首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two novel apoB gene mutations were identified in a patient (CM) with phenotypic homozygous hypobetalipoproteinemia. Haplotype analysis of the apoB alleles from this patient and his family members revealed him to be a genetic compound for the disease. In contrast to previous studies of other hypobetalipoproteinemic patients, no clues existed as to where in the apoB gene the molecular defects resided. Therefore, it was necessary to characterize the apoB genes of the patient by sequence analysis. The apoB gene contains 29 exons and is 43 kb in length. The gene encodes a 14.1 kb mRNA and a 4563 amino acid protein. Both apoB alleles from the patient were cloned via 26 sets of polymerase chain reactions (PCR). These clones contained a total of approximately 24 kb of apoB gene sequence, including regions 5' and 3' to the coding region, 29 exons, and the intron/exon junctions. Complete DNA sequence analysis of these clones showed that each apoB allele had a mutation. In the paternal apoB allele, there was a splicing mutation. The first base of the dinucleotide consensus sequence (GT) in the 5' splice donor site in intron 5 was replaced by a T. It is likely that this base substitution interferes with proper splicing and results in the observed absence of plasma apoB. In the maternal apoB allele, there was a nonsense mutation. The first base of the Arg codon (CGA) at residue 412 in exon 10 was replaced by a T, resulting in a termination codon (TGA). The nonsense mutation is likely to terminate translation after residue 411 resulting in a severely truncated protein only 9% of the length of B-100.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Elevated levels of circulating low-density lipoprotein cholesterol (LDL-C) play a central role in the development of atherosclerosis. Mutations in proprotein convertase subtilisin/kexin type 9 (PCSK9) that are associated with lower plasma levels of LDL-C confer protection from coronary heart disease. Here, we show that four severe loss-of-function mutations prevent the secretion of PCSK9 by disrupting synthesis or trafficking of the protein. In contrast to recombinant wild-type PCSK9, which was secreted from cells into the medium within 2 hours, the severe loss-of-function mutations in PCSK9 largely abolished PCSK9 secretion. This finding predicted that circulating levels of PCSK9 would be lower in individuals with the loss-of-function mutations. Immunoprecipitation and immunoblotting of plasma for PCSK9 provided direct evidence that the serine protease is present in the circulation and identified the first known individual who has no immunodetectable circulating PCSK9. This healthy, fertile college graduate, who was a compound heterozygote for two inactivating mutations in PCSK9, had a strikingly low plasma level of LDL-C (14 mg/dL). The very low plasma level of LDL-C and apparent good health of this individual demonstrate that PCSK9 plays a major role in determining plasma levels of LDL-C and provides an attractive target for LDL-lowering therapy.  相似文献   

3.
Autosomal dominant familial hypertrophic cardiomyopathy (FHC) has variable penetrance and phenotype. Heterozygous mutations in MYH7 encoding beta-myosin heavy chain are the most common causes of FHC, and we proposed that "enhanced" mutant actin-myosin function is the causative molecular abnormality. We have studied individuals from families in which members have two, one, or no mutant MYH7 alleles to examine for dose effects. In one family, a member homozygous for Lys207Gln had cardiomyopathy complicated by left ventricular dilatation, systolic impairment, atrial fibrillation, and defibrillator interventions. Only one of five heterozygous relatives had FHC. Leu908Val and Asp906Gly mutations were detected in a second family in which penetrance for Leu908Val heterozygotes was 46% (21/46) and 25% (3/12) for Asp906Gly. Despite the low penetrance, hypertrophy was severe in several heterozygotes. Two individuals with both mutations developed severe FHC. The velocities of actin translocation (V(actin)) by mutant and wild-type (WT) myosins were compared in the in vitro motility assay. Compared with WT/WT, V(actin) was 34% faster for WT/D906G and 21% for WT/L908V. Surprisingly V(actin) for Leu908Val/Asp906Gly and Lys207Gln/Lys207Gln mutants were similar to WT. The apparent enhancement of mechanical performance with mutant/WT myosin was not observed for mutant/mutant myosin. This suggests that V(actin) may be a poor predictor of disease penetrance or severity and that power production may be more appropriate, or that the limited availability of double mutant patients prohibits any definitive conclusions. Finally, severe FHC in heterozygous individuals can occur despite very low penetrance, suggesting these mutations alone are insufficient to cause FHC and that uncharacterized modifying mechanisms exert powerful influences.  相似文献   

4.
The compound eye of worker honeybees with an inborn disturbance of intermediate metabolism of tryptophan — the snow (s) and laranja (la) mutations — has increased sensitivity to light, at least 100 times higher than normal in snow and at least 10 times higher in laranja. The maxima of the spectral sensitivity curves for the whole eye in snow are shifted into the 530 nm region and in laranja to 550 nm (comparedwith 545 nm for the wild type). The electroretinograms of s andla homozygotes are unusual in form on account of the presence of a fast additional component of the receptor potential that is absent in wild-type individuals. This may be the result of immaturity of the pigment granules in the mutants, due to the inherited absence of ommochromes. Pigment granules probably play an important role not only in the formation of the light-protective screen of the ommatidium, but also in biochemical processes considered to be responsible for the electrical passivity of the photoreceptor membrane. The possibility likewise cannot be ruled out that inherited changes in the photoreceptor membranes are connected with an imbalance between derivatives of tryptophan metabolism which participate in the generation of the cell receptor potential.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 14, No. 1, pp. 69–75, January–February, 1982.  相似文献   

5.
DNA sequencing templates of individual point mutants of thelacI target gene were amplified by polymerase chain reaction (PCR). By mixing the PCR fragments from two individual mutants in a defined ratio, samples of artificial heterozygous composition were prepared. These samples were then submitted to automated DNA sequencing. The simultaneous, visual comparison of the mixed mutant traces using a graphics program efficiently revealed all heterozygous positions. Based on the individual intensities of the heterozygous base signals the identified point mutations could be assigned to the corresponding mutants. This efficient approach doubles the sample throughput for both the sequencing reactions and the gel electrophoresis using an automated DNA sequencing system.  相似文献   

6.
7.
8.
During the past decade, mutations in several ion-channel genes have been shown to cause inherited neurological diseases. This is not surprising given the large number of different ion channels and their prominent role in signal processing. Biophysical studies of mutant ion channels in vitro allow detailed investigations of the basic mechanism underlying these 'channelopathies'. A full understanding of these diseases, however, requires knowing the roles these channels play in their cellular and systemic context. Differences in this context often cause different phenotypes in humans and mice. The situation is further complicated by the developmental effects and other secondary effects that might result from ion-channel mutations. Recent studies have described the different thresholds to which ion-channel function must be decreased in order to cause disease.  相似文献   

9.
10.
Associative overdominance caused by linked detrimental mutations   总被引:10,自引:0,他引:10  
T Ota 《Genetical research》1971,18(3):277-286
  相似文献   

11.
Mitochondrial diseases associated with mutations within mitochondrial genome are a subgroup of metabolic disorders since their common consequence is reduced metabolic efficiency caused by impaired oxidative phophorylation and shortage of ATP. Although the vast majority of mitochondrial proteins (approximately 1500) is encoded by nuclear genome, mtDNA encodes 11 subunits of respiratory chain complexes, 2 subunits of ATP synthase, 22 tRNAs and 2 rRNAs. Up to now, more than 250 pathogenic mutations have been described within mtDNA. The most common are point mutations in genes encoding mitochondrial tRNAs such as 3243A-->G and 8344T-->G that cause, respectively, MELAS (mitochondrial encephalopathy, lactic acidosis and stroke-like episodes) or MIDD (maternally-inherited diabetes and deafness) and MERRF (myoclonic epilepsy with ragged red fibres) syndromes. There have been also found mutations in genes encoding subunits of ATP synthase such as 8993T-->G substitution associated with NARP (neuropathy, ataxia and retinitis pigmentosa) syndrome. It is worth to note that mitochondrial dysfunction can also be caused by mutations within nuclear genes coding for mitochondrial proteins.  相似文献   

12.
Heterozygous activating mutations in the KCNJ11 gene encoding the pore-forming Kir6.2 subunit of the pancreatic beta cell K(ATP) channel are the most common cause of permanent neonatal diabetes (PNDM). Patients with PNDM due to a heterozygous activating mutation in the ABCC8 gene encoding the SUR1 regulatory subunit of the K(ATP) channel have recently been reported. We studied a cohort of 59 patients with permanent diabetes who received a diagnosis before 6 mo of age and who did not have a KCNJ11 mutation. ABCC8 gene mutations were identified in 16 of 59 patients and included 8 patients with heterozygous de novo mutations. A recessive mode of inheritance was observed in eight patients with homozygous, mosaic, or compound heterozygous mutations. Functional studies of selected mutations showed a reduced response to ATP consistent with an activating mutation that results in reduced insulin secretion. A novel mutational mechanism was observed in which a heterozygous activating mutation resulted in PNDM only when a second, loss-of-function mutation was also present.  相似文献   

13.
The orchestrated organization of epigenetic factors that control chromatin dynamism, including DNA methylation, histone marks, non-coding RNAs (ncRNAs) and chromatin-remodeling proteins, is essential for the proper function of tissue homeostasis, cell identity and development. Indeed, deregulation of epigenetic profiles has been described in several human pathologies, including complex diseases (such as cancer, cardiovascular and neurological diseases), metabolic pathologies (type 2 diabetes and obesity) and imprinting disorders. Over the last decade it has become increasingly clear that mutations of genes involved in epigenetic mechanism, such as DNA methyltransferases, methyl-binding domain proteins, histone deacetylases, histone methylases and members of the SWI/SNF family of chromatin remodelers are linked to human disorders, including Immunodeficiency Centromeric instability Facial syndrome 1, Rett syndrome, Rubinstein–Taybi syndrome, Sotos syndrome or alpha-thalassemia/mental retardation X-linked syndrome, among others. As new members of the epigenetic machinery are described, the number of human syndromes associated with epigenetic alterations increases. As recent examples, mutations of histone demethylases and members of the non-coding RNA machinery have recently been associated with Kabuki syndrome, Claes-Jensen X-linked mental retardation syndrome and Goiter syndrome. In this review, we describe the variety of germline mutations of epigenetic modifiers that are known to be associated with human disorders, and discuss the therapeutic potential of epigenetic drugs as palliative care strategies in the treatment of such disorders.  相似文献   

14.
Motonic dystrophy and fragile X syndrome are two genetically determined relatively common disabilities. Both are examples of a new type of mutation mechanism called unstable or dynamic mutations, triple repeats expansions or DNA amplification. Fragile X syndrome is recognized as the main cause of hereditary mental retardation and myotonic dystrophy is considered the most common muscular dystrophy of adults. This is a prospective non randomized study of clinically affected people, in order to confirm the diagnosis with molecular techniques (Southern blot and PCR) and to perform cascade screening of the rest of the family to offer them adequate genetic counseling. We were able to corroborate the initial diagnosis in most clinical cases of myotonic dystrophy, but in the cases of mental retardation more than half studies were negative for fragile X syndrome, stressing the difficulties encountered by medical practitioners to diagnose this syndrome. The reasons for this are several; probable the main culprit is the subtle and unspecific clinical picture affected individuals exhibit, particularly children before puberty. Cascade screening, genetic counseling and selective abortion are the only tools available to prevent these disabling diseases for the moment.  相似文献   

15.
Myopathies caused by three mutations of the mouse   总被引:1,自引:0,他引:1  
Our studies indicate that comparison of the three hereditary myopathies in mice, dy and dy2J, and myd, may provide clues for the fact that "muscular dystrophy" of man defines a group of disorders having both similar and individual characteristics. We have previously suggested that multiple or pleiotropic gene effects as well as interaction of genes may occur not only in mice but also in man. In addition, more than one gene may control or influence pathways of muscle metabolism.  相似文献   

16.
Summary We report here the identification of a duplication within the first intron of the gene encoding human alanine:glyoxylate aminotransferase (AGT); this duplication is closely linked to two point mutations associated with peroxisome-to-mitochondrion mistargeting of AGT in primary hyperoxaluria type 1 (PH1) patients. Polymerase chain reaction amplification of regions of the AGT gene including the insertion site from individuals heterozygous for this duplication, produces allele-specific fragments of different sizes. We have taken advantage of this to identify a nonsense mutation within a non-expressed allele of a compound heterozygote PH1 patient with mitochondrial AGT.  相似文献   

17.
Viral RNA-dependent RNA polymerases exhibit great sequence diversity. Only six core amino acids are conserved across all polymerases of positive-strand RNA viruses of eukaryotes. While exploring the function of one of these completely conserved residues, asparagine 297 in the prototypic poliovirus polymerase 3D(pol), we identified three viable mutants with noncanonical amino acids at this conserved position. Although asparagine 297 could be replaced by glycine or alanine in these mutants, the viruses exhibited Mn(2+)-dependent RNA replication and viral growth. All known RNA polymerases and replicative polymerases of bacterial, eukaryotic, and viral organisms are thought to be magnesium dependent in vivo, and therefore these mutant polioviruses may represent the first viruses with a requirement for an alternative polymerase cation. These results demonstrate the extreme functional flexibility of viral RNA-dependent RNA polymerases. Furthermore, the finding that strictly conserved residues in the nucleotide binding pocket of the polymerase can be altered in a manner that supports virus production suggests that drugs targeting this region of the enzyme will still be susceptible to the problem of drug-resistant escape mutants.  相似文献   

18.
Summary Mutants were analyzed biochemically and genetically in which restriction of translational misreading by ribosomes containing an altered L6 protein is relieved. Amongst 100 such strains eight possessed an altered S4 and two a mutant S5 protein. The protein-chemical type of L6 mutation seems to influence the kind of S4 mutant form selected. Also, only a few types of S4 ram mutations are obtained and they are different from those usually found amongst suppressors of streptomycin-dependent (SmD) strains. The S4 mutations selected are able to reduce the level of streptomycin-resistance of strA1 or strA40 strains and they confer extreme hypersensitivity to aminoglycosides when present alone. On the other hand, S4 mutations from SmD suppressor strains only weakly reverse L6 restriction. The results imply that control of translational fidelity is an intersubunit function and that protein L6 (an interface protein) cooperates with 30S proteins by directly or indirectly determining parameters involved in aminoacyl-tRNA recognition.  相似文献   

19.
20.
The defective gene DYS, which is responsible for familial dysautonomia (FD) and has been mapped to a 0.5-cM region on chromosome 9q31, has eluded identification. We identified and characterized the RNAs encoded by this region of chromosome 9 in cell lines derived from individuals homozygous for the major FD haplotype, and we observed that the RNA encoding the IkappaB kinase complex-associated protein (IKAP) lacks exon 20 and, as a result of a frameshift, encodes a truncated protein. Sequence analysis reveals a T-->C transition in the donor splice site of intron 20. In individuals bearing a minor FD haplotype, a missense mutation in exon 19 disrupts a consensus serine/threonine kinase phosphorylation site. This mutation results in defective phosphorylation of IKAP. These mutations were observed to be present in a random sample of Ashkenazi Jewish individuals, at approximately the predicted carrier frequency of FD. These findings demonstrate that mutations in the gene encoding IKAP are responsible for FD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号