首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The usual method of restoring cut-over bogs is to rewet the peat surface, but this often leads to the remaining peat layers being deeply inundated. For Sphagnum-dominated vegetation to develop at deeply inundated locations, it is important for floating rafts of buoyant residual peat to develop. In this study, the chemical and physical characteristics of buoyant and inundated peat collected from rewetted cut-over bog were compared. In general, buoyant peat was poorly humified; high methane (CH4) production rates (2 µmol g –1 DW day –1) were important to ensure buoyancy. Although the peat water CH4 concentrations increased with depth, the CH4 production rates were higher in the uppermost peat layers. High CH4 production rates were related positively with P concentrations and negatively with lignin concentrations. The pH to bulk density ratio (0.05) also appeared to be a good indicator of CH4 production rates, providing an easy and cheap way to measure the variable for restoration practitioners. Our results indicated that analysing certain simple characteristics of the residual peat can greatly improve the success of the rewetting measures taken in cut-over bogs. If the analysis reveals that the residual peat is unsuitable for floating raft formation, deep inundation is inappropriate unless suitable peat from other locations can be introduced.  相似文献   

2.
The usual method of restoring cut-over bogs is to rewet the peat surface, but this often leads to the remaining peat layers being deeply inundated. For Sphagnum-dominated vegetation to develop at deeply inundated locations, it is important for floating rafts of buoyant residual peat to develop. In this study, the chemical and physical characteristics of buoyant and inundated peat collected from rewetted cut-over bog were compared. In general, buoyant peat was poorly humified; high methane (CH4) production rates (≥2?µmol?g?1?DW?day?1) were important to ensure buoyancy. Although the peat water CH4 concentrations increased with depth, the CH4 production rates were higher in the uppermost peat layers. High CH4 production rates were related positively with P concentrations and negatively with lignin concentrations. The pH to bulk density ratio (≥0.05) also appeared to be a good indicator of CH4 production rates, providing an easy and cheap way to measure the variable for restoration practitioners. Our results indicated that analysing certain simple characteristics of the residual peat can greatly improve the success of the rewetting measures taken in cut-over bogs. If the analysis reveals that the residual peat is unsuitable for floating raft formation, deep inundation is inappropriate unless suitable peat from other locations can be introduced.  相似文献   

3.
Restoration of peat bog vegetation inhighly degraded peatlands is generallyattempted by improving the hydrology ofthese areas. The present paper discussesand explains various restoration strategiesrelating to peat quality, water chemistryand hydrology. In some cases, (shallow)inundation of bog remnants leads to a rapidredevelopment of (floating) Sphagnumvegetation, usually when poorly humifiedSphagnum peat is still present. Afterinundation, the peat either swells up tothe newly created water table or becomesbuoyant, in both cases creating a favorablesubstrate for Sphagnum mosses. Bulkdensity and methane production rate play animportant role in the buoyancy of floatingpeat, methane providing buoyancy to thesubstrates. The presence of (slightly)calcareous groundwater in the peat base mayenhance the development of floating raftsby stimulating decomposition processes.Alternatively, the growth of submerged Sphagnum species can also lead to thedevelopment of floating rafts. This dependson the penetration of light into the waterlayer and the availability of carbondioxide in the water layer.Many bog remnants, however, only havestrongly humified peat, which does notfavor the redevelopment of Sphagnumcarpets after deep inundation. On the otherhand, most peat moss species appear to dovery well on surface soaked black peat,which is why shallow inundation (< 0.3 m)is to be preferred in such cases.Compartmentalization of the terrain willprobably be necessary to ensure a more orless constant water table.An important prerequisite for thesuccessful restoration of bog remnants isthe development of a hydrologicallyself-regulating acrotelm. Key speciesinvolved in this development are Sphagnum magellanicum, Sphagnumpapillosum and Sphagnum rubellum.These typical hummock and lawn species areusually very slow colonizers compared tohollow species such as Sphagnumcuspidatum and Sphagnum fallax.Introduction of key species in carpetsdominated by hollow species or on baresubstrates appears to be very successful,indicating that the main constraint iscolonization.  相似文献   

4.
Summary Growing tomatoes in low humified Sphagnum peat gave satisfactory results when using the peat bags in three successive seasons without any sterilization. Use of a complete nutrient solution showed an increase of phosphorus and boron from one season to the next. The pH varied with the electrical conductivity in the peat, dependent on the nutrient concentration used. The solution used for reused peat should have a lower content of phosphorus and boron compared to a solution used for one season peat.The air capacity is high and have to be considered as optimal also in reused peat. The effect of reusing the peat on physical properties as porosity and pore size distribution is therefore of no practical significance.  相似文献   

5.
Abstract. Gradients in acidity‐alkalinity and nutrient availability were studied in 2 Sphagnum‐dominated peatlands on the southeastern Italian Alps. Decreasing concentrations of most mineral elements (Ca2+, Mg2+, Mn2+, Al3+ and Si4+) in pore water indicated a progressively lower influx of mineral‐soil water from the slightly minerotrophic conditions in the peatland margins to ombrogenous conditions in the central part of the peatlands. This was paralleled by decreasing concentrations of ash, bulk density, Ca, Fe and, partly, Mn in the peat. The nutrient gradient, as defined by pore water concentrations of N and P, was largely independent of the acidity‐ alkalinity gradient: NO3‐ and PO43‐ had similar concentrations throughout the gradient, whereas NH4+ concentrations increased with increasing pore‐water pH. In contrast, the peat nutrient gradient coincided with the acidity‐alkalinity gradient, with total concentrations of N and P decreasing from the margin to the centre. Bryophytes and vascular plants had different responses along the acidity‐alkalinity gradient and the nutrient gradient. Bryophyte distribution reflected the acidity‐alkalinity gradient both in pore water and in peat. Vascular plant distribution was mainly influenced by variations in nutrient availability.  相似文献   

6.
《Fungal biology》2021,125(11):845-859
White-rot fungi (Pleurotus eryngii) are decomposers of lignocellulosic substrates. The relationship between the structure of humified organic matter and P. eryngii growth, is poorly understood. This study aimed to evaluate the relationship between the growth and development of white-rot fungi (P. eryngii) in two structurally different sources of humified organic matter. Fungus growth and development (mycelium diameter, fresh and dry mycelium mass, mycelium density, and biological yield) were evaluated in experiments with the application of humic substances (HS) extracted from vermicompost (VC) and peat. Both HS were characterized by CP/MAS 13C NMR spectroscopy associated with chemometrics analysis. The HS present different structural characteristics, with those extracted from VC having a predominance of functionalized C-aliphatics (carbohydrates), low hydrophobicity, and a 90% proportion of cellulose/hemicellulose carbon in the composition. HS extracted from peat have a predominance of C-aromatics (lignin fragments), higher hydrophobicity, and a proportion of lignin carbon of up to 80%. The results showed that P. eryngii growth is dependent on the C-cellulosic and C-lignin balance. HS extracted from lignin-rich peat regulates the fungus growth at initial times and sometimes inhibits the biological performance. The highly cellulosic HS from VC regulate the fungus growth at later times and its biological performance.  相似文献   

7.
Mineralization rates of peat from eroding peat islands in reservoirs   总被引:1,自引:1,他引:0  
Reservoirs are sources of greenhouses gases to the atmosphere, primarily due to organic carbon mineralization in flooded plants and soils to carbon dioxide (CO2) and methane (CH4). Floating peat islands are common in reservoirs that inundated peatlands. These islands can decompose on mass, or small pieces of peat can erode from islands to decompose in the water column or on the bottom of reservoirs. Here we used large 450 liter sealed enclosures to measure mineralization rates of small peat pieces and larger peat blocks collected from floating peat islands. Mineralization rates were calculated by quantifying dissolved inorganic carbon (DIC), CO2 and CH4 accumulation within the water and headspace of the enclosures over time. We found that peat did decompose under water, but rates of mineralization of peat pieces were not different than rates of mineralization of larger peat blocks. Mineralization rates ranged between 59 and l40 g C g–1 d–1. Peat pieces acidified the water, shifting the bicarbonate equilibrium to almost exclusively dissolved CO2, which was then readily able to flux to the atmosphere. We estimated that 2.4–5.6% of peat carbon was mineralized annually, suggesting that fluxes of CO2 and CH4 from reservoirs that flood peatlands could last at minimum 18–42 years from this carbon source alone.  相似文献   

8.
Seasonal changes in leaf population per area, nutrient absorption rate and elemental concentration of Menyanthes trifoliata L. were studied in a floating peat mat in Mizorogaike Pond, central Japan, with reference to the peat redox potential. Leaf population of M. trifoliata showed a rapid increase in May, reached the maximum in June, and then decreased to 12% of the maximum density in July. The foliage density of M. trifoliata again increased and reached its second maximum in September, and then it decreased to zero in December. The decrease of the foliage density from June to July corresponded to the minimum of redox potential (Eh) of the surface peat. Low Eh in the rhizosphere of M. trifoliata relates to the temporary disappearance of the foliage of the plant from June to July. Nutrient concentration (K, Mg, Ca, Fe) in M. trifoliata roots showed minimum in June to August. The nutrient absorption rate of M. trifoliata evaluated from the rubidium absorption rate of excised root of M. trifoliata showed a minimum value in June and July. Peat redox properties would affect the nutrient absorption activity of the roots and the consequent foliage phenology of M. trifoliata in Mizorogaike Pond.  相似文献   

9.
Soil macrofauna and nitrogen on a sub-Antarctic island   总被引:4,自引:0,他引:4  
Summary The densities, diets and habitat preferences of the soil macrofaunal species on sub-Antarctic Marion Island (47°S, 38°E) are described. Their role in N cycling on the island is assessed, using a mire-grassland community as an example. Primary production on the island is high and this leads to a substantial annual requirement of nutrients by the vegetation. This requirement must almost wholly be met by mineralization of nutrient reserves in the organic matter. Rates of peat nitrogen mineralization mediated by microorganisms alone are much too low to account for rates of N uptake by the vegetation. Although soil macroinvertebrates, and bacteria represent a very small fraction of the total N pool, their interaction accounts for most of the peat N mineralization, as indicated by the amounts of inorganic N released into solution in microcosms. Extrapolation of the microcosm results shows that the soil macrofauna (mainly earthworms) stimulate the release of enough N from the mire-grassland peat to account for maximum N mineralization rates calculated from temporal changes in peat inorganic N levels and plant uptake during the most active part of the growing season. Considering that large numbers of mesoand microinvertebrates occur and must also contribute to nutrient mineralization, the soil faunal component is clearly of crucial importance to nutrient cycling on Marion Island. This is probably true of all sub-Antarctic islands.  相似文献   

10.
Summary Six soils, two Sphagnum peat samples and a clay mineral were irradiated with 40 and 80 kGy (4 and 8 Mrad) from a60Co source. As a result the microbial biomass, determined separately for each sample, decreased considerably. Depending on the radionuclide, the sorption, as characterised by the distribution coefficient, decreased, increased or remained unchanged. The effect of the irradiation on the sorption of the radionuclides depended, in general, also on the type of the sample, especially whether well humified soils, (e.g. crop soils), poorly humified samples (Sphagnum peat, 0-horizon from woodland), or a clay mineral was employed. The data reveal that irradiation produces, besides sterilization, also other effects in soils, which can change their sorption properties.Dedicated to Prof. W. Jacobi on the occasion of his 60th birthday  相似文献   

11.
Filaments of Oscillatoria rubescens stratified in the metalimnion of Crooked Lake, Indiana at depths of 6–9 m, where the incident light intensity averaged 2% of the surface intensity. Buoyancy (due to gas vesicles) was regulated in response to light intensity, and increased turgor pressure generated at high light intensity could contribute to the collapse of gas vesicles. Filaments exposed to irradiances of 20–50 µE m-2 s-1 had neutral buoyancy. As nutrient availability was increased (by resuspending filaments in nutrient-rich water from the hypolimnion or by preventing CaCO3 precipitation with a calcium chelator), higher light intensities were necessary for buoyancy loss and increased turgor.

A series of traps were placed in the lake to intercept floating and sinking filaments. Migration activity (both floating and sinking) was greatest 1 m above the most dense concentration of O. rubescens. These results, together with vertical profiles of primary production, suggest that maximum production by O. rubescens occurred above the population maximum in the water column.  相似文献   

12.
This research work was conducted in order to investigate the possibility of using spent mushroom substrate (SMS) in the production of horticultural seedlings replacing part of the peat in the growing media. Three vegetable species with different salt sensitivities, the less sensitive being tomato (Lycopersicon esculentum var. Muchamiel), the moderately salt-sensitive being courgette (Cucurbita pepo L. var. Afrodite F1) and the most salt-sensitive being pepper (Capsicum annum L. var. Lamuyo F1) were grown in 12 media containing SMS of two types of mushroom (Agaricus bisporus (SMS-AB) and Pleurotus ostreatus (SMS-PO)) or a mixture of both 50% (v/v) (SMS-50), as well as peat in various ratios. The proportions of each residue in the mixtures elaborated with peat were 25%, 50%, 75% and 100% v/v residue. A substrate of 100% peat was used as control. The experiment was arranged in a completely-randomised design with two replicates per treatment under greenhouse conditions. Prior to sowing, some physical, physico-chemical and chemical properties of the growing media were determined and seed germination and fresh weight of seedling were also measured. In most of the cases, the addition of SMS to the growing media produced an increase in the pH values, salt contents, macro and micronutrient concentrations and a decrease in the water holding capacity contents in comparison to peat, whereas great differences were found in the air capacity values between SMS-based substrates and peat. Up to 75% SMS can be used in mixtures with peat for seed germination of the plant species studied. Regarding the most suitable SMS-based substrates for plant growth, any substrate could be used for tomato seedling production. However, all SMS-AB-based substrates and the media containing low dose of SMS-PO and SMS-50 were adequate for growth of courgette and pepper.  相似文献   

13.
W. A. Casparie 《Plant Ecology》1969,19(1-6):146-180
Zusammenfassung Im Moorgebiet östlich von Emmen (Niederlande), einem Teil des Bourtanger Moores, ist zwischen den älteren, stark zersetzten Sphagnum rubellum-Torf und den jüngeren, schwach zersetzten Sph. imbricatum-papillosum-Torfim allgemeinen eine Übergangsphase eingeschaltet, die aus einem System stark zersetzter Bulte und schwach zersetzter Schlenken (mit anfänglicher Sph. cuspidatum-Torfbildung) besteht; diese umfaßt die Zeit zwischen etwa 2000 und 500 vor Chr. Geb. In einem relativ kleinen Teil des Moorgebietes ist dieser räumliche und zeitliche Übergang aus zwei verschiedenartigen Bult-Schlenken-Systemen aufgebaut: Das ältere System — mit großen, flachen, mäßig zersetzten Sph. rubellum-Bulten und großen, schwach zersetzten Sph. cuspidatum-Schlenken —bestand von etwa 1930 bis 1500 v. Chr. Es wurde abgelöst von einem System ausgeprägter, stark zersetzter, an Wollgras und Heidekraut reicher Bulte und kurzer, schwach zersetzter Sph. cuspidatum-Schlenken, das von etwa 1500 bis 540 v. Chr. vorhanden war. Die Ursache für diese besondere Art der Torfbildung ist vermutlich das Auftreten einer Wasserbewegung im Randbereich von Moorteilen mit gewölbter Oberfläche. Ein unmittelbarer Einfluß des Klimas auf die Art des abgelagerten Torfes oder auf die Entstehung von Humifizierungswechseln scheint im allgemeinen nicht vorhanden gewesen zu sein, vielmehr sind die lokalen hydrologischen Verhältnisse in erster Linie bestimmend für den Charakter der Torfbildung gewesen. Das stratigraphische Bild, aber auch die pollenanalytischen und rhizopodenanalytischen Befunde weisen darauf hin, daß von zyklischen Sukzessionen beim Moorwachstum keine Rede sein kann.
Summary The peat district east of Emmen (The Netherlands) is a part of the immense raised bog Bourtanger Moor. There, between the highly humified Sphagnum rubellum peat (Schwarztorf) and the fresh Sph. imbricatum-papillosum peat (Weißtorf) an intermediate layer is situated. This consists of a system of highly humified hummocks and poorly humified pools or hollows (starting with Sph. cuspidatum). This system can be dated between 2,000-500 B.C.In a relatively small part of the raised bog, a transition in time and space is formed by two different systems of hummocks and hollows. The older system, with large, flat, moderately humified Sph. rubellum hummocks and large, poorly humified Sph. cuspidatum hollows existed between 1,930 B.C. (GrN-4624) and 1,500 B.C. It is overgrown by a system of more pronounced, highly humified hummocks, which are rich in Eriophorum vaginatum and Calluna, and small, poorly humified Sph. cuspidatum hollows. This younger system persisted from 1,500 B.C. to 540 B.C. (GrN-4623). This uncommon type of peat growing is most probably caused by water movement into the marginally drained lower edges of bog complexes with convex surfaces. An immediate climatic influence on the character of the formed peats, or on the developing of changes in humification, did not generally exist. The local hydrological conditions rank first in determining the type of peat formed. Stratigraphic information as well as pollen and rhizopod analytical results clearly demonstrate that peat growing is not a cyclic succession.

  相似文献   

14.
Bogs are globally important sinks of atmospheric carbon (C) due to the accumulation of partially decomposed litter that forms peat. Because bogs receive their nutrients from the atmosphere, the world‐wide increase of nitrogen (N) deposition is expected to affect litter decomposition and, ultimately, the rate of C accumulation. However, the mechanism of such biogeochemical alteration remains unclear and quantification of the effect of N addition on litter accumulation has yet to be done. Here, we show that 7 years of N addition to a bog decreased the C : N ratio, increased the bacterial biomass and stimulated the activity of hydrolytic and oxidative enzymes in surface peat. Furthermore, N addition modified nutrient limitation of microbes during litter decomposition so that phosphorus became a primary limiting nutrient. Alteration of N release from decomposing litter affected bog water chemistry and the competitive balance between peat‐forming mosses and vascular plants. We estimate that deposition of about 4 g N m?2 yr?1 will cause a mean annual reduction of fresh litter C accumulation of about 40 g m?2 primarily as a consequence of decreased litter production from peat‐forming mosses. Our findings show that N deposition interacts with both above and below ground components of biodiversity to threaten the ability of bogs to act as N‐sinks, which may offset the positive effects of N on C accumulation seen in other ecosystems.  相似文献   

15.
Carbon emissions from drained peatlands converted to agriculture in South‐East Asia (i.e., Peninsular Malaysia, Sumatra and Borneo) are globally significant and increasing. Here, we map the growth of South‐East Asian peatland agriculture and estimate CO2 emissions due to peat drainage in relation to official land‐use plans with a focus on the reducing emissions from deforestation and degradation (REDD+)‐related Indonesian moratorium on granting new concession licences for industrial agriculture and logging. We find that, prior to 2010, 35% of South‐East Asian peatlands had been converted to agriculture, principally by smallholder farmers (15% of original peat extent) and industrial oil palm plantations (14%). These conversions resulted in 1.46–6.43 GtCO2 of emissions between 1990 and 2010. This legacy of historical clearances on deep‐peat areas will contribute 51% (4.43–11.45 GtCO2) of projected future peatland CO2 emissions over the period 2010–2130. In Indonesia, which hosts most of the region's peatland and where concession maps are publicly available, 70% of peatland conversion to agriculture occurred outside of known concessions for industrial plantation development, with smallholders accounting for 60% and industrial oil palm accounting for 34%. Of the remaining Indonesian peat swamp forest (PSF), 45% is not protected, and its conversion would amount to CO2 emissions equivalent to 0.7%–2.3% (5.14–14.93 Gt) of global fossil fuel and cement emissions released between 1990 and 2010. Of the peatland extent included in the moratorium, 48% was no longer forested, and of the PSF included, 40%–48% is likely to be affected by drainage impacts from agricultural areas and will emit CO2 over time. We suggest that recent legislation and policy in Indonesia could provide a means of meaningful emission reductions if focused on revised land‐use planning, PSF conservation both inside and outside agricultural concessions, and the development of agricultural practices based on rehabilitating peatland hydrological function.  相似文献   

16.
Cadmium and cadmium compounds are water soluble, mobile in most soils, bio-available, and tend to bio-accumulate. A pot culture experiment was conducted on contaminated soil to study the influence of lime and organic matter on the mobility of cadmium in spinach and its rhizosphere soil. Application of lime (50% and 100% lime requirement) and organic matter (0.5 and 1% by weight of soil) to soil decreased the availability of Cd to the soil and plant throughout the crop growth. The highest diethylene triamine penta-acetic acid (DTPA) extractable Cd was 10.84 mg kg?1 in the treatment OM0 L0 (No application of organic matter and lime) at 20 days after sowing of spinach. Likewise, the highest Cd concentration in spinach roots and shoots were 19.80 and 17.0 mg kg?1 in the treatment OM0 L0 at 20 days after sowing. The Cd concentration in spinach roots and shoots were decreased by 63.23 and 71.88%, respectively, in the treatment OM1 L100 (application of FYM at 1.0% by weight of soil and lime at 100% lime requirement) after 60 days of growth. The lowest concentrations of Cd in the soil and plant after the harvest of the crop were 2.88 and 4.27 mg kg?1, respectively, in the treatment OM1 L100 and resulted in 65.75 and 71.55% decrease over control (OM0 L0). The highest total chlorophyll content of leaves was 2.19 mg kg?1 of fresh weight in the treatment OM1 L100 at 40 days of crop growth.  相似文献   

17.
1. The asymmetric competition for light and nutrients between floating and submerged aquatic plants is thought to be key in explaining why dominance by either of these groups can be stable and difficult to change. 2. Although the shading effect of floating plants on submerged plants has been well documented, the impact of submerged plants on floating plants has been poorly explored hitherto. 3. Here, we used laboratory experiments to examine how submerged plant (Elodea nuttallii) alter nutrient conditions in the water column and how this affects the growth of floating plants (Lemna gibba). 4. We demonstrate that, at higher nutrient concentrations, Lemna is increasingly likely to outcompete Elodea. 5. Under low nutrient concentrations (0.1–2 mg N L?1) Elodea can strongly reduce the growth of Lemna. Growth of floating plants virtually stopped in some of the experiments with Elodea. 6. Extremely reduced tissue N, Mn, chlorophyll and elongated roots indicated that the growth inhibition of Lemna by Elodea was predominantly caused by the latter’s impact on the nutrient conditions for floating plants. 7. These results strengthen the hypothesis that submerged plants can prevent colonization of a lake by floating plants.  相似文献   

18.
Organochalcogens are extensively produced and employed by industry and agriculture, and the risk of occupational and environmental toxicity to them has been poorly understood. Here, we investigated the acute effect of a new organochalcogen 3‐methyl‐1‐phenyl‐2‐(phenylseleno)oct‐2‐en‐1‐one on biochemical and hematological parameters in male Wistar rats. The animals were treated with a single intraperitoneal injection of the organochalcogen at doses of 125, 250 or 500 µg·kg–1. After 60 min, the animals were sacrificed by decapitation, and the trunk blood was collected for determination of glucose, triglycerides, cholesterol, alanine aminotransferase (ALT), aspartate aminotransferase, lactate dehydrogenase, urea, creatinine, C‐reactive protein, red blood cells, hematocrit, hemoglobin and white blood cells (WBC). Our results showed a reduction in cholesterol levels in all treated groups, an increase in ALT activity at doses of 250 and 500 µg·kg–1, a decrease of hemoglobin and an increase in WBC in animals that received 250 and 500 µg·kg–1 of the organoselenium. In addition, we observed an increase in neutrophil counts at 125 µg·kg–1 dose and a decrease at 500 µg·kg–1 dose. We also verified an increase in lymphocyte counts at the dose of 500 µg·kg–1. Thus, the present study shows that the acute treatment with this new organochalcogen causes biochemical changes and hematological disorders in male rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
In dryland environments 3–5 year rotations of tree crops and agriculture represent a major potential bioenergy feedstock and a means to restore landscape hydrologic balances and phytoremediate sites, while maintaining food production. In soils with low natural fertility, the long‐term viability of these systems will be critically affected by site nutrient status and subsequent cycling of nutrients. A nutrient assimilation index (NAI) was developed to allow comparison of species and tree component nutrient assimilation and to optimize nutrient management, by quantifying different strategies to manage site nutrients. Biomass, nutrient export and nutrient use efficiency were assessed for three short rotation tree crop species. Nutrient exports following harvest at 3 years of high density (4000 trees ha?1) were consistently higher in Pinus radiata, with values of 85 kg ha?1 of N, 11kg ha?1 of P, and 62 kg ha?1 of K, than Eucalyptus globulus and Eucalyptus occidentalis. Component NAI was generally in the order of leaf?1 for N in leaves of P. radiata to 4.7 Mg kg?1 for P in stem‐wood of E. occidentalis, indicating higher sustainability of wood biomass compared with leaf biomass. The leaves for each species contained between 40 and 60% of the total nutrient contents while comprising around 25–30% of the total biomass. These nutrient exports via biomass removal are similar to those that follow 3 years of wheat production in the same region, indicating there is no additional drawdown of nutrient reserves during the tree cropping phase of the rotation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号