首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
When dark-grown cucumber (Cucumis sativus L.) seedlings previously exposed to white light for 20 hours were returned to darkness, the ability of isolated chloroplasts to synthesize 5-aminolevulinic acid dropped by approximately 70% within 1 hour. The seedlings were then exposed to light, and the synthetic ability of the isolated chloroplasts was determined. Restoration of the synthetic capacity was promoted by continuous white or red light of moderate intensity. Intermittent red light was also effective. Blue and far-red light did not restore the synthetic capability. Blue light given after a red pulse did not enhance the effect of the red light. Far-red light given immediately after each red pulse prevented the stimulation due to intermittent red light. Restoration of the biosynthetic activity by in vivo light treatments was inhibited by cycloheximide indicating the requirement for translation on 80 S ribosomes for the in vivo light response. These findings suggest that the majority of the plastidic 5-aminolevulinic acid synthesis is under phytochrome regulation.  相似文献   

2.
Gabaculine and 4-amino-5-hexynoic acid (AHA) up to 3.0 millimolar concentration strongly inhibited 5-aminolevulinic acid (ALA) synthesis in developing cucumber (Cucumis sativus L. var Beit Alpha) chloroplasts, while they hardly affected protochlorophyllide (Pchlide) synthesis. Exogenous protoheme up to 1.0 micromolar had a similar effect. Exogenous glutathione also exhibited a strong inhibitory effect on ALA synthesis in organello but hardly inhibited Pchlide synthesis. Pchlide synthesis in organello was highly sensitive to inhibition by levulinic acid, both in the presence and in the absence of gabaculine, indicating that the Pchlide was indeed formed from precursor(s) before the ALA dehydratase step. The synthesis of Pchlide in the presence of saturating concentrations of glutamate was stimulated by exogenous ALA, confirming that Pchlide synthesis was limited at the formation of ALA. The gabaculine inhibition of ALA accumulation occurred whether levulinic acid or 4,6-dioxohepatonic acid was used in the ALA assay system. ALA overproduction was also observed in the absence of added glutamate and was noticeable after 10-minute incubation. These observations suggest that although Pchlide synthesis in organello is limited by ALA formation, it does not utilize all the ALA that is made in the in organello assay system. Gabaculine, AHA, and probably also protoheme, inhibit preferentially the formation of that portion of ALA that is not destined for Pchlide. A model proposing a heterogenous ALA pool is described.  相似文献   

3.
Developing chloroplasts isolated from cucumber (Cucumis sativus L. var Beit Alpha) cotyledons are capable of incorporating [14C]5-aminolevulinic acid into chlorophyll (Chl) b and Chl a when incubated under photosynthetic illumination. Thin layer chromatography and high pressure liquid chromatography were employed to analyze the pigments. The specific radioactivity in Chl a was over three times higher than that found in Chl b. Both Chl a and b synthesizing activities in organello decayed rapidly at approximately the same rate. We conclude that concomitant synthesis of Chl a/b-binding apoprotein is not required for Chl b synthesis.  相似文献   

4.
The cucumber (Cucumis sativus L.) plants were sprayed with 20 mM 5-aminolevulinic acid or distilled water (control) and incubated in dark for 14 hr. The thylakoid membranes prepared from the intact chloroplasts, isolated from the above plants in dark, were illuminated with low light intensity (100 W/m2) for 30 min. Due 10 photodynamic reactions, the photochemical function of photosystem II was damaged by 50% in treated thylakoids whereas it was only slightly (8%) affected in control thylakoids. The photosystem I was, however, not affected. The exogenous electron donors, MnCl2, diphenyl carbazide and NH2OH failed to restore the photosystem II activity suggesting that the photodynamic damage had taken place very close to photosystem II reaction center. Singlet oxygen scavenger, histidine, could protect the photosystem II activity while superoxide radical scavengers, superoxide dismutase and 1, 2-dihydroxybenzene-3, 5-disulphonic acid disodium salt, and hydroxyl radical scavenger, formate, failed to protect the same.  相似文献   

5.
Harel E  Ne'eman E 《Plant physiology》1983,72(4):1062-1067
Intact plastids from greening maize (Zea mays L.) leaves converted [14C]glutamate and [14C]2-ketoglutarate (KG) to [14C]5-aminolevulinic acid (ALA). Glutamate appeared to be the immediate precursor of ALA, while KG was first converted to glutamate, as shown by the effect of various inhibitors of amino acid metabolism. Plastids from greening leaves contained markedly higher activity as compared with etioplasts or chloroplasts. The synthesis of ALA by intact plastids was light dependent. The enzyme system resides in the stroma of plastids or may be lightly bound to membranes. The solubilized system showed maximal activity around pH 7.9 and required Mg2+, ATP, and NADPH although dependence on the latter was not clear-cut. A relatively high level of activity could be extracted from etioplasts. Maximal activity was obtained from plastids of leaves which had been illuminated for 90 minutes, after which activity declined sharply. The enzyme system solubilized from plastids also catalyzed the conversion of putative glutamate 1-semialdehyde to ALA in a reaction which was not dependent on the addition of an amino donor.

The system in maize greatly resembled the one which had been reported from barley. It is suggested that this system is the one responsible for the biosynthesis of ALA destined for chlorophyll formation.

  相似文献   

6.
Harel E  Ne'eman E  Meller E 《Plant physiology》1983,72(4):1056-1061
Cell-free extracts from greening maize (Zea mays L.) leaves catalyze the conversion of [14C]2-ketoglutarate (KG) to [14C]5-aminolevulinic acid (ALA) in a reaction which requires NADH and an amino donor and shows maximal activity around pH 6.5. The enzymic system is located in the cytosol. This cell fraction contains a low level of `KG dehydrogenase' activity and a transaminase which catalyzes the conversion of 4,5-dioxovaleric acid (DOVA) to ALA. The transaminase can use glutamate, aspartate, or alanine as amino donor. It is effectively inhibited by aminooxyacetate and ethylenediamine tetraacetate and shows maximal activity at pH 6.7. The activity of DOVA transaminase is only slightly affected by preillumination of leaves and can also be detected in green leaves and in roots.

DOVA was isolated from leaves and roots and determined as its benzoquinoxaline derivative. Significant amounts were found only in tissues in which ALA had accumulated or after it was exogenously supplied. DOVA was labeled in vivo by both [14C]ALA and [14C]KG. Small amounts were also formed from ALA in a cell-free system.

It is suggested that DOVA may be an intermediate in the diversion of ALA to respiratory metabolism and that it is not involved in the biosynthesis of this porphyrin precursor.

  相似文献   

7.
Cytoplasmic membranes (plasma membranes), thylakoid membranesand cell walls prepared from the cyanobacterium, Anacystis nidulans,were compared for UDP-glucose: l,2-diacylglycerol glucosyltransferaseactivity. When 1,2-dipalmitoylglycerol was added as a glucosylacceptor, both cytoplasmic membranes and thylakoid membranesincorporated glucose from UDP-glucose into monoglucosyl diacylglycerol,but the cell walls containing the outer membranes did not. Thecytoplasmic membranes incorporated about twice as much glucoseas the thylakoid membranes on a protein basis. These observationssuggest that in A. nidulans the UDP-glucose: 1,2-diacylglycerolglucosyltransferase participating in glucolipid biosynthesisis located in both cytoplasmic and thylakoid membranes, butnot in the outer membrane. 1Solar Energy Research Group, The Institute of Physical andChemical Research (RIKEN), Wako-shi, Saitama 351-01, Japan. (Received November 21, 1985; Accepted January 27, 1986)  相似文献   

8.
9.
It is evident from previous reports that 5-aminolevulinic acid (ALA), like other known plant growth regulators, is effective in countering the injurious effects of heavy metal-stress in oilseed rape (Brassica napus L.). The present study was carried out to explore the capability of ALA to improve cadmium (Cd2+) tolerance in B. napus through physiological, molecular, and proteomic analytical approaches. Results showed that application of ALA helped the plants to adjust Cd2+-induced metabolic and photosynthetic fluorescence changes in the leaves of B. napus under Cd2+ stress. The data revealed that ALA treatment enhanced the gene expressions of antioxidant enzyme activities substantially and could increase the expression to a certain degree under Cd2+ stress conditions. In the present study, 34 protein spots were identified that differentially regulated due to Cd2+ and/or ALA treatments. Among them, 18 proteins were significantly regulated by ALA, including the proteins associated with stress related, carbohydrate metabolism, catalysis, dehydration of damaged protein, CO2 assimilation/photosynthesis and protein synthesis/regulation. From these 18 ALA-regulated proteins, 12 proteins were significantly down-regulated and 6 proteins were up-regulated. Interestingly, it was observed that ALA-induced the up-regulation of dihydrolipoyl dehydrogenase, light harvesting complex photo-system II subunit 6 and 30S ribosomal proteins in the presence of Cd2+ stress. In addition, it was also observed that ALA-induced the down-regulation in thioredoxin-like protein, 2, 3-bisphosphoglycerate, proteasome and thiamine thiazole synthase proteins under Cd2+ stress. Taken together, the present study sheds light on molecular mechanisms involved in ALA-induced Cd2+ tolerance in B. napus leaves and suggests a more active involvement of ALA in plant physiological processes than previously proposed.  相似文献   

10.
Exogenous application of different plant growth regulators is a well-recognized strategy to alleviate stress-induced adverse effects on different crop plants by regulating a variety of physiobiochemical processes such as photosynthesis, chlorophyll biosynthesis, nutrient uptake, antioxidant metabolism, and protein synthesis, which are directly or indirectly involved in the mechanism of stress tolerance. Of various environmental factors, salinity, drought, and extreme temperature (low or high) considerably diminish plant growth and yield by modulating endogenous levels as well as signaling pathways of plant hormones. Of various plant hormones/regulators, a potential plant growth regulator, 5-aminolevulinic acid (ALA), is known to be effective in counteracting the injurious effects of various abiotic stresses in plants. Until now the mechanisms behind ALA regulation of growth under stress have not been fully elucidated. It is also not yet clear how far growth and yield in different crops can be promoted by exogenous application of ALA and whether this ALA-induced growth and yield promotion is cost-effective. Thus, in this review we discuss at length the effects of ALA in regulating growth and development in plants under a variety of abiotic stress conditions, including salinity, drought, and temperature stress. Furthermore, advances in the functional and regulatory interactions of this plant growth regulator with plant stress tolerance, as well as the effective mode of exogenous application of ALA in inducing stress tolerance in plants are also comprehensively discussed in this review. In the future, overaccumulation of ALA in plants through manipulation of gene(s) could enhance plant stress tolerance. Thus, genetic manipulation of plants with the goal of attaining increased synthesis/accumulation of ALA and hence improved stress tolerance under stress conditions is an important area for research.  相似文献   

11.
Radioautographic and radiochemical techniques were used to establish the presence of replicating DNA in the chloroplasts of Acetabularia mediterranea. These techniques also demonstrated that these chloroplasts synthesize RNA. It was found that label from thymine was also incorporated into DNA and RNA in these chloroplasts.

With the establishment of protein and nucleic acid synthesis in Acetabularia chloroplasts, it is clear that these chloroplasts carry out those metabolic processes which are most characteristic of autonomous cells.

  相似文献   

12.
Blee E  Joyard J 《Plant physiology》1996,110(2):445-454
Enzymes in envelope membranes from spinach (Spinacia oleracea L.) chloroplasts were found to catalyze the rapid breakdown of fatty acid hydroperoxides. In contrast, no such activities were detected in the stroma or in thylakoids. In preparations of envelope membranes, 9S-hydroperoxy-10(E),12(Z)-octadecadienoic acid, 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid, or 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid were transformed at almost the same rates (1-2 [mu]mol min-1 mg-1 protein). The products formed were separated by reversed-phase high-pressure liquid chromatography and further characterized by gas chromatography-mass spectrometry. Fatty acid hydroperoxides were cleaved (a) into aldehydes and oxoacid fragments, corresponding to the functioning of a hydroperoxide lyase, (b) into ketols that were spontaneously formed from allene oxide synthesized by a hydroperoxide dehydratase, (c) into hydroxy compounds synthesized enzymatically by a system that has not yet been characterized, and (d) into oxoenes resulting from the hydroperoxidase activity of a lipoxygenase. Chloroplast envelope membranes therefore contain a whole set of enzymes that catalyze the synthesis of a variety of fatty acid derivatives, some of which may act as regulatory molecules. The results presented demonstrate a new role for the plastid envelope within the plant cell.  相似文献   

13.
The chloroplast ATP synthase is strictly regulated so that it is very active in the light (rates of ATP synthesis can be higher than 5 mol/min/mg protein), but virtually inactive in the dark. The subunits of the catalytic portion of the ATP synthase involved in activation, as well as the effects of nucleotides are discussed. The relation of activation to proton flux through the ATP synthase and to changes in the structure of enzyme induced by the proton electrochemical gradient are also presented. It is concluded that the and subunits of CF1 play key roles in both regulation of activity and proton translocation.  相似文献   

14.
Immunogold labelling on ultrathin sections of the red alga Porphyridiumcruentum (ATCC 50161) was used to assess changes in the densityand distribution of polypeptide components of photosystem I,photosystem II, phycobilisomes, and ATP synthase within thethylakoid membrane as a function of growth irradiance. In cellsgrown under a low, limiting quantum flux (6 microeinsteins persquare meter per second of continuous white light) thylakoidmembrane density and total thylakoid area per cell are 2 1/2times greater than in cells grown under a high, saturating quantumflux (280 microeinsteins per square meter per second). Immunogoldlabelling data indicate that concentrations of photosystem I,photosystem II and phycobilisomes in thylakoids of low light-growncells are only slightly greater than in cells grown under highlight. In contrast, the concentration of ATP synthase withinthe thylakoid membrane is nearly ten times greater in high light-growncells. Photosystem I polypeptides were detected in those portionsof the thylakoid membrane which traverse the pyrenoid, but photosystemII and phycobilisomes appeared to be absent from these membranes.Ribulose-l,5-bisphosphate carboxylase was restricted primarilyto the pyrenoid, and its concentration in the stroma or pyrenoidwas little affected by the photon flux density. Quantitativeestimates of photosystems I and II, phycobilisomes, and ATPsynthase by spectroscopy or by immunoelectrophoresis are inaccord with the immunogold results and lend support to the useof immunogold labelling for quantifying changes in relativeamounts of membrane proteins. (Received October 29, 1990; Accepted February 4, 1991)  相似文献   

15.
In vitro culture of pericarp segments from fruit of Citrus sinensis (L.) Osbeck cv Valencia was used to determine the temporal sequence in development of chloroplasts from chromoplasts during regreening of the epicarp. Regreening of chromoplasts closely resembled greening of etioplasts, except that regreening proceeded much more slowly. Chlorophyll, the light-harvesting chlorophyll a/b binding protein of photosystem II, the chlorophyll a binding protein of reaction center P-700 of photosystem I, thylakoid membranes, and adenosine triphosphate synthetase were all detected at very low levels in degreened epicarp. All of these increased in parallel during regreening of the epicarp. Ribulose 1,5-bisphosphate carboxylase (RuBPCase) levels were high in degreened epicarp and declined for the first 10 days of culture before reaccumulating in the regreening segments. Light was necessary for the accumulation of all of the chloroplastic components. A lack of exogenous nitrogen did not prevent the accumulation of any chloroplastic component except Ru-BPCase, although accumulation of the other components was reduced. Sucrose at 150 millimolar in media lacking nitrogen markedly inhibited the accumulation of chlorophyll and light-harvesting chlorophyll a/b-protein.  相似文献   

16.
The mechanism of the stimulatory effect of a cytokinin, namely,benzyladenine (BA), on the synthesis of 5-aminolevulinic acid(ALA) in cucumber cotyledons was studied. The rate of synthesisof ALA by plastids isolated from BA-treated cotyledons was twicethat by plastids from untreated controls. Western blot analysisof stromal proteins showed that BA did not affect the levelof glutamyl-tRNA synthetase or of glutamate l-semialdehyde (GSA)aminotransferase. Analysis of free amino acids revealed thatBA did not increase the level of glutamate in the stroma. However,the amount of total plastidic RNA was doubled in BA-treatedcotyledons. Northern blot analysis showed that the level ofplastid tRNAGlu was increased by treatment with BA to the sameextent as that of another plastid tRNA, reflecting an increasein total plastidic RNA. The rate of formation of glutamyl-tRNAwas also doubled in plastids from BA-treated cotyledons. Theresults indicate that stimulation of the synthesis of ALA byBA is due to an increased level of tRNAGlu in plastids. (Received June 6, 1993; Accepted November 26, 1993)  相似文献   

17.
After one month of cultivation in the dark in inorganic medium the chloroplasts of protonemata of Ceratodon purpureus have larger grana than chloroplasts from light-grown cultures. Incubation of dark-grown material with ALA increases the chlorophyll content and chlorophyll a/b ratio. On polyacrylamide-gel electrophoresis, a préferential labelling of chlorophyll-protein complex I is obtained after treatment with (3H) ALA in darkness. In contrast, in light, much higher activity is found in chlorophyll-protein complex II. The free pigment zone is highly labelled in both environments.  相似文献   

18.
The site of photoinhibition at low temperatures in leaves ofa chilling-sensitive plant, cucumber, is photosystem I [Terashimaet al. (1994) Planta 193: 300]. As described herein, selectivephotoinhibition of PSI can also be induced in isolated thylakoidmembranes in vitro. Inhibition was observed both at chillingtemperatures and at 25°C, and not only in the thylakoidmembranes isolated from cucumber, but also in those isolatedfrom a chilling-tolerant plant, spinach. Comparison of theseobservations in vitro to the earlier results in vivo indicatesthat (1) photoinhibition of PSI is a universal phenomenon; (2)a mechanism exists to protect PSI in vivo; and (3) the protectivemechanism is chilling-sensitive in cucumber. The chilling-sensitivecomponent seems to be lost during the isolation of thylakoidmembranes. Very weak light (10–20µmol m-2 s-1) wassufficient to cause the inhibition of PSI. About 80% of theoxygen-evolving activity by PSII was maintained even after theactivity of PSI had decreased by more than 70%. This is thefirst report of the selective photoinhibition of PSI in vitro. (Received March 1, 1995; Accepted April 26, 1995)  相似文献   

19.
The chlorophyll precursors protochlorophyllide and chlorophyllide were identified in purified envelope membranes from spinach (Spinacia oleracea) chloroplasts. This was shown after pigment separation by high performance liquid chromatography (HPLC) using specific fluorescence detection for these compounds. Protochlorophyllide and chlorophyllide concentrations in envelope membranes were in the range of 0.1 to 1.5 nmol/mg protein. Chlorophyll content of the envelope membranes was extremely low (0.3 nmol chlorophyll a/mg protein), but the molar ratios of protochlorophyllide and chlorophyllide to chlorophyll were 100 to 1000 times higher in envelope membranes than in thylakoid membranes. Therefore, envelope tetrapyrrolic pigments consist in large part (approximately one-half) of nonphytylated molecules, whereas only 0.1% of the pigments in thylakoids are nonphytylated molecules. Clear-cut separation of protochlorophyllide and chlorophyllide by HPLC allowed us to confirm the presence of a slight protochlorophyllide reductase activity in isolated envelope membranes from fully developed spinach chloroplasts. The enzyme was active only when envelope membranes were illuminated in the presence of NADPH.  相似文献   

20.
A probable carbon flow from the Calvin cycle to branched chain amino acids and lipids via phosphoenolpyruvate (PEP) and pyruvate was examined in spinach (Spinacia oleracea) chloroplasts. The interpendence of metabolic pathways in and outside chloroplasts as well as product and feedback inhibition were studied. It was shown that alanine, aromatic, and small amounts of branched chain amino acids were formed from bicarbonate in purified intact chloroplasts. Addition of PEP only favored formation of aromatic amino acids. Mechanisms of regulation remained unclear. Concentrations of PEP and pyruvate within the chloroplast impermeable space during photosynthetic carbon fixation were 15 times higher than in the reaction medium. A direct carbon flow to pyruvate was identified (0.1 micromoles per milligram chlorophyll per hour). Pyruvate was taken up by intact chloroplasts slowly, leading to the formation of lysine, alanine, valine, and leucine plus isoleucine (approximate ratios, 100-500:60-100:40-100:2-10). The Km for the formation of valine and leucine plus isoleucine was estimated to be 0.1 millimolar. Ten micromolar glutamate optimized the transamination reaction regardless of whether bicarbonate or pyruvate was being applied. Alanine and valine formation was enhanced by the addition of acetate to the reaction mixture. The enhancement probably resulted from an inhibition of pyruvate dehydrogenase by acetyl-S-coenzyme A formed from acetate, and resulting accumulation of hydroxyethylthiamine diphosphate and pyruvate. High concentrations of valine and isoleucine inhibited their own and each others synthesis and enhanced alanine formation. When pyruvate was applied, only amino acids were formed; when complemented with bicarbonate, fatty acids were formed as well. This is probably the result of a requirement of acetyl-S-coenzyme A-carboxylase for bicarbonate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号