首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Gliotoxin is a secondary metabolite produced by several fungi including the opportunistic animal pathogen Aspergillus fumigatus. It is a member of the epipolythiodioxopiperazine (ETP) class of toxins characterised by a disulphide bridged cyclic dipeptide. A putative cluster of 12 genes involved in gliotoxin biosynthesis has been identified in A. fumigatus by a comparative genomics approach based on homology to genes from the sirodesmin (another ETP) biosynthetic gene cluster of Leptosphaeria maculans. The physical limits of the cluster in A. fumigatus have been defined by bioinformatics and by identifying the genes that are co-regulated and whose timing of expression correlates with the production of gliotoxin in culture.  相似文献   

3.
4.
Aspergillus fumigatus is an important pathogen of the immunocompromised host. Previously, it was shown that the polyketide synthase encoded by the pksP (alb1) gene represents a virulence determinant. pksP is part of a gene cluster involved in dihydroxynaphthalene (DHN)-like melanin biosynthesis. Because a putative laccase-encoding gene (abr2) is also part of the cluster and a laccase was found to represent a virulence factor in Cryptococcus neoformans, here, the Abr2 laccase was characterised. Deletion of the abr2 gene changed the gray-green conidial pigment to a brown color and the ornamentation of conidia was reduced compared with wild-type conidia. In contrast to the white pksP mutant, the susceptibility of the Δabr2 mutant against reactive oxygen species (ROS) was not increased, suggesting that the intermediate of DHN-like melanin produced up to the step catalysed by Abr2 already possesses ROS scavenging activity. In an intranasal mouse infection model, the Δabr2 mutant strain showed no reduction in virulence compared with the wild type. In the Δabr2 mutant, overall laccase activity was reduced only during sporulation, but not during vegetative growth. An abr2p-lacZ gene fusion was expressed during sporulation, but not during vegetative growth confirming the pattern of laccase activity due to Abr2.  相似文献   

5.
Slot JC  Hibbett DS 《PloS one》2007,2(10):e1097
High affinity nitrate assimilation genes in fungi occur in a cluster (fHANT-AC) that can be coordinately regulated. The clustered genes include nrt2, which codes for a high affinity nitrate transporter; euknr, which codes for nitrate reductase; and NAD(P)H-nir, which codes for nitrite reductase. Homologs of genes in the fHANT-AC occur in other eukaryotes and prokaryotes, but they have only been found clustered in the oomycete Phytophthora (heterokonts). We performed independent and concatenated phylogenetic analyses of homologs of all three genes in the fHANT-AC. Phylogenetic analyses limited to fungal sequences suggest that the fHANT-AC has been transferred horizontally from a basidiomycete (mushrooms and smuts) to an ancestor of the ascomycetous mold Trichoderma reesei. Phylogenetic analyses of sequences from diverse eukaryotes and eubacteria, and cluster structure, are consistent with a hypothesis that the fHANT-AC was assembled in a lineage leading to the oomycetes and was subsequently transferred to the Dikarya (Ascomycota+Basidiomycota), which is a derived fungal clade that includes the vast majority of terrestrial fungi. We propose that the acquisition of high affinity nitrate assimilation contributed to the success of Dikarya on land by allowing exploitation of nitrate in aerobic soils, and the subsequent transfer of a complete assimilation cluster improved the fitness of T. reesei in a new niche. Horizontal transmission of this cluster of functionally integrated genes supports the "selfish operon" hypothesis for maintenance of gene clusters.  相似文献   

6.
Aspergillus fumigatus grows optimally from 37 to 42 degrees C but can grow at temperatures up to 55 degrees C. To study the genetic basis of thermotolerance and its role in virulence of A. fumigatus, temperature sensitive mutants were isolated. One of the mutants that grew at 42 degrees C but not at 48 degrees C was complemented and the gene, THTA, was identified. Deletion of THTA showed the same temperature sensitivity as the original mutant. THTA encodes a putative protein of 141 kDa with unknown function and the HA-tagged ThtAp accumulated to similar levels in cultures grown at either 37 or 48 degrees C. Southern blot analysis and database searches revealed the presence of THTA-related sequences in several other ascomycetous fungi. No difference in virulence was observed between the deltathtA and wild-type strains. Thus, THTA is essential for growth of A. fumigatus at high temperatures but does not contribute to the pathogenicity of the species.  相似文献   

7.
A previous multidisciplinary study indicated that gliotoxin-producing Aspergillus fumigatus Fresen. isolates from silage commodities mostly belonged to its variant A. fumigatus var. ellipticus Raper & Fennell. Sequence analysis revealed the presence of a single nucleotide polymorphism at five positions in a fragment of the rodA gene (coding for a hydrophobin rodletA protein) between Aspergillus fumigatus var. fumigatus and Aspergillus fumigatus var. ellipticus. A method was developed to distinguish these two types of isolates based on restriction analysis of this rodA gene fragment using the HinfI restriction enzyme. In addition, in silico analysis of 113 rodA gene fragments retrieved from GenBank was performed and confirmed the suitability of this method. In conclusion, the method developed in this study allows easy distinction between A. fumigatus var. fumigatus and its variant ellipticus. In combination with the earlier developed PCR-restriction fragment length polymorphism method of Staab et al. (2009, J Clin Microbiol 47: 2079), this method is part of a sequencing-independent identification scheme that allows for rapid distinction between similar species/variants within Aspergillus section Fumigati, specifically A. fumigatus, A. fumigatus var. ellipticus, Aspergillus lentulus Balajee & K.A. Marr, Neosartorya pseudofischeri S.W. Peterson and Neosartorya udagawae Y. Horie, Miyaji & Nishim.  相似文献   

8.
Rhodobacter capsulatus E1F1 grows phototrophically with nitrate as nitrogen source. Using primers designed for conserved motifs in bacterial assimilatory nitrate reductases, a 450-bp DNA was amplified by PCR and used for the screening of a genomic library. A cosmid carrying an insert with four SalI fragments of 2.8, 4.1, 4.5, and 5.8 kb was isolated, and DNA sequencing revealed that it contains a nitrate assimilation (nas) gene region, including the hcp gene coding for a hybrid cluster protein (HCP). Expression of hcp is probably regulated by a nitrite-sensitive repressor encoded by the adjacent nsrR gene. A His(6)-HCP was overproduced in Escherichia coli and purified. HCP contained about 6 iron and 4 labile sulfide atoms per molecule, in agreement with the presence of both [2Fe-2S] and [4Fe-2S-2O] clusters, and showed hydroxylamine reductase activity, forming ammonia in vitro with methyl viologen as reductant. The apparent K(m) values for NH(2)OH and methyl viologen were 1 mM and 7 microM, respectively, at the pH and temperature optima (9.3 and 40 degrees C). The activity was oxygen-sensitive and was inhibited by sulfide and iron reagents. R. capsulatus E1F1 grew phototrophically, but not heterotrophically, with 1 mM NH(2)OH as nitrogen source, and up to 10 mM NH(2)OH was taken up by anaerobic resting cells. Ammonium was transiently accumulated in the media, and its assimilation was prevented by L-methionine-D,L-sulfoximine, a glutamine synthetase inhibitor. In addition, hydroxylamine- or nitrite-grown cells showed the higher hydroxylamine reductase activities. However, R. capsulatus B10S, a strain lacking the whole hcp-nas region, did not grow with 1 mM NH(2)OH. Also, E. coli cells overproducing HCP tolerate hydroxyl-amine better during anaerobic growth. These results suggest that HCP is involved in assimilation of NH(2)OH, a toxic product that could be formed during nitrate assimilation, probably in the nitrite reduction step.  相似文献   

9.
Sequence analysis of a 212 kb defensin gene cluster on ECA 27q17   总被引:1,自引:0,他引:1  
Defensins are a family of evolutionary ancient antimicrobial peptides consisting of three sub-families: alpha-, beta- and theta-defensins. This investigation was focused on the genomic characterization of equine beta-defensins and the investigation of the potential clustering of beta-defensin genes in the equine genome. Six genomic BAC clones were isolated from the CHORI-241 library and one of these was mapped by FISH to ECA 27q17. This location was confirmed by RH-mapping. The contiguous 212 kb sequence of this clone was determined. Sequence analysis revealed the identification of ten pseudogenes and nine genes, six of which were highly homologous to human beta-defensin DEFB4. Clustering of the beta-defensin genes was confirmed and the order of the genes on the analyzed BAC was related to the corresponding defensin cluster on HSA 8. The knowledge about the sequence and the genomic structure of the equine beta-defensin genes will improve the classification of different paralogous defensin genes and is a prerequisite for subsequent functional studies. Additionally, the first alpha-defensin-like sequence outside the groups of primates, lagomorphs and rodents (glires) was identified.  相似文献   

10.
11.
12.
13.
The mitochondrial phosphopantetheinyl transferase gene pptB of the opportunistic pathogen Aspergillus fumigatus has been identified and characterised. Unlike pptA, which is required for lysine biosynthesis, secondary metabolism, and iron assimilation, pptB is essential for viability. PptB is located in the mitochondria. In vitro expression of pptA and pptB has shown that PptB is specific for the mitochondrial acyl carrier protein AcpA.  相似文献   

14.
To sequence the entire 800 kilobase pair genome of the bacterium Mycoplasma pneumoniae, a plasmid library was established with contained the majority of the EcoR1 fragments from M.pneumoniae. The EcoR1 fragments were subcloned from an ordered cosmid library comprising the complete M.pneumoniae genome. Individual plasmid clones were sequenced in an ordered fashion mainly by primer walking. We report here the initial results from the sequence analysis of -56 kb comprising the dnaA region as a potential origin of replication, the ATPase operon and a region coding for a cluster of ribosomal protein genes. The data were compared with the corresponding genes/operons from Bacillus subtilis, Escherichia coli, Mycoplasma capricolum and Mycoplasma gallisepticum.  相似文献   

15.
Abstract. The application of molecular approaches such as mutant analysis and recombinant DNA technology, in conjunction with immunology, are set to revolutionize our understanding of the nitrate assimilation pathway. Mutant analysis has already led to the identification of genetic loci encoding a functional nitrate reduction step and is expected to lead ultimately to the identification of genes encoding nitrate uptake and nitrite reduction. Of particular significance would be identification of genes whose products contribute to regulatory networks controlling nitrogen metabolism. Recombinant DNA techniques are particularly powerful and have already allowed the molecular cloning of the genes encoding the apoprotein of nitrate reductase and nitrite reductase. These successes allow for the first lime the possibility to study directly the role of environmental factors such as type of nitrogen source (NO3 or NH4+) available to the plant, light, temperature water potential and CO2 and O2 tensions on nitrate assimilation gene expression and its regulation at the molecular level. This is an important advance since our current understanding of the regulation of nitrate assimilation is based largely on changes of activity of the component steps. The availability of mutants, cloned genes, and gene transfer systems will permit attempts to manipulate the nitrate assimilation pathway.  相似文献   

16.
17.
18.
1) A number of overlapping clones have been isolated from a Rhodobacter sphaeroides gene bank. Following conjugative gene transfer from Escherichia coli these clones restore a wild type phenotype to several mutants unable to synthesise bacteriochlorophyll. 2) The insert DNA was analysed by restriction mapping and together the clones form the basis of the first restriction map of the 45 kb photosynthetic gene cluster of Rb. sphaeroides. 3) This cluster is bounded on one side by puh A encoding the reaction centre H polypeptide and on the other by the puf operon encoding reaction centre L and M apoproteins and light harvesting LH1 and polypeptides. 4) DNA fragments from the 45 kb cluster were used to probe genomic DNA from other photosynthetic bacteria. Using heterologous hybridisation conditions, a significant degree of homology is shown between Rb. sphaeroides and these other bacteria, suggesting close evolutionary links with Rb. capsulatus in particular.  相似文献   

19.
Natural competence ofStreptococcus pneumoniae was used to locate and enrich DNA restriction fragments, biologically active for transformation of thymidine-deficient to thymidine-proficient cells. Mutations in the dihydrofolate reductase gene are accompanied by resistance to the drug trimethoprim (Tp). A 6.5-kb region of the pneumococcal chromosome encompassing the dihydrofolate reductase gene has been cloned in plasmid pLS1.Escherichia coli mutants, resistant to Tp, became fully sensitive to the drug when they harbored the recombinant plasmid. The pneumococcaldfrA mutation has been mapped within a 500-bp DNA region.  相似文献   

20.
Reactive oxidant species produced by phagocytes have been reported as being involved in the killing of Aspergillus fumigatus. Fungal superoxide dismutases (SODs) that detoxify superoxide anions could be putative virulence factors for this opportunistic pathogen. Four genes encoding putative Sods have been identified in the A. fumigatus genome: a cytoplasmic Cu/ZnSOD (AfSod1p), a mitochondrial MnSOD (AfSod2p), a cytoplasmic MnSOD (AfSod3p) and AfSod4 displaying a MnSOD C‐terminal domain. During growth, AfSOD1 and AfSOD2 were highly expressed in conidia whereas AfSOD3 was only strongly expressed in mycelium. AfSOD4 was weakly expressed compared with other SODs. The deletion of AfSOD4 was lethal. Δsod1 and Δsod2 mutants showed a growth inhibition at high temperature and a hypersensitivity to menadione whereas the sod3 mutant had only a slight growth delay at high temperature. Multiple mutations had only an additive effect on the phenotype. The triple sod1/sod2/sod3 mutant was characterized by a delay in conidial germination, a reduced conidial survival during storage overtime, the highest sensitivity to menadione and an increased sensitivity to killing by alveolar macrophage of immunocompetent mice. In spite of these phenotypes, no significant virulence difference was observed between the triple mutant and parental strain in experimental murine aspergillosis models in immunocompromised animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号