches tended to have higher partitioned Bremer support for immature stage characters. Larval hostplant records were optimized on to a reduced, generic‐level phylogeny and indicate that ithomiines moved from Apocynaceae to Solanaceae twice, or that Tithoreini re‐colonized Apocynaceae after a basal shift to Solanaceae. Ithomiine clades have specialized on particular plant clades suggesting repeated colonization of novel hostplant niches consistent with adaptive radiation. The shift to Solanum, comprising 70% of neotropical Solanaceae, occurs at the base of a clade containing 89% of all ithomiines, and is interpreted as the major event in the evolution of ithomiine larval hostplant relationships. © The Willi Hennig Society 2006.  相似文献   

13.
The Rhododendroideae are usually recognized as a subfamily within Ericaceae. This group has been considered primitive (i.e., occupying the ancestral or basal position relative to all other Ericaceae) due to the occurrence of separate petals in several taxa, deciduous corollas, and septicidally dehiscent capsules. Previous molecular studies using rbcL and nr18s sequences have indicated that Rhododendroideae may be paraphyletic and cladistically derived (i.e., the relative position in the geneology of Ericaceae is not basal). The matK sequences of 42 taxa from traditional Rhododendroideae and potentially related clades were obtained via standard gene amplication and double-stranded dideoxy sequencing. Phylogenetic analyses of these sequences using Actinidia chinensis as the outgroup indicate that the Rhododendroideae are paraphyletic. Trees obtained in the analyses indicate an expanded rhododendroid clade that includes four major subclades - empetroid, rhodo, ericoid, and phyllodocoid. The ericoid clade is sister to the phyllodocoid clade and the empetroid clade is sister to the rhodo clade. Relationships within the clades are generally well resolved except within the rhodo clade where matK data indicate that Rhododendron is probably paraphyletic. Daboecia and Calluna are included within the ericoid clade; Erica is paraphyletic. Cassiope lies outside the rhododendroid clade. The relationships indicated by the matK data suggest that sympetalous flowers are likely plesiomorphic within rhododendroids.  相似文献   

14.
Chondrocranial development in Ascaphus truei was studied by serial sectioning and graphical reconstruction. Nine stages (21–29; 9–18 mm TL) were examined. Mesodermal cells were distinguished from ectomesenchymal (neural crest derived) cells by retained yolk granules. Ectomesenchymal parts of the chondrocranium include the suprarostrals, pila preoptica, anterior trabecula, and palatoquadrate. Mesodermal parts of the chondrocranium include the orbital cartilage, posterior trabecula, parachordal, basiotic lamina, and otic capsule. Development of the palatoquadrate is as follows. The pterygoid process first connects with the trabecula far rostrally; their fusion progresses caudally. The ascending process connects with a mesodermal bar that extends from the orbital cartilage to the otic capsule, and forms the ventral border of the dorsal trigeminal outlet. This bar is the “ascending process” of Ascaphus adults; it is a neurocranial, not palatoquadrate structure. The basal process chondrifies in an ectomesenchymal strand running from the quadrate keel to the postpalatine commissure. Later, the postpalatine commissure and basal process extend anteromedially to contact the floor of the anterior cupula of the otic capsule, creating separate foramina for the palatine and hyomandibular branches of the facial nerve. Based on these data, and on comparison with other frogs and salamanders, the anuran anterior quadratocranial commissure is homologized with the pterygoid process of salamanders, the anuran basal process (=“pseudobasal” or “hyobasal” process) with the basal process of salamanders, and the anuran otic ledge with the basitrabecular process of salamanders. The extensive similarities in palatoquadrate structure and development between frogs and salamanders, and lacking in caecilians, are not phylogenetically informative. Available information on fossil outgroups suggests that some of these similarities are primitive for Lissamphibia, whereas for others the polarity is uncertain. J. Morphol. 231:63-100, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Phylogeny of the butterfly genera Araschnia, Mynes, Symbrenthia and Brensymthia (Lepidoptera: Nymphalidae: Nymphalini) is reconstructed, based on 140 morphological and ecological characters. The resulting tree shows that Araschnia is a sister group of the clade including Symbrenthia, Mynes and Brensymthia (Symbrenthia is paraphyletic in the respect of remaining genera; Symbrenthia hippalus is a derived species of Mynes). The species-level relationships within Araschnia are robustly supported as follows: (A. davidis (prorsoides ((zhangi doris) (dohertyi (levana burejana))))). Analysis of the wing colour-pattern characters linked with the seasonal polyphenism in the Araschnia species suggests that the black and white coloration of the long-day (summer) generation is apomorphic. Biogeographically, the origin of polyphenism in Araschnia predates the dispersal of some Araschnia species towards the Palaearctic temperate zone, and the ecological cause of the polyphenism itself is then probably not linked with thermoregulation. The possible mimetic/cryptic scenarios for the origin of Araschnia polyphenism are discussed.  相似文献   

16.
Consensus is elusive regarding the phylogenetic relationships among neornithine (crown clade) birds. The ongoing debate over their deep divergences is despite recent increases in available molecular sequence data and the publication of several larger morphological data sets. In the present study, the phylogenetic relationships among 43 neornithine higher taxa are addressed using a data set of 148 osteological and soft tissue characters, which is one of the largest to date. The Mesozoic non‐neornithine birds Apsaravis, Hesperornis, and Ichthyornis are used as outgroup taxa for this analysis. Thus, for the first time, a broad array of morphological characters (including both cranial and postcranial characters) are analyzed for an ingroup densely sampling Neornithes, with crown clade outgroups used to polarize these characters. The strict consensus cladogram of two most parsimonious trees resultant from 1000 replicate heuristic searches (random stepwise addition, tree‐bisection‐reconnection) recovered several previously identified clades; the at‐one‐time contentious clades Galloanseres (waterfowl, fowl, and allies) and Palaeognathae were supported. Most notably, our analysis recovered monophyly of Neoaves, i.e., all neognathous birds to the exclusion of the Galloanseres, although this clade was weakly supported. The recently proposed sister taxon relationship between Steatornithidae (oilbird) and Trogonidae (trogons) was recovered. The traditional taxon “Falconiformes” (Cathartidae, Sagittariidae, Accipitridae, and Falconidae) was not found to be monophyletic, as Strigiformes (owls) are placed as the sister taxon of (Falconidae + Accipitridae). Monophyly of the traditional “Gruiformes” (cranes and allies) and ”Ciconiiformes” (storks and allies) was also not recovered. The primary analysis resulted in support for a sister group relationship between Gaviidae (loons) and Podicipedidae (grebes)—foot‐propelled diving birds that share many features of the pelvis and hind limb. Exclusion of Gaviidae and reanalysis of the data set, however, recovered the sister group relationship between Phoenicopteridae (flamingos) and grebes recently proposed from molecular sequence data.  相似文献   

17.
A molecular phylogenetic investigation was conducted to examine phylogenetic relationships between various members of the catsharks (Chondrichthyes; Carcharhiniformes; Scyliorhinidae), and is the largest chondrichthyan data set yet analysed, consisting of nearly 130,000 nucleotides. Three mitochondrial DNA genes were used to construct the phylogenies, cytochrome b, NADH-2, and NADH-4, with 41 sequences from 18 taxa being novel. These sequences were either used separately or combined into a single data set, and phylogenies were constructed using various methods, however, only the Bayesian inference tree derived from the cytochrome b data set was resolved sufficiently for phylogenetic inferences to be made. Interestingly, the family Scyliorhinidae was not supported by the results and was found to be paraphyletic. The Scyliorhininae and Pentanchinae were supported, whereas the Pentanchini clade was present, but not well supported. The Halaelurini hypothesis was supported with Holohalaelurus identified as the basal genus of that clade, and Haploblepharus edwardsii identified as the basal taxon for that genus. Elsewhere within the Chondrichthyes, the Carcharhiniformes and the Lamniformes were found to be monophyletic, and the Heterodontiformes was placed within the Squalimorphs. The placement of the skates and rays in these analyses support the Batoidea as being sister to the Elasmobranchii.  相似文献   

18.
The genus Phlebia has long been regarded as a polyphyletic or paraphyletic taxon, including distinct groups of more closely related species. Consequently, the delimitation of the genus has been given different interpretations and several rearrangements have been proposed by various authors. In the present study, DNA sequences (25S, rDNA) were obtained for twenty species of the genus Phlebia and a phylogenetic analysis was performed. Because of the presumably paraphyletic nature of the genus, different outgroups were used for different sets of taxa. A core group of species, including the type Ph. radiata , is well distinguished. For the delimitation of the genus, however, the wider scope of a more weakly supported clade is proposed. This clade also includes Phlebiopsis gigantea and its combination in Phlebia is reaffirmed. Two species, Ph. griseoflavescens and Ph. tristis , are distinctly separated from this clade and should be removed from the genus. Morphological characters were used in a separate phylogenetic analysis but the result did not conform with analysis from sequence data.  相似文献   

19.
Wiens (2007 , Q. Rev. Biol. 82, 55–56) recently published a severe critique of Frost et al.'s (2006, Bull. Am. Mus. Nat. Hist. 297, 1–370) monographic study of amphibian systematics, concluding that it is “a disaster” and recommending that readers “simply ignore this study”. Beyond the hyperbole, Wiens raised four general objections that he regarded as “fatal flaws”: (1) the sampling design was insufficient for the generic changes made and taxonomic changes were made without including all type species; (2) the nuclear gene most commonly used in amphibian phylogenetics, RAG‐1, was not included, nor were the morphological characters that had justified the older taxonomy; (3) the analytical method employed is questionable because equally weighted parsimony “assumes that all characters are evolving at equal rates”; and (4) the results were at times “clearly erroneous”, as evidenced by the inferred non‐monophyly of marsupial frogs. In this paper we respond to these criticisms. In brief: (1) the study of Frost et al. did not exist in a vacuum and we discussed our evidence and evidence previously obtained by others that documented the non‐monophyletic taxa that we corrected. Beyond that, we agree that all type species should ideally be included, but inclusion of all potentially relevant type species is not feasible in a study of the magnitude of Frost et al. and we contend that this should not prevent progress in the formulation of phylogenetic hypotheses or their application outside of systematics. (2) Rhodopsin, a gene included by Frost et al. is the nuclear gene that is most commonly used in amphibian systematics, not RAG‐1. Regardless, ignoring a study because of the absence of a single locus strikes us as unsound practice. With respect to previously hypothesized morphological synapomorphies, Frost et al. provided a lengthy review of the published evidence for all groups, and this was used to inform taxonomic decisions. We noted that confirming and reconciling all morphological transformation series published among previous studies needed to be done, and we included evidence from the only published data set at that time to explicitly code morphological characters (including a number of traditionally applied synapomorphies from adult morphology) across the bulk of the diversity of amphibians (Haas, 2003, Cladistics 19, 23–90). Moreover, the phylogenetic results of the Frost et al. study were largely consistent with previous morphological and molecular studies and where they differed, this was discussed with reference to the weight of evidence. (3) The claim that equally weighted parsimony assumes that all characters are evolving at equal rates has been shown to be false in both analytical and simulation studies. (4) The claimed “strong support” for marsupial frog monophyly is questionable. Several studies have also found marsupial frogs to be non‐monophyletic. Wiens et al. (2005, Syst. Biol. 54, 719–748) recovered marsupial frogs as monophyletic, but that result was strongly supported only by Bayesian clade confidence values (which are known to overestimate support) and bootstrap support in his parsimony analysis was < 50%. Further, in a more recent parsimony analysis of an expanded data set that included RAG‐1 and the three traditional morphological synapomorphies of marsupial frogs, Wiens et al. (2006, Am. Nat. 168, 579–596) also found them to be non‐monophyletic. Although we attempted to apply the rule of monophyly to the naming of taxonomic groups, our phylogenetic results are largely consistent with conventional views even if not with the taxonomy current at the time of our writing. Most of our taxonomic changes addressed examples of non‐monophyly that had previously been known or suspected (e.g., the non‐monophyly of traditional Hyperoliidae, Microhylidae, Hemiphractinae, Leptodactylidae, Phrynobatrachus, Ranidae, Rana, Bufo; and the placement of Brachycephalus within “Eleutherodactylus”, and Lineatriton within “Pseudoeurycea”), and it is troubling that Wiens and others, as evidenced by recent publications, continue to perpetuate recognition of non‐monophyletic taxonomic groups that so profoundly misrepresent what is known about amphibian phylogeny. © The Willi Hennig Society 2007.  相似文献   

20.
Abstract. One hundred and twenty-one morphological characters of larvae and adults of the series Staphyliniformia were scored (multistate coding) and analysed to determine the family group relationships of the polyphagan groups Scarabaeoidea, Histeroidea, Hydrophiloidea and Staphylinoidea. Cladograms were rooted with exemplars of Adephaga, Archostemata, Myxophaga and the polyphagan families Dascillidae, Derodontidae, Eucinetidae and Scirtidae. Analyses of the same dataset with multistate characters re-coded as presence/absence (144 characters) produced cladograms that were similar to those produced from analyses of the original characters. Cladograms produced from partitioned larval and adult characters differed strongly, with adult-only trees more similar to those produced by combined data. The results confirm the monophyly of Hydrophiloidea + Histeroidea and of Staphylinoidea (including Hydraenidae). The Epimetopidae + Georissidae are the only strongly supported clade within Hydrophiloidea. A clade comprising Hydrochidae, Spercheidae and Hydrophilidae, and a sister-group relationship between the latter two families were confirmed in analyses of the data with presence/absence coding. Helophoridae, Epimetopidae and Georissidae are probably not a monophyletic unit, and additional evidence is needed for a reliable placement of Helophoridae. Scarabaeoidea are placed as a sister taxon of Hydrophiloidea + Histeroidea, but support for this relationship is weak. The branching pattern ((Hydraenidae + Ptiliidae) + (Leiodidae + Agyrtidae)), and a clade comprising Scydmaenidae, Silphidae and Staphylinidae (= ‘staphylinid group’) are well founded. The branching pattern (Orchymontiinae + (Prosthetopinae + (Ochthebiinae + Hydraeninae))) within Hydraenidae is confirmed. Poor resolution at the base of the trees and the placement of some nonstaphyliniform taxa (Dascillidae, Derodontidae, Scirtidae and Eucinetidae) as a sister group to a clade comprising Scarabaeoidea, Hydrophiloidea and Histeroidea suggests that Staphyliniformia may be paraphyletic. It is recommended that series names are eliminated from the classification of Polyphaga, at least for the more ‘primitive’ groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号