首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human beta 2 adrenergic receptor is a type IIIb membrane protein. It has a putative seven-transmembrane topology but lacks an amino-terminal cleavable signal sequence. The mechanism by which the amino terminus of the beta 2 receptor is translocated across the endoplasmic reticulum membrane is unknown. Furthermore, it is not known if translocation as a type IIIb protein is essential for the proper folding. Our studies indicate that conversion of beta 2 receptor from a type IIIb to a type IIIa membrane protein by introducing an NH2-terminal cleavable signal sequence enhances translocation of the receptor into the endoplasmic reticulum membrane, thereby facilitating expression of functional receptor.  相似文献   

2.
The vaccinia virus (VV) A17L gene encodes a 21- to 23-kDa virion component that forms a stable complex with the 14-kDa envelope protein (A27L gene). In a previous report, we described the construction of a VV recombinant, VVindA17L, in which the expression of the A17L gene is inducibly regulated by isopropyl-beta-D-thiogalactoside (IPTG). We demonstrated that shutoff of the A17L gene results in a blockade of virion morphogenesis at a very early stage (D. Rodríguez, M. Esteban, and J. R. Rodríguez, J. Virol. 69:4640-4648, 1995). In the present study, we show that virus growth is restored if the inducer is provided not later than 6 h postinfection. Immunofluorescence and immunoelectron microscopy analysis of VVindA17L-infected cells revealed that in the absence of the 21- to 23-kDa protein, the 14-kDa protein is distributed throughout the cytoplasm. After IPTG addition, the 14-kDa protein can be detected around viral factories and immature virions; at later times, it localizes in the external membranes of intracellular mature virions. Immunoelectron microscopy with anti-21- to 23-kDa antibodies showed that soon after induction, the protein accumulates in membranes of the rough endoplasmic reticulum and in the nuclear envelope. With time, the protein localizes in viral crescents and subsequently associates to the membranes of immature and intracellular mature virions. These results are consistent with a model in which the 21- to 23-kDa protein would be synthesized at the endoplasmic reticulum, from where the protein could be translocated to the membranes of the intermediate compartment to generate the precursors of the viral membranes. Also, these results argue that 14-kDa envelope protein becomes posttranslationally associated to viral membranes through its interaction with the 21-kDa protein.  相似文献   

3.
J Toyn  A R Hibbs  P Sanz  J Crowe    D I Meyer 《The EMBO journal》1988,7(13):4347-4353
Mutants defective in the ability to translocate proteins across the membrane of the endoplasmic reticulum were selected in Trp- Saccharomyces cerevisiae on the basis of their ability to retain a fusion protein in the cytosol. The fusion comprised the prepro region of prepro-alpha-factor (MF alpha 1) N-terminal to phosphoribosyl anthranilate isomerase (TRP1). The first of the protein translocation mutations, called ptl1, results in temperature-sensitivity of growth and protein translocation. At the non-permissive temperature, precursors to several secretory proteins accumulate in the cytosol. Using this mutant, we demonstrate that the prepro-carboxypeptidase Y that had been accumulated in the cytosol at the non-permissive temperature could be post-translationally translocated into the endoplasmic reticulum when cells were returned to the permissive temperature. This result indicates that post-translational translocation of preproteins across endoplasmic reticulum membranes can occur in vivo. We have also determined that the temperature-sensitive component is membrane-associated in ptl1, and that the membranes derived from this strain show a reversible temperature-sensitive translocation phenotype in vitro.  相似文献   

4.
Chlamydia trachomatis (Ct) is an obligate intracellular human pathogen that multiplies within a parasitophorous vacuole called an inclusion. We report that the location of several host-cell proteins present in the cytosol, the nucleus, and membranes was altered during Ct development. The acyl-CoA synthetase enzyme ACSL3 and the soluble acyl-CoA binding protein ACBD6 were mobilized from organelle membranes and the nucleus, respectively, into the lumen of the inclusion. The nuclear protein ZNF23, a pro-apoptosis factor, was also translocated into the inclusion lumen. ZNF23, among other proteins, might be targeted by Ct to inhibit host cell apoptosis, thereby enabling bacterial survival. In contrast, the acyl-CoA:lysophosphatidylcholine acyltransferase LPCAT1, an endoplasmic reticulum membrane protein, was recruited to the inclusion membrane. The coordinated action of ACBD6, ACSL3 and LPCAT1 likely supports remodeling and scavenging of host lipids into bacterial-specific moieties essential to Ct growth. To our knowledge, these are the first identified host proteins known to be intercepted and translocated into the inclusion.  相似文献   

5.
Recent advances have led to considerable convergence in ideas of the way topogenic sequences act to translocate proteins across various intracellular membranes (Table 2). Whereas co-translational translocation and processing were previously considered the norm at the endoplasmic reticulum membrane, several instances of post-translational translocation into endoplasmic reticulum microsomes in vitro have now been described. However, it must be noted that post-translational translocation in vitro is much less efficient than when endoplasmic reticulum membranes are present during translation, and it is possible that in the intact cell translocation occurs during translation. Movement of proteins into chloroplasts and mitochondria occurs after translation. When translocation is post-translational, proteins may perhaps traverse the membrane as folded domains, and the conformational effects of topogenic sequences on these domains may be as envisaged in Wickner's 'membrane-trigger hypothesis'. Both signal and transit sequences possess amphipathic structures which are capable of interacting with phospholipid bilayers, and these interactions may disturb the bilayer sufficiently to allow entry of the following domains of protein. There is increasing evidence that GTP is required to bind ribosomes and their associated nascent chains to the endoplasmic reticulum membrane. Precisely how the cell's energy is applied to achieve translocation is not clear, but one possibility at the endoplasmic reticulum is that a GTP-hydrolysing transducing mechanism may exist to couple signal sequence receptor binding to movement of the nascent chain across the membrane. Electrochemical gradients are required for protein movement to the mitochondrial inner membrane and across the bacterial inner membrane. Cytoplasmic factors such as SRP, the secA gene product or a 40 kDa protein (for mitochondrial precursors) may act by binding to topogenic sequences and preventing precursor proteins as they are translated from folding into forms which cannot be translocated. Specificity in the cell may be achieved both by targetting interactions between these cytoplasmic factors and their receptors located in target membranes, and also by specific binding of the topogenic sequences to specific proteins integrated into the target membranes. Possible candidates for the latter are the protein of microsomal membranes that reacts with a photoreactive signal peptide to give a 45 kDa complex (Fig. 1), the secY gene product of the bacterial inner membrane, and receptors on the outer membranes of chloroplasts and mitochondria. Whether these aid translocation as well as recognition is not clear.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Mutations gef1, stp22, STP26, and STP27 in Saccharomyces cerevisiae were identified as suppressors of the temperature-sensitive alpha-factor receptor (mutation ste2-3) and arginine permease (mutation can1(ts)). These suppressors inhibited the elimination of misfolded receptors (synthesized at 34 degrees C) as well as damaged surface receptors (shifted from 22 to 34 degrees C). The stp22 mutation (allelic to vps23 [M. Babst and S. Emr, personal communication] and the STP26 mutation also caused missorting of carboxypeptidase Y, and ste2-3 was suppressed by mutations vps1, vps8, vps10, and vps28 but not by mutation vps3. In the stp22 mutant, both the mutant and the wild-type receptors (tagged with green fluorescent protein [GFP]) accumulated within an endosome-like compartment and were excluded from the vacuole. GFP-tagged Stp22p also accumulated in this compartment. Upon reaching the vacuole, cytoplasmic domains of both mutant and wild-type receptors appeared within the vacuolar lumen. Stp22p and Gef1p are similar to tumor susceptibility protein TSG101 and voltage-gated chloride channel, respectively. These results identify potential elements of plasma membrane quality control and indicate that cytoplasmic domains of membrane proteins are translocated into the vacuolar lumen.  相似文献   

7.
Synthesis and sorting of lipids are essential events for membrane biogenesis and its homeostasis. Ceramide is synthesised at the endoplasmic reticulum (ER), and translocated to the Golgi compartment for conversion to sphingomyelin (SM). We have recently identified a key factor (named CERT) for ceramide trafficking. In this short review, I summarise recent advances in molecular mechanisms of intracellular transport of ceramide, focusing on our genetic and biochemical approaches to this issue.  相似文献   

8.
The E3 region of adenovirus codes for several membrane proteins, most of which are involved in immune evasion and prevention of host cell apoptosis. We explored the topology and targeting mechanisms of E3-6.7K, the most recently described member of this group, by using an in vitro translation system supplemented with microsomes. Here, we present evidence that E3-6.7K, one of the smallest signal-anchor proteins known, translocates across the membrane of the endoplasmic reticulum in a posttranslational, ribosome-independent, yet ATP-dependent manner, reminiscent of the translocation of tail-anchored proteins. Our analysis also demonstrated that E3-6.7K could achieve several distinct topological fates. In addition to the previously postulated type III orientation (N-luminal/C-cytoplasmic, termed NtmE3-6.7K), we detected a tail-anchored form adopting the opposite orientation (N-cytoplasmic/C-luminal, termed CtmE3-6.7K) as well as the possibility of a fully translocated form (N and C termini are both translocated, termed NCE3-6.7K). Due to the translocation of a positively charged domain, both the CtmE3-6.7K and NCE3-6.7K topologies of E3-6.7K constitute exceptions to the "positive inside" rule. The NtmE3-6.7K and NCE3-6.7K are the first examples of posttranslationally translocated proteins in higher eukaryotes that are not tail anchored. Distinct topological forms were also found in transfected cells, as both N and C termini of E3-6.7K were detected on the extracellular surface of transfected cells. The demonstration of unexpected topological forms and translocation mechanisms for E3-6.7K defies conventional thinking about membrane protein topogenesis and advises that both the mode of targeting and topology of signal-anchor proteins should be determined experimentally.  相似文献   

9.
In Dictyostelium discoideum the lysosomal enzyme alpha-mannosidase is initially synthesized in vivo as a 140,000 Mr protein which is subsequently processed into two mature acidic glycoproteins of 60,000 and 58,000 Mr. To investigate the initial events involved in the synthesis of this protein, mRNA isolated from growing cells was translated in vitro and the resulting protein products were immunoprecipitated with antibodies prepared against the purified enzyme. Messenger RNA prepared from membrane-bound but not free polysomes directed the synthesis of an immunoprecipitable 120K protein that was identified as the alpha-mannosidase primary translation product by a variety of criteria. Translation in vitro in the presence of dog pancreas microsomes resulted in the conversion of the 120K primary translation product to a 140K form. This 140K species was not accessible to added trypsin under conditions preserving membrane integrity, suggesting it is sequestered in the lumen of the endoplasmic reticulum following synthesis. Treatment of either the in vitro modified or cellular 140K alpha-mannosidase precursors with endoglycosidase H resulted in the appearance of proteins 2K larger than the primary translation product. The pulse-labeled cellular precursor and the in vitro processed form have similar isoelectric points as revealed by two-dimensional gel electrophoresis. These results imply that the precursor is N-glycosylated in the endoplasmic reticulum possibly without removal of the signal sequence and that the majority of acidic modifications are added late in the post-translational pathway.  相似文献   

10.
A non-hydrophobic sequence that contributes to the biogenesis of a transmembrane protein is termed a stop-transfer effector (STE). To examine the mechanism of STE-mediated stop-transfer, a series of fusion proteins were constructed containing variants of a putative STE from murine IgM fused to an otherwise translocated hydrophobic sequence. Unexpectedly, the fraction of molecules adopting transmembrane topology was insensitive to many amino acid substitutions within the STE sequence but varied directly with the number of negative charges. Furthermore, when present at the amino terminus of a reporter, mutants were observed that adopted type I (amino terminus lumenal) and type II (amino terminus cytoplasmic) transmembrane topologies, demonstrating that the STE sequence can be located at either side of the endoplasmic reticulum membrane. Our results suggest that recognition of a broad structural feature formed primarily by negatively charged residues within the STE halts translocation and triggers membrane integration, even when the negative charges end up on the cytoplasmic side of the membrane. Since functional STE sequences photocross-link to two membrane proteins not previously identified at the translocon, these unique proteins are presumably involved in recognizing STE sequences and/or facilitating STE function.  相似文献   

11.
Inositol 1,4,5-triphosphate receptors (Insp(3)Rs) and ryanodine receptors (ryRs) act as cationic channels transporting calcium ions from the endoplasmic reticulum to cytosol by forming tetramers and are proteins localized to the endoplasmic reticulum (ER). Despite the absence of classical calcium-binding motifs, calcium channeling occurs at the transmembrane domain. We have investigated putative calcium binding motifs in these sequences. Prediction methods indicate the presence of six transmembrane helices in the C-terminal domain, one of the three domains conserved between Insp(3)R and ryR receptors. The recently identified crystal structure of the K(+) channel, which also forms tetramers, revealed that two transmembrane helices, an additional pore helix and a selectivity filter are responsible for selective K(+) ion channeling. The last three TM helices of Insp(3)R and ryR are particularly well conserved and we found analogous pore helix and selectivity filter motif in these sequences. We obtained a three-dimensional structural model for the transmembrane tetramer by extrapolating the distant structural similarity to the K(+) channels.  相似文献   

12.
Presence of cytosolic protein aggregates and membrane damage are two common attributes of neurodegenerative diseases. These aggregates delay degradation of non‐translocated protein precursors leading to their persistence and accumulation in the cytosol. Here, we find that cells with intracellular protein aggregates (of cytosolic prion protein or huntingtin) destabilize the endoplasmic reticulum (ER) morphology and dynamics when non‐translocated protein load is high. This affects trafficking of proteins out from the ER, relative distribution of the rough and smooth ER and three‐way junctions that are essential for the structural integrity of the membrane network. The changes in ER membranes may be due to high aggregation tendency of the ER structural proteins—reticulons, and altered distribution of those associated with the three‐way ER junctions—Lunapark. Reticulon4 is seen to be enriched in the aggregate fractions in presence of non‐translocated protein precursors. This could be mitigated by improving signal sequence efficiencies of the proteins targeted to the ER. These were observed using PrP variants and the seven‐pass transmembrane protein (CRFR1) with different signal sequences that led to diverse translocation efficiencies. This identifies a previously unappreciated consequence of cytosolic aggregates on non‐translocated precursor proteins—their persistent presence affects ER morphology and dynamics. This may be one of the ways in which cytosolic aggregates can affect endomembranes during neurodegenerative disease.  相似文献   

13.
Studies on the Cell-Free Biosynthesis of CNS Membrane Proteins   总被引:2,自引:2,他引:0  
Abstract: The biosynthesis of CNS membrane proteins was studied in cell-free systems containing membrane-bound polysomes (rough endoplasmic reticulum; RER) or free polysomes from rat forebrain. In previous studies of CNS membrane proteins using two-dimensional gel electrophoretic analysis, five proteins (mol. wt.-pI: 75K 5.4, 68K 5.6, 61K 5.1, 58K 5.1, and 36K 5.6) were found in ceil membrane fractions including preparations enriched in RER, smooth endoplasmic reticulum, and plasma membranes. One of these proteins, 68K 5.6, was also present in cytosol and comigrated with a microtubule-associated protein. In our present study, cell-free systems containing RER were found to synthesize the 75K 5.4, 61K 5.1, and 58K 5.1 proteins. A protein, 34K 5.65, similar (but not identical) to the 36K 5.6 protein was also synthesized. After cell-free synthesis, the 75K 5.4 and 58K 5.1 proteins could be purified by concanavalin A affinity chromatography. Of the five common membrane proteins previously identified, only the 68K 5.6 protein was synthesized by the free polysome population. The free polysomes were also found to synthesize cyclic AMP binding proteins at 48K and 54K, known from previous studies to be present in both cytosol and plasma membrane fractions in mammalian brain tissue. In conclusion, RER synthesized proteins found exclusively in CNS membrane fractions, whereas free polysomes synthesized those proteins found in both soluble and membrane compartments.  相似文献   

14.
During synthesis in vivo the castor bean lectin precursors initially appear in the endoplasmic reticulum as a group of core glycosylated polypeptides of relative molecular mass 64 000-68 000. Pretreatment of intact castor bean endosperm tissue with tunicamycin partially inhibits the cotranslational core glycosylation step and results in the accumulation of a single sized unglycosylated precursor polypeptide of relative molecular mass 59 000. The glycosylated precursors in the endoplasmic reticulum were enzymically converted to the 59 000-Mr form by incubation with endoglucosaminidase H. Intracellular transport of the glycosylated lectin precursors from the endoplasmic reticulum to a denser vesicle fraction was accompanied by modifications to the oligosaccharide moieties which conferred resistance to the action of endoglucosaminidase H. The post-translational addition of fucose to the carbohydrate chain was identified as one of the oligosaccharide modification steps. Fucose addition was catalysed by a glycosyltransferase associated with a smooth-surfaced membrane fraction which was distinct from the endoplasmic reticulum and which was tentatively identified as the Golgi apparatus. Glycosylation was not essential for intracellular transport of the lectin precursors: unglycosylated precursor synthesized in the presence of tunicamycin gave rise to unglycosylated lectin subunits in the protein bodies.  相似文献   

15.
The association of Sindbis virus proteins with cellular membranes during virus maturation was examined by utilizing a technique for fractionating the membranes of BHK-21 cells into three subcellular classes, which were enriched for rough endoplasmic reticulum, smooth endoplasmic reticulum, and plasma membrane. Pulse-chase experiments with wild-type (strain SVHR) virus-infected cells showed that virus envelope proteins were incorporated initially into membranes of the rough endoplasmic reticulum and subsequently migrated to the smooth and plasma membrane fractions. Large amounts of capsid protein were associated with the plasma membrane fraction even at the earliest times postpulse, and relatively little was found associated with the other membranes, suggesting a rapid and preferential association of nucleocapsids with the plasma membrane. We also examined the intracellular processing of the proteins of two temperature-sensitive Sindbis virus mutants in pulse-chase experiments at the nonpermissive temperature. Labeled virus proteins of mutant ts-20 (complementation group E) first appeared in the rough endoplasmic reticulum and were then transported to the smooth and plasma membrane fractions, as in wild-type (strain SVHR) virus-infected cells. In cells infected with ts-23 (complementation group D), the pulse-labeled virus proteins appeared initially in the rough membrane fraction and were transported to the smooth membrane fraction, but only limited amounts reached the plasma membrane. Thus, in ts-23-infected cells, the transport of the virus-encoded proteins from the smooth membranes seemed to be defective. In both ts-20- and ts-23-infected cells the envelope precursor polypeptide PE2 was not processed to E2, and no label was incorporated into free virus at the nonpermissive temperature.  相似文献   

16.
The endoplasmic reticulum from Neurospora crassa was identified by monitoring the activity of the putative enzyme marker phosphatidylcholine glyceride transferase. After differential centrifugation of a cell homogenate, phosphatidylcholine glyceride transferase activity initially copurified with plasma membrane H+-ATPase. However, isopycnic centrifugation of the whole-cell homogenate on a linear sucrose gradient separated the two enzyme activities into different fractions. The lighter membrane fraction exhibited characteristics that have been associated with the endoplasmic reticulum in other organisms: (i) the inclusion of magnesium caused this light membrane fraction to shift to a higher density on the gradient; (ii) it was highly enriched in cytochrome c reductase, an endoplasmic reticulum marker in other systems; and (iii) the morphology of the light fraction with and without added magnesium was clearly distinguishable from that of the plasma membrane fraction by electron microscopy. A reinvestigation of the location of chitin synthetase confirmed its association with the plasma membrane fraction even after separation of the lighter fractions.  相似文献   

17.
We have purified a glycosylated, membrane-spanning protein of relative molecular mass approximately 34,000 (Mr approximately 34 K) from canine microsomes that appears to be essential for protein translocation across the endoplasmic reticulum (ER) as shown by the inhibitory action of antibodies directed against it and of monovalent Fab-fragments produced from them. The ER membrane contains at least as many molecules of the 34 K membrane protein as bound ribosomes. The protein can be detected immunologically in tissues of various organisms, indicating an universal function.  相似文献   

18.
1. Antibodies have been prepared to rat hepatic cytochrome P-450 and their specificity demonstrated. These antibodies have been used to investigate the biosynthesis of cytochrome P-450 in vitro and in situ in various components of the endoplasmic reticulum. 2. A preparation of heavy rough endoplasmic reticulum translocates proteins newly biosynthesized in vitro vectorially into the luminal space and these are released by low concentrations of deoxycholate. A significant proportion of the radioactivity found in this released fraction is incorporated into cytochrome P-450. 3. Following incorporation of [14C]leucine by perfused rat liver, radioactively labelled cytochrome P-450 can be found in the intrascisternal content of heavy rough, light rough and smooth endopalsmic reticulum and also in a solublized Golgi preparation. 4. We suggest that at least part of the newly biosynthesized cytochrome P-450 is translocated into the intracisternal space of the rough endoplasmic and then passes through the other components of the endoplasmic reticulum before insertion at its ultimate membrane locus.  相似文献   

19.
The cytochrome P450 2C1 N-terminal signal anchor sequence mediates direct retention of the protein in the endoplasmic reticulum and consists of a hydrophobic transmembrane domain, residues 3-20, followed by a hydrophilic linker, residues 21-28. Fusions of the N-terminal 21 or 28 amino acids of P450 2C1 to green fluorescent protein resulted in endoplasmic reticulum localization of the chimera in transfected cells. Disruption of microtubules by nocodazole treatment resulted in redistribution into a punctate pattern for the 1-21, but not for the 1-28, chimera indicating that the linker was preventing transport from the endoplasmic reticulum but was not required for retrieval to the endoplasmic reticulum from the pre-Golgi compartment. In the 1-28 chimera, mutations of residues 21-23 (KQS) in the linker resulted in redistribution of the chimera after nocodazole treatment. Mutations in the transmembrane domain affected both direct retention in the endoplasmic reticulum and retrieval from the pre-Golgi compartment, and although structural requirements for each process are distinct, in both cases the arrangement of amino acids and distribution of hydrophobicity are critical. In contrast, the linker region exhibits a sequence-specific requirement for direct retention in the endoplasmic reticulum.  相似文献   

20.
Prepro-alpha-factor has a cleavable signal sequence   总被引:11,自引:0,他引:11  
MAT alpha Saccharomyces cerevisiae secrete a small peptide mating pheromone termed alpha-factor. Its precursor, prepro-alpha-factor, is translocated into the endoplasmic reticulum and glycosylated at three sites. The glycosylated form is the major product in a yeast in vitro translation/translocation system. However, there is another translocated, nonglycosylated product that contains a previously unidentified modification. Contrary to previous results suggesting that the signal sequence of prepro-alpha-factor is not cleaved, amino-terminal radiosequencing has identified this product as prepro-alpha-factor without its signal sequence, that is, pro-alpha-factor. The translocated, glycosylated proteins are also processed by signal peptidase. Moreover, we have found that both purified eukaryotic and prokaryotic signal peptidase can process prepro-alpha-factor. Experiments using a yeast secretory mutant (sec 18) blocked in transport from the endoplasmic reticulum to the Golgi indicate that the protein is also cleaved in vivo. Finally, characterization of the Asn-linked oligosaccharide present on pro-alpha-factor in the yeast in vitro system by use of specific glucosidase and mannosidase inhibitors indicates that they have had the three terminal glucoses and probably one mannose removed. Therefore they most likely consist of Man8GlcNAc2 structures, identical to those found in the endoplasmic reticulum in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号