首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Resource availability, predation, and sexual selection have all been shown to play an important role in the ecology and evolution of guppies, Poecilia reticulata , but the role of parasitism has received comparatively little attention. In the present study, we examined natural infection levels of wild-caught guppies from the Upper and Lower Aripo River in Trinidad (UA and LA, respectively) and experimentally infected a subsample of fish with an isogenic line of the ectoparasite Gyrodactylus turnbulli . LA fish showed a superior resistance compared to UA guppies during the primary, but not secondary infection 53 days later. Resistance of LA individuals was consistent across experiments, suggesting immunocompetence has a heritable genetic basis. The efficiency of the immune response of UA fish was not correlated across infections. During primary infections, UA fish were highly susceptible, but their resistance was significantly improved during a secondary infection, highlighting the importance of acquired resistance. We discuss the role of innate and acquired resistance, and place our findings in the context of natural gyrodactylid infections. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 647–655.  相似文献   

2.
Gyrodactylids are ubiquitous fish parasites and yet, with the notable exception of Gyrodactylus salaris, few studies have reported the effect of these parasites on host survival in natural populations. Here, we assess the impact of the parasite load of gyrodactylids (G. turnbulli and G. bullatarudis) on the survival and migration of guppies (Poecilia reticulata) in their natural habitat of the Aripo River in Trinidad. The recapture rate of males declined by 19% with every additional parasite, a remarkably high figure given that the parasite load in this study ranged from zero to 20 worms. In addition, with an increased number of parasites, males were more prone to be recovered downstream. In contrast, no effect of parasitism was observed in females. The mean parasite load sharply declined after a series of flushing events during heavy seasonal downpours. The parasite load varied significantly between fish depending on their location in the river, and the size of the fish explained variation in parasite load between individuals. The present study indicates that tropical gyrodactylid parasites can play an important role in the ecology of natural fish populations, causing intense bouts of natural selection in guppies during heavy rains in the wet season.  相似文献   

3.
Parasites represent a threat to endangered fish species, particularly when the parasite can host switch and the new host is vulnerable. If the parasite is highly host specific then successful host switching should be a rare occurrence; however, the host range of many parasites which are assumed to be specialists has never been tested. This includes the monogenean Gyrodactylus turnbulli, a well-studied ectoparasite found caudally on its known host, the guppy, Poecilia reticulata. In this study, we monitored parasite establishment and reproduction on a range of poeciliids and more distantly related fish. Individually maintained fish were experimentally infected with a single parasite and monitored daily to establish whether G. turnbulli could survive and reproduce on other fish species. Gyrodactylus turnbulli can infect a wider range of hosts than previously considered, highlighting the fact that host specificity can never be assumed unless experimentally tested. Our findings also have significant implications for parasite transmission to novel hosts and provide further insight into the evolutionary origins of this ubiquitous group of fish pathogens. Previous molecular evidence indicates that host switching is the key mechanism for speciation within the genus Gyrodactylus. Until recently, most Gyrodactylus spp. were assumed to be narrowly host specific. However, our findings suggest that even so-called specialist species, such as G. turnbulli, may represent a threat to vulnerable fish stocks. In view of the potential importance of host switching under artificial conditions, we propose to describe this as 'artificial ecological transfer' as opposed to 'natural ecological transfer', host switching under natural conditions.  相似文献   

4.
Theory predicts that sexual reproduction promotes disease invasion by increasing the evolutionary potential of the parasite, whereas asexual reproduction tends to enhance establishment success and population growth rate. Gyrodactylid monogeneans are ubiquitous ectoparasites of teleost fish, and the evolutionary success of the specious Gyrodactylus genus is thought to be partly due to their use of various modes of reproduction. Gyrodactylus turnbulli is a natural parasite of the guppy (Poecilia reticulata), a small, tropical fish used as a model for behavioural, ecological and evolutionary studies. Using experimental infections and a recently developed microsatellite marker, we conclusively show that monogenean parasites reproduce sexually. Conservatively, we estimate that sexual recombination occurs and that between 3.7-10.9% of the parasites in our experimental crosses are hybrid genotypes with ancestors from different laboratory strains of G. turnbulli. We also provide evidence of hybrid vigour and/or inter-strain competition, which appeared to lead to a higher maximum parasite load in mixed infections. Finally, we demonstrate inbreeding avoidance for the first time in platyhelminths which may influence the distribution of parasites within a host and their subsequent exposure to the host's localized immune response. Combined reproductive modes and inbreeding avoidance may explain the extreme evolutionary diversification success of parasites such as Gyrodactylus, where host-parasite coevolution is punctuated by relatively frequent host switching.  相似文献   

5.
There is large spatial and temporal variation in the Gyrodactylus parasite fauna across natural guppy (Poecilia reticulata) populations in Trinidad. The life history evolution of these fish could be affected differently in the various habitats depending on the local parasite selection pressure. Here, we experimentally infected three guppy populations with three gyrodactylid strains in the laboratory and monitored the infection by recording the number of parasites and host mortality in a full factorial design. The origin of the guppy population and parasite strain, and the size of the hosts explained significant variation in the survival of hosts. Larger fish carried the highest parasite loads and experienced the highest mortality rates, which suggests that parasite-mediated selection may favour smaller phenotypes, possibly counter-balancing selection pressures by gape-limited predators, mate choice and female fecundity. We observed significant variation in virulence between parasite strains with the captive-bred experimental strain (Gt3) causing the highest mortality of hosts whilst reaching only relatively low maximum burdens. This suggests that adaptations to the captive environment and/or inbreeding depression may alter the virulence of such captive-bred parasites. There were significant differences in survival rate between guppy populations, with infected guppies from the large population of the Lower Aripo River showing a higher survival rate than the fish from the small and genetically less diverse Upper Aripo River population.  相似文献   

6.
Dietary carotenoids have been shown to confer immunological benefits to some species of animals in which males also use these pigments to attract mates. Thus, the potential exists for an allocation trade-off between the sexual and immunological functions of carotenoids. Food availability may also influence immune system function. The present study examined the effects of carotenoid and food availability on the resistance of male guppies ( Poecilia reticulata Peters) from four wild populations to the parasite Gyrodactylus turnbulli Harris. Intermediate levels of carotenoid ingestion resulted in the lowest parasite loads, which suggests that carotenoids strengthen parasite resistance at low levels but either benefit parasites or suppress host immunity at high levels. Males raised on the high-food level initially had fewer parasites, suggesting heightened innate immunity relative to males raised on the low-food level. Over the course of the experiment, however, the high-food males supported higher parasite population growth rates than the low-food males. The results obtained emphasize the importance of evaluating the effects of diet on multiple aspects of immune system function, and caution against assuming that positive effects of carotenoids on immunity in one context will automatically translate to other contexts.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 301–309.  相似文献   

7.
8.
Recent reviews indicate that pollutants in the surrounding macroenvironment directly influence the population dynamics, distribution and dispersal of fish ectoparasites, often leading to increased parasitism. The aim of the current study was to explore the effects of sublethal concentrations of waterborne zinc (up to 240 microg Zn/L) on survival, reproduction and morphometrics of Gyrodactylus turnbulli, a viviparous monogenean infecting the skin and fins of the guppy, Poecilia reticulata. Parasite survival and reproduction on the fish were recorded daily for individual parasites maintained in isolated containers. Both survival and reproduction were reduced in 30 and 120 microg Zn/L, compared with 0, 15, and 60 microg Zn/L indicating direct toxic effects of Zn on the parasite. However, as generation time was unaffected by Zn, we attribute the reduced reproduction to the shorter lifespan. Parasite survival off the fish was monitored hourly. Average lifespan of the detached parasites decreased linearly from 19.5 h in 0 microg Zn/L to 17.3h in 240 microg Zn/L, further supporting the direct toxic effect of Zn to the parasite. In addition, temporal dynamics of parasite morphometrics were monitored from mini-epidemics sampled after 1, 5, 10, and 15 days exposure to various Zn concentrations. All morphological parameters decreased significantly in response both to concentration and duration of exposure to waterborne Zn. Together these data clearly indicate that concentrations as low as 120 microg Zn/L are directly toxic to G. turnbulli.  相似文献   

9.
The present study assessed the histological changes in the epidermis of Poecilia reticulata induced by the combined effects of an ectoparasite Gyrodactylus turnbulli and differing concentrations of waterborne zinc (Zn). Infected guppies were exposed to 0, 15, 30, 60, or 120 μg Zn l-1 and monitored over 3 wk during the exponential increase in parasite numbers on the fish. The fish epidermis responded within 3 d to G. turnbulli infection with a rapid increase in epidermal thickness and a modest increase in number, but not size or composition, of mucous cells. In contrast, in the presence of combined waterborne Zn and infection, mucous cell numbers declined rapidly. As the parasite numbers increased, the epidermis remained thicker than normal, and the number and size of mucous cells decreased. The addition of Zn led to a dramatic thickening of the epidermis during the exponential growth of the parasite population. Mucous cell numbers remained depressed. Temporal changes in mucous cell size were Zn concentration dependent. At 60 μg Zn l-1, cells returned to normal size as infection progressed, whereas they remained extremely small at 120 μg Zn l-1. Changes in mucin composition previously reported in response to Zn alone were subdued in the presence of the parasite except at 60 μg Zn l-1, where all cells contained only acidic mucins. Together these results demonstrate that, on exposure to both Zn and G. turnbulli infection, the epidermal response is initially a protective response to both stressors, and then mainly driven by the increased parasite burden.  相似文献   

10.
Coevolutionary theories applied in the study of host–parasite systems indicate that lineages exhibit progressive trends in response to reciprocal selective pressures. Avian brood parasites have generated intense interest as models for coevolutionary processes. Similar to avian cuckoos, Polistes wasp social parasites usurp a nest and exploit the parental care of a congeneric species to rear their own brood. In the present study, we show a coevolutionary arms race in the daily activity pattern in a Polistes host–parasite pair. We measured the daily activity rate, in constant laboratory conditions, of both host and parasite females during the period in which nest usurpations occur. The parasites showed a hyperkinesis in the middle of the day. As the field observations suggested, this mid-day activity is used to perform host nest usurpation attempts. Timing the usurpations allows the parasite to maximize its usurpation attempts during daytime when the host defence is lower. A field comparison of host presence on the nest in two populations with different parasitism rates showed that populations under strong parasitic pressure exhibit timing counteradaptations to optimize nest defence. This study provides the first example of a mutual coadaptation in timing activity in a parasite–host system.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 399–405.  相似文献   

11.
Parasites can affect host phenotypes, influencing their ecology and evolution. Host morphological changes occurring post-infection might result from pathological by-products of infection, or represent adaptations of hosts or parasites. We investigated the morphology of three-spined sticklebacks, Gasterosteus aculeatus , from a population naturally infected with Schistocephalus solidus , which grows to large sizes in their body cavity. We examined local effects of infection on trunk shape, which are imposed directly by the bulk of the growing parasite, and distant effects on head morphology. We show that trunk shape differed between infection classes, and was affected more severely in fish with heavier total parasite mass. We further show unexpected differences in head morphology. The heads of infected fish were reduced in size and differently shaped to those of non-infected fish, with infected fish having deeper heads. Importantly, both head size and shape were also affected more severely in fish with heavier total parasite mass. This latter result suggests that differences in morphology are caused by post-infection changes. Such changes may be incidental, evolutionarily neutral 'side effects' of infection. However, because head morphology affects foraging ecology, such changes are likely to have fitness consequences for hosts, and may constitute adaptations, either of hosts or of parasites. We discuss our finding in the context of the evolution of phenotypic plasticity, and suggest testable hypotheses examining the proximate mechanisms underlying these morphological effects and their potential evolutionary basis.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 759–768.  相似文献   

12.
Individual-based computer models (IBM) feature prominently in current theoretical ecology but have only been applied in a small number of parasitological studies. Here we designed an IBM to simulate the infection dynamics of gyrodactylid parasites and immune defence of na?ve hosts (i.e. fish previously not exposed to these parasites). We compared the results of the model with empirical data from guppies (Poecilia reticulata) infected with Gyrodactylus parasites. The laboratory experiments on guppies showed that larger fish acquired a heavier parasite load at the peak of the infection. The survival probability declined with increased body size and no fish survived a parasite load of 80 or more worms in this experiment (i.e. lethal load). The model was a good predictor of the Gyrodactylus infection dynamics of guppies and the model output was congruent with previously published data on Gyrodactylus salaris infections of salmon (Salmo salar). Computer simulations indicated that the infections persisted longer on larger hosts and that the parasite load increased exponentially with the body size of the host. Simulations furthermore predicted that the parasite load of fish with a standard length in excess of 17mm (i.e. the size of adult guppies) reached a lethal load. This suggests that in the conditions of the experiment, the immune defence of na?ve guppies can offer moderate protection against gyrodactylid infections to juveniles, but not to na?ve adult guppies. The model is a useful tool to forecast the development of gyrodactylid infections on single hosts and make predictions about optimal life history strategies of parasites.  相似文献   

13.
This paper explores the evolutionary implications of the enormous variability that characterizes populations of RNA viruses and retroviruses. It begins by examining the magnitude of genetic variation in both natural and experimental populations. In natural populations, differences arise even within individual infected patients, with the per-site nucleotide diversity at this level ranging from < 1% to 6%. In laboratory populations, two viruses sampled from the same clone differed by ∼0.7% in their fitness. Three different mechanisms that may be important in maintaining viral genetic variability were tested: (1) Fisher's fundamental theorem, to compare the observed rate of fitness change with the extent of fitness-related variation within the same experimental populations; (2) magnitude of genomic mutation rate, to assess whether it correlated with fitness-related variation, as predicted by the mutation-selection balance hypothesis; (3) frequency-dependent selection, which affords rare genotypes an advantage. The paper concludes with a discussion of two evolutionary consequences of variability: the fixation of deleterious mutations by drift in small populations and the role of clonal interference in large ones.  © 2003 The Linnean Society of London. Biological Journal of the Linnean Society , 2003, 79 , 17–26.  相似文献   

14.
15.
An experimental epidemiological approach was chosen to study the survival and infection dynamics of Gyrodactylus salaris on juvenile rainbow trout, Oncorhynchus mykiss , in the laboratory. A marked heterogeneity in the host stock was apparent. The rainbow trout could be divided into three groups on the basis of parasite survival and infection pattern on individually isolated fish: (1) hosts receptive to initial parasite attachment, but unreceptive to parasite establishment and reproduction; (2) hosts moderately susceptible to parasite establishment and reproduction, but which, after a period of restricted parasite population growth, responded, recovered and eliminated the parasites; and (3) hosts very susceptible to parasite infection and reproduction, but which, after a period of significant parasite population growth, responded, recovered and eliminated the parasites. These different patterns are considered to reflect genetic differences between host individuals. Parasite aggregation was also shown to be an important factor in the outcome of the host-parasite association. The parasites were finally eliminated on the individually isolated hosts, but not on hosts maintained in batches and so host population size and immigration of fresh. previously unexposed, hosts appeared to be important for growth and maintenance of the parasite population. The parasite was not found to cause host mortality. Rainbow trout was a suitable host for G. salaris , capable of transmitting the parasite to new localities as a consequence of stocking programmes or migratory behaviour.  相似文献   

16.
Feeding innovations and parasitism in birds   总被引:2,自引:0,他引:2  
The rate of behavioural innovation, such as opportunistic feeding innovation, may facilitate adaptation to novel environments. Because parasites may affect how their hosts adopt novel means of resource acquisition, or because opportunistic behaviours may involve the risk of being exposed to a large parasite fauna, we hypothesize an evolutionary link between the rate of feeding innovations and parasitism. We investigated the phylogenetic relationship between relative frequency of feeding innovations (adjusted for research effort and population size) and relative size of immune defense organs (as a relative measure of parasite-mediated selection) and the prevalence of blood parasites in birds. Using generalized least squares models, we found that species with relatively large bursa of Fabricius, thymus, and spleen had higher rates of feeding innovations than species with small immune defense organs. Similarly, there was a positive interspecific association between feeding innovation and haematozoa prevalence. These relationships were not confounded by migration, relative brain size, geographical distribution, and male plumage brightness. Analyses of causality relying on evolutionary modelling of discrete variables and path analysis suggest that increasing rate of feeding innovation may place species under intense selection due to parasitism. Therefore, behavioural adaptation by feeding innovation seems to have consequences for the coevolutionary arm race between parasites and hosts.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 441–455.  相似文献   

17.
Host populations tend to show less ability to discriminate against parasites when living in their absence. However, comparison of rejection rates among sympatric and allopatric host populations does not allow determination of whether the greater tolerance in allopatric populations reflects a genetic change or phenotypic plasticity. Here we test the existence of changes in a host's adaptation to brood parasitism in the absence of parasitism by studying intraclutch variation in egg appearance, which is a genetically determined component of host defence favouring discrimination of parasitic eggs. We investigated egg phenotypes of a common host of the European cuckoo, Cuculus canorus , in the presence and in the absence of cuckoos. By using objective spectroradiometry techniques of colour assessment we compared intraclutch variation between populations of meadow pipit, Anthus pratensis , sympatric (England) and allopatric (Iceland and Faeroe Islands) with C. canorus . Allopatric populations of A. pratensis showed greater intraclutch variation in egg appearance in the ultraviolet part of the spectrum than did a population sympatric with C. canorus . Two possible alternative mechanisms explaining these findings are discussed.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 79 , 543–549.  相似文献   

18.
The Monogenea, which is divided into two clades, namely the Monopisthocotylea and Polyopisthocotylea, is a highly diversified group of platyhelminth parasites that infest mainly actinopterygian and chondrichthyan fishes but also, to a lesser extent, freshwater sarcopterygian hosts. Euzetrema knoepffleri Combes, 1965 (Monogenea: Iagotrematidae), which is specific to the salamander Euproctus montanus Savi, 1838 is among the rare monopisthocotylean parasites infesting tetrapod hosts. We sequenced the complete 18S rRNA gene of this parasite to infer its phylogenetic position within the Monopisthocotylea. Our results provide a new insight for coevolutionary scenarios between monopisthocotyleans and gnathostomatan hosts. Indeed, the basal position of E. knoepffleri within a subgroup of the Monopisthocotylea which comprises two clusters that both include parasites of the Actinopterygii and Chondrichthyes, suggests a very old association between the Iagotrematidae and tetrapods. Furthermore, if we take into account a recent view of Gnathostomata evolution where bony and cartilaginous fishes are regarded as a monophyletic group, it could be argued that the Iagotrematidae arose very early, during the fish–tetrapod transition, as did the Polystomatidae, the only monogenean family of the Polyopisthocotylea that infests sarcopterygian hosts.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 727–734.  相似文献   

19.
Biological systems with asexual reproduction have often attracted research on parasites and host immune defence, because parasites are expected to be better able to exploit genetically less diverse populations. In addition, maternally inherited parasitic microorganisms such as Wolbachia can directly alter the reproductive systems of their hosts and induce parthenogenesis. In the freshwater ostracod Eucypris virens, both sexual and asexual reproduction is known, and we speculated that parasite pressures might help to explain their co‐existence. This species complex inhabits shallow, often eutrophic temporary water bodies, conditions that should provide ample opportunities for parasite infections. We surveyed natural populations of E. virens throughout its Europe‐wide range for natural parasites, and particularly tested for the presence of intracellular Wolbachia bacteria. Surprisingly, the results indicate that very few E. virens populations support parasite infections. We also found no evidence for the presence of Wolbachia in the populations screened. The results therefore show that parasitic infections do not play a role in the maintenance of sex in this system. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 207–216.  相似文献   

20.
Gyrodactylus bullatarudis Turnbull, 1956, and Gyrodactylus turnbulli Harris, 1986, are recorded from guppies (Poecilia reticulata) from the northern mountains of Trinidad. Mixed infections of the 2 species were found at 9 localities. Gyrodactylus turnbulli had a predominantly posterior distribution on the fishes, whereas G. bullatarudis was more anteriorly distributed. This is the first record of these species from guppies collected from within their original range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号