首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenotypic plasticity may increase the performance and fitness and allow organisms to cope with variable environmental conditions. We studied within‐generation plasticity and transgenerational effects of thermal conditions on temperature tolerance and demographic parameters in Drosophila melanogaster. We employed a fully factorial design, in which both parental (P) and offspring generations (F1) were reared in a constant or a variable thermal environment. Thermal variability during ontogeny increased heat tolerance in P, but with demographic cost as this treatment resulted in substantially lower survival, fecundity, and net reproductive rate. The adverse effects of thermal variability (V) on demographic parameters were less drastic in flies from the F1, which exhibited higher net reproductive rates than their parents. These compensatory responses could not totally overcome the challenges of the thermally variable regime, contrasting with the offspring of flies raised in a constant temperature (C) that showed no reduction in fitness with thermal variation. Thus, the parental thermal environment had effects on thermal tolerance and demographic parameters in fruit fly. These results demonstrate how transgenerational effects of environmental conditions on heat tolerance, as well as their potential costs on other fitness components, can have a major impact on populations’ resilience to warming temperatures and more frequent thermal extremes.  相似文献   

2.
Non-genetic parental effects may largely affect offspring phenotype, and such plasticity is potentially adaptive. Despite its potential importance, little is known about cross-generational effects of temperature, at least partly because parental effects were frequently considered a troublesome nuisance, rather than a target of experimental studies. We here investigate effects of parental, developmental and acclimation temperature on life-history traits in the butterfly Bicyclus anynana. Higher developmental temperatures reduced development times and egg size, increased egg number, but did not affect pupal mass. Between-generation temperature effects on larval time, pupal time, larval growth rate and egg size were qualitatively very similar to effects of developmental temperature, and additionally affected pupal mass but not egg number. Parental effects are important mediators of phenotypic plasticity in B. anynana, and partly yielded antagonistic effects on different components of fitness, which may constrain the evolution of cross-generational adaptive plasticity.  相似文献   

3.
Parental effects influence offspring phenotypes through pre‐ and post‐natal routes but little is known about their molecular basis, and therefore their adaptive significance. Epigenetic modifications, which control gene expression without changes in the DNA sequence and are influenced by the environment, may contribute to parental effects. We investigated the effects of environmental enrichment on the behaviour, metabolic rate and brain DNA methylation patterns of parents and offspring of the highly inbreed mangrove killifish (Kryptolebias marmoratus). Parental fish reared in enriched environments had lower cortisol levels, lower metabolic rates and were more active and neophobic than those reared in barren environments. They also differed in 1,854 methylated cytosines (DMCs). Offspring activity and neophobia were determined by the parental environment. Among the DMCs of the parents, 98 followed the same methylation patterns in the offspring, three of which were significantly influenced by parental environments irrespective of their own rearing environment. Our results suggest that parental environment influences the behaviour and, to some extent, the brain DNA methylation patterns of the offspring.  相似文献   

4.
Thermal performance curves (TPCs) compute the effects of temperature on the performance of ectotherms and are frequently used to predict the effect of environmental conditions and currently, climate change, on organismal vulnerability and sensitivity. Using Drosophila melanogaster as an animal model, we examined how different thermal environments affected the shape of the performance curve and their parameters. We measured the climbing speed as a measure of locomotor performance in adult flies and tested the ontogenetic and transgenerational effects of thermal environment on TPC shape. Parents and offspring were reared at 28 ± 0ºC (28C), 28 ± 4ºC (28V), and 30 ± 0ºC (30C). We found that both, environmental thermal variability (28V) and high temperature (30C) experienced during early ontogeny shaped the fruit fly TPC sensitivity. Flies reared at variable thermal environments shifted the TPC to the right and increased heat tolerance. Flies held at high and constant temperature exhibited lower maximum performance than flies reared at the variable thermal environment. Furthermore, these effects were extended to the next generation. The parental thermal environment had a significative effect on TPC and its parameters. Indeed, flies reared at 28V whose parents were held at a high and constant temperature (30C) had a lower heat tolerance than F1 of flies reared at 28C or 28V. Also, offspring of flies reared at variable thermal environment (28V) reached the maximum performance at a higher temperature than offspring of flies reared at 28C or 30C. Consequently, since TPC parameters are not fixed, we suggest cautiousness when using TPCs to predict the impact of climate change on natural populations.  相似文献   

5.
To determine the evolutionary importance of parental environmental effects in natural populations, we must begin to measure the magnitude of these effects in the field. For this reason, we conducted a combined growth chamber-field experiment to measure parental temperature effects in Plantago lanceolata. We grew in the field offspring of controlled crosses of chamber-grown parents subjected to six temperature treatments. Each treatment was characterized by a unique combination of maternal prezygotic (prior to fertilization), paternal prezygotic, and postzygotic (during fertilization and seed set) temperatures. Offspring were followed for three years to measure the effects of treatment on several life-history traits and population growth rate, our estimate of fitness. Parental treatment influenced germination, growth, and reproduction of newborns, but not survival or reproduction of offspring at least one year old. High postzygotic temperature significantly increased germination and leaf area at 17 weeks by approximately 35% and 2%, respectively. Probability of flowering and spike production in the newborn age class showed significant parental genotype x parental treatment interactions. High postzygotic temperature increased offspring fitness by approximately 50%. The strongest contributors to fitness were germination and probability of flowering and spike production of newborns. A comparison of our data with previously collected data for chambergrown offspring shows that the influence of parental environment on offspring phenotype is weaker but still biologically meaningful in the field. The results provide evidence that parental environment influences offspring fitness in natural populations of P. lanceolata and does so by affecting the life-history traits most strongly contributing to fitness. The data suggest that from the perspective of offspring fitness, natural selection favors parents that flower later in the flowering season in the North Carolina Piedmont when it is warmer. Genotypic-specific differences in response of offspring reproductive traits to parental environment suggest that parental environmental effects can influence the rate of evolutionary change in P. lanceolata.  相似文献   

6.
Mating songs and preferences for these songs have to match for communication to function. Since this match restricts variation, understanding how phenotypic variation is introduced in communication systems is essential for understanding their evolution. The environment, through phenotypic plasticity or parental effects, is an important catalyst for phenotypic variation. In Kentucky, the cricket Gryllus rubens has one reproductive generation in the spring and one in the fall and the mating songs differ substantially between generations. I tested whether these differences in songs are the result of intergenerational (i.e., parental effects) or intragenerational phenotypic plasticity. To test for the role of parental effects on songs, I reared offspring of field-collected spring and fall females in a common garden environment and recorded their songs. None of the analyzed song characters differed between the sons of fall and spring parents, suggesting that parental effects do not play a role in song development. To test for the effect of phenotypic plasticity on songs, I reared juvenile and adult males in two separate sets of experiments at two different levels of temperature and daylength. Rearing temperature affected every analyzed song character: The higher adult rearing temperature (32°C) induced significantly faster pulse rates, shorter pulse durations, and higher dominant frequency compared with the lower rearing temperature (24°C). The higher juvenile temperature induced significantly shorter pulse durations, longer interval durations, and lower pulse duty cycles than the lower rearing temperature. Rearing photoperiod did not affect male song development. The changes induced by the temperature treatments paralleled those observed in the wild, suggesting that the seasonally different songs in Kentucky are primarily the result of seasonal temperatures. Possible evolutionary consequences of the temperature-related phenotypic plasticity are discussed.  相似文献   

7.
Anticipatory parental effects (APE's) occur when parents adjust the phenotype of their offspring to match the local environment, so as to increase the fitness of both parents and offspring. APE's, as in the evolution of adaptive phenotypic plasticity more generally, are predicated on the idea that the parental environment is a reliable predictor of the offspring environment. Most studies on APE's fail to explicitly consider environmental predictability so risk searching for APE's under circumstances where they are unlikely to occur. This failure is perhaps one of the major reasons for mixed evidence for APE's in a recent meta‐analysis. Here, we highlight some often‐overlooked assumptions in studies of APE's and provide a framework for identifying and testing APE's. Our review highlights the importance of measuring environmental predictability, outlines the minimal requirements for experimental designs, explains the important differences between relative and absolute measures of offspring fitness, and highlights some potential issues in assigning components of offspring fitness to parental fitness. Our recommendations should result in more targeted and effective tests of APE's. Synthesis A decent set of theory is available to understand when certain kinds of parental effects might act to increase parental fitness (i.e. be ‘adaptive’). This theory could be better incorporated into empirical studies on anticipatory parental effects (APE's). Here, we provide practical advice for how empirical studies can more closely align with the theoretical underpinnings of adaptive parental effects. In short, robust inferences on APE's require quantitative estimates of environmental predictability in the field over the space and time scales relevant to the life history of the study organism as well as an understanding of when to use absolute or relative offspring fitness.  相似文献   

8.
We investigated the effects of developmental and parental temperatures on several physiological and morphological traits of adult Drosophila melanogaster. Flies for the parental generation were raised at either low or moderate temperature (18°C or 25°C) and then mated in the four possible sex-by-parental temperature crosses. Their offspring were raised at either 18°C or 25°C and then scored as adults for morphological (dry body mass, wing size, and abdominal melanization [females only]), physiological (knock-down temperature, and thermal dependence of walking speed), and life history (egg size) traits. The experiment was replicated, and the factorial design allows us to determine whether and how paternal, maternal, and developmental temperatures (as well as offspring sex) influence the various traits. Sex and developmental temperature had major effects on all traits. Females had larger bodies and wings, higher knock-down temperatures, and slower speeds (but similar shaped performance curves) than males. Development at 25°C (versus at 18°C) increased knock-down temperature, increased maximal speed and thermal performance breadth, decreased the optimal temperature for walking, decreased body mass and wing size, reduced abdominal melanization, and reduced egg size. Parental temperatures influenced a few traits, but the effects were generally small relative to those of sex or developmental temperature. Flies whose mother had been raised at 25°C (versus at 18°C) had slightly higher knock-down temperature and smaller body mass. Flies whose father had been raised at 25°C had relatively longer wings. The effects of paternal, maternal, and developmental temperatures sometimes differed in direction. The existence of significant within- and between-generation effects suggests that comparative studies need to standardize thermal environments for at least two generations, that attempts to estimate “field” heritabilities may be unreliable for some traits, and that predictions of short-term evolutionary responses to selection will be difficult.  相似文献   

9.
Life‐history theory predicts that females who experienced stressful conditions, such as larval competition or malnutrition, should increase their investment in individual offspring to increase offspring fitness (the adaptive parental hypothesis). In contrast, it has been shown that when females were reared under stressful conditions, they become smaller, which consequently decreases egg size (the parental stress hypothesis). To test whether females adjust their egg volume depending on larval competition, independent of maternal body mass constraint, we used a pest species of stored adzuki beans, Callosobruchus chinensis (L.) (Coleoptera: Chrysomelidae: Bruchinae). The eggs of females reared with competitors were smaller than those of females reared alone, supporting the parental stress hypothesis; however, correcting for female body size, females reared with competitors produced larger eggs than those reared in the absence of competition, supporting the adaptive parental hypothesis, as predicted. The phenotypic plasticity in females' investment in each offspring in stressful environments counteracts the constraint of body size on egg size.  相似文献   

10.
Twenty years ago, scientists began to recognize that parental effects are one of the most important influences on progeny phenotype. Consequently, it was postulated that herbivorous insects could produce progeny that are acclimatized to the host plant experienced by the parents to improve progeny fitness, because host plants vary greatly in quality and quantity, and can thus provide important cues about the resources encountered by the next generation. However, despite the possible profound implications for our understanding of host-use evolution of herbivores, host-race formation and sympatric speciation, intense research has been unable to verify transgenerational acclimatization in herbivore–host plant relationships. We reared Coenonympha pamphilus larvae in the parental generation (P) on high- and low-quality host plants, and reared the offspring (F1) of both treatments again on high- and low-quality plants. We tested not only for maternal effects, as most previous studies, but also for paternal effects. Our results show that parents experiencing predictive cues on their host plant can indeed adjust progeny''s phenotype to anticipated host plant quality. Maternal effects affected female and male offspring, whereas paternal effects affected only male progeny. We here verify, for the first time to our knowledge, the long postulated transgenerational acclimatization in an herbivore–host plant interaction.  相似文献   

11.
Through adaptive cross-generational plasticity, stressed plants can alter their offspring in specific ways that promote seedling success. As yet, very little is known about the expression of such plasticity, and whether it varies within a plant due to offspring position. The effects of parental light deprivation on distinct reproductive structures were tested in the annual Polygonum hydropiper, which produces both long terminal racemes and inconspicuous axial inflorescences. Inbred replicate parents from four genetic lines were grown in full greenhouse sunlight and simulated shade, and the initial mass, germination rate, and seedling growth traits of their terminal and axial offspring measured under uniform growth chamber conditions. Although parent light environment did not significantly influence seedlings from axial achenes, growth traits of those from terminal achenes were significantly enhanced as a result of parental light deprivation. In shaded conditions where resources are limiting, P. hydropiper plants appear to prioritize terminal achenes through increased provisioning as well as specific growth changes. These results show that the expression of cross-generational plasticity may vary depending on architectural position of offspring on the maternal plant.  相似文献   

12.
Nongenetic inheritance mechanisms such as transgenerational plasticity (TGP) can buffer populations against rapid environmental change such as ocean warming. Yet, little is known about how long these effects persist and whether they are cumulative over generations. Here, we tested for adaptive TGP in response to simulated ocean warming across parental and grandparental generations of marine sticklebacks. Grandparents were acclimated for two months during reproductive conditioning, whereas parents experienced developmental acclimation, allowing us to compare the fitness consequences of short‐term vs. prolonged exposure to elevated temperature across multiple generations. We found that reproductive output of F1 adults was primarily determined by maternal developmental temperature, but carry‐over effects from grandparental acclimation environments resulted in cumulative negative effects of elevated temperature on hatching success. In very early stages of growth, F2 offspring reached larger sizes in their respective paternal and grandparental environment down the paternal line, suggesting that other factors than just the paternal genome may be transferred between generations. In later growth stages, maternal and maternal granddam environments strongly influenced offspring body size, but in opposing directions, indicating that the mechanism(s) underlying the transfer of environmental information may have differed between acute and developmental acclimation experienced by the two generations. Taken together, our results suggest that the fitness consequences of parental and grandparental TGP are highly context dependent, but will play an important role in mediating some of the impacts of rapid climate change in this system.  相似文献   

13.
The solicitation behaviours performed by dependent young are under selection from the environment created by their parents, as well as wider ecological conditions. Here we show how mechanisms acting before hatching enable canary offspring to adapt their begging behaviour to a variable post-hatching world. Cross-fostering experiments revealed that canary nestling begging intensity is positively correlated with the provisioning level of their own parents (to foster chicks). When we experimentally increased food quality before and during egg laying, mothers showed higher faecal androgen levels and so did their nestlings, even when they were cross-fostered before hatching to be reared by foster mothers that had been exposed to a standard regime of food quality. Higher parental androgen levels were correlated with greater levels of post-hatching parental provisioning and (we have previously shown) increased faecal androgens in chicks were associated with greater begging intensity. We conclude that androgens mediate environmentally induced plasticity in the expression of both parental and offspring traits, which remain correlated as a result of prenatal effects, probably acting within the egg. Offspring can thus adapt their begging intensity to variable family and ecological environments.  相似文献   

14.
Abstract Direct costs and benefits to females of multiple mating have been shown to have large effects on female fecundity and longevity in several species. However, with the exception of studies examining genetic benefits of polyandry, little attention has been paid to the possible effects on offspring of multiple mating by females. We propose that nongenetic effects of maternal matings on offspring fitness are best viewed in the same context as other maternal phenotype effects on offspring that are well known even in species lacking parental care. Hence, matings can exert effects on offspring in the same way as other maternal environment variables, and are likely to interact with such effects. We have conducted a study using yellow dung flies ( Scathophaga stercoraria ), in which we independently manipulated female mating rate, number of mates and maternal thermal environment and measured subsequent fecundity, hatching success, and offspring life-history traits. To distinguish between direct effects of matings and potential genetic benefits of polyandry we split broods and reared offspring at three different temperature regimes. This allowed us to demonstrate that although we could not detect any simple benefits or costs to matings, there are effects of maternal environment on offspring and these effects interact with female mating regime affecting offspring fitness. Such interactions between female phenotype and the costs and benefits of matings have potentially broad implications for understanding female behavior.  相似文献   

15.
16.
Nongenetic parental effects may affect offspring phenotype, and in species with multiple generations per year, these effects may cause life‐history traits to vary over the season. We investigated the effects of parental, offspring developmental and offspring adult temperatures on a suite of life‐history traits in the globally invasive agricultural pest Grapholita molesta. A low parental temperature resulted in female offspring that developed faster at low developmental temperature compared with females whose parents were reared at high temperature. Furthermore, females whose parents were reared at low temperature were heavier and more fecund and had better flight abilities than females whose parents were reared at high temperature. In addition to these cross‐generational effects, females developed at low temperature had similar flight abilities at low and high ambient temperatures, whereas females developed at high temperature had poorer flight abilities at low than at high ambient temperature. Our findings demonstrate a pronounced benefit of low parental temperature on offspring performance, as well as between‐ and within‐generation effects of acclimation to low temperature. In cooler environments, the offspring generation is expected to develop more rapidly than the parental generation and to comprise more fecund and more dispersive females. By producing phenotypes that are adaptive to the conditions inducing them as well as heritable, cross‐generational plasticity can influence the evolutionary trajectory of populations. The potential for short‐term acclimation to low temperature may allow expanding insect populations to better cope with novel environments and may help to explain the spread and establishment of invasive species.  相似文献   

17.
Christian Lampei 《Oikos》2019,128(3):368-379
In general, studies on plant phenotypic plasticity concentrate on plant responses to different levels of a single environmental factor. Under natural conditions, however, multiple environmental factors often vary simultaneously. I studied the consequences for lifetime fitness caused by single treatments or treatment combinations by investigating patterns of phenotypic plasticity within and between generations. The parental plants (three genotypes of the annual plant Arabidopsis thaliana) received zero, one or two stress treatments at an early life‐stage. The treatments included wounding, shading, chilling, and their pairwise combinations. In the second generation, offspring of treated plants received either the parental or no treatment. Offspring of non‐treated plants were reared under all treatment conditions. Plants responded strongly to the treatments, especially through delayed reproduction, which positively affected lifetime fitness. Notably, treatment combinations triggered stronger plastic responses on average. Because the delay in reproduction was offset by a delay in senescence, the treatments resulted in a fitness gain instead of a loss. However, under adverse environmental conditions, this delay represents a potential fitness cost, especially when the time for reproduction is limited. The treatments ‘wounding’ and ‘shading’ triggered parental effects that increased fitness only in plants that themselves received the treatment. Untreated offspring of wounded or shaded parents performed like control plants. Also, these parental effects were not accompanied by potential fitness costs, such as delayed reproduction. Chilling triggered genotype‐specific parental effects that increased or reduced fitness. Of the treatment combinations only ‘wounding’ and ‘shading’ resulted in genotype‐specific parental effects that increased or reduced fitness independently of offspring treatment. These results suggest that the response of annual plants to treatment combinations triggers predominantly within‐generation plastic responses that include potential fitness costs, which cannot be inferred from studies that manipulate environmental factors individually. Therefore, single treatment studies likely underestimate the costs of plasticity in natural environments.  相似文献   

18.
There has been a long‐standing conceptual debate over the legitimacy of assigning components of offspring fitness to parents for purposes of evolutionary analysis. The benefits and risks inherent in assigning fitness of offspring to parents have been given primarily as verbal arguments and no explicit theoretical analyses have examined quantitatively how the assignment of fitness can affect evolutionary inferences. Using a simple quantitative genetic model, we contrast the conclusions drawn about how selection acts on a maternal character when components of offspring fitness (such as early survival) are assigned to parents vs. when they are assigned directly to the individual offspring. We find that there are potential shortcomings of both possible assignments of fitness. In general, whenever there is a genetic correlation between the parental and direct effects on offspring fitness, assigning components of offspring fitness to parents yields incorrect dynamical equations and may even lead to incorrect conclusions about the direction of evolution. Assignment of offspring fitness to parents may also produce incorrect estimates of selection whenever environmental variation contributes to variance of the maternal trait. Whereas assignment of offspring fitness to the offspring avoids these potential problems, it introduces the possible problem of missing components of kin selection provided by the mother, which may not be detected in selection analyses. There are also certain conditions where either model can be appropriate because assignment of offspring fitness to parents may yield the same dynamical equations as assigning offspring fitness directly to offspring. We discuss these implications of the alternative assignments of fitness for modelling, selection analysis and experimentation in evolutionary biology.  相似文献   

19.
In many species, males influence phenotypic traits in their offspring through non-genetic paternal effects. Such effects can represent a form of paternal investment, and males may benefit by adjusting the effects depending on environmental parameters, such as operational sex ratio, so as to maximize offspring fitness. In the neriid fly Telostylinus angusticollis, fathers reared on a nutrient-rich larval diet produce larger offspring, independent of the rearing environment of the offspring. Here we asked whether this paternal effect was influenced by the social environment to which fathers were exposed. We found significant interactions of the effects of paternal larval diet quality and social environment (same-sex vs. mixed-sex groups) on offspring fitness-related traits. Fathers reared on a nutrient-rich diet produced larger male offspring when housed in mixed-sex groups. However, fathers reared on a nutrient-rich diet produced more viable offspring (or more viable sperm) when housed in same-sex groups prior to mating. These results suggest that fitness-enhancing paternal effects can trade off, consistent with parental investment theory on the offspring size-number trade-off, which suggests that these traits represent alternative investment options and parents are selected to optimize the balance based on a range of environmental variables. This is the first study to show that males can facultatively modulate paternal effects based on the social environment.  相似文献   

20.
Effects of maternal environment on offspring performance have been documented frequently in herbivorous insects. Despite this, very few cases exist in which exposure of parent insects to a resource causes the phenotype of their offspring to be adjusted in a manner that is adaptive for that resource, a phenomenon called adaptive transgenerational phenotypic plasticity. I performed a two-generation reciprocal cross-transplant experiment in the field with the soft scale insect Saissetia coffeae (Hemiptera: Coccidae) on two disparate host plant species in order to separate genetic effects from possible transgenerational plasticity. Despite striking differences in quality between host species, maternal host had no effect on overall offspring performance, and I detected no "acclimatization" to the maternal host species. However, there was a significant negative association between maternal and offspring development times, with potentially adaptive implications. Furthermore, offspring of mothers reared in an environment where scale densities were higher and scales were more frequently killed by fungi were significantly less likely to suffer from fungal attack than were offspring of mothers reared in an environment where densities were low and fungal attack was rare. Although S. coffeae does not appear to alter offspring phenotype to increase offspring fitness on these two distinct plant species, it does appear that offspring phenotype may be responding to some subtler aspects of maternal environment. In particular, the possibility of induced transgenerational prophylaxis in S. coffeae deserves further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号