首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The relationships of the halocline to both water quality and phytoplankton composition in Lake Obuchi, a shallow brackish lake in northern Japan, were investigated from April 2001 to December 2004. The halocline in this lake became stronger in summer (July–September, mean maximum density gradient 4.3–5.8 ρtm−1) but weaker in spring, fall, and winter (1.9–3.3 ρtm−1). Although the difference in water quality between the upper and lower layers separated by the halocline was high in summer, nutrients (PO43−-P and NH4+-N) were eluted from the bottom sediment as levels of dissolved oxygen decreased in the bottom layer because of the strong stratification caused by the halocline formed over the long term. Moreover, phytoplankton taxa composition also differed between the upper and lower layers in summer, but was similar in other seasons. The dominant phytoplankton taxa in the upper layer in summer were Skeletonema costatum and Cyclotella spp., whereas in the lower layer, Gymnodinium spp. (Dinophyceae) and Chlorophyceae, which prefer eutrophic and low dissolved oxygen conditions, dominated. This suggests that the halocline was related to differentiations in both water quality and ecosystem components between the upper and lower layers in the brackish lake water.  相似文献   

2.
The Broadwater of the Myall Lakes system is highly susceptible to cyanobacterial bloom formation after heavy rain events. During prolonged low flow periods, saline intrusion from the lower Myall River increases salinity levels and effectively controls some bloom forming algal taxa. To assess the effect of low-to-moderate increases in salinity (up to 4 ppt) on phytoplankton chlorophyll a, cell abundance, diversity and assemblage structure, salinity enhancement experiments were conducted on Broadwater samples collected in June 2005 (salinity 1.5 ppt), October 2005 (4 ppt) and January 2006 (12 ppt). Natural phytoplankton assemblages were incubated in the laboratory for 10 days, under different treatments of salinity (no addition, +2 ppt, + 4 ppt) and nutrient conditions (no addition, excess N+P). The greatest impact of salinity enhancement in N+P enriched samples was observed in June (1.5–5.5 ppt); chlorophyll a was significantly reduced in samples with the highest salinity treatment, and the taxon most negatively affected by an elevation in salinity to 5.5 ppt was Anabaena circinalis. Taxonomic richness and diversity (Shannon–Wiener index) were unexpectedly significantly higher at 5.5 ppt than at 1.5 ppt. This result, in part, explains the observed significant differences in phytoplankton assemblage structure over this salinity range. In October, the main effect of elevating salinity levels from 4 ppt to 8 ppt was a reduction in the abundance of chlorophytes, particularly Scenedesmus. Phytoplankton samples that were collected when the lake salinity level was 12 ppt were little affected by salinity increases of 2 ppt and 4 ppt, most likely because field samples were already relatively high in salt content. We suggest that further investigations focus on phytoplankton responses to salinity under a range of nutrient regimes that are common to coastal lakes.  相似文献   

3.
Phyto/zooplankton composition, chlorophyll a, and some water quality parameters were investigated in a spring-originated pond in Central Anatolia between February 2001 and January 2002. Water temperature, pH, dissolved oxygen, Secchi depth, total and calcium hardness, nitrate-nitrogen, nitrite-nitrogen, ammonia-nitrogen, total phosphorus, and soluble reactive phosphorus levels were analyzed. A total of 49 species belonging to Bacillariophyceae, Chlorophyceae, Cyanophyceae, Cryptophyceae, and Dinophyceae were identified. The highest phytoplankton abundance was found in August, whereas the lowest was determined in January. Phytoplankton abundance increased from February to August and declined in the following months. The Bacillariophyceae were dominant in the phytoplankton community. A total of 21 species of Rotifera, 2 species of Cladocera, and 1 genus of Copepoda were found. The zooplankton community was dominated by Rotifera. The highest abundance of zooplankton was recorded in July and the lowest value in November. The annual mean concentration of chlorophyll a was measured as 1.90 μg l−1. In spite of these eutrophic levels (mean values of total phosphorus and nitrate-nitrogen: 0.069 mg P l−1 and 0.68 mg N l−1), phytoplankton cannot grow satisfactorily because of the short water retention time (0.6 day−1). The shallowness of the pond together with the low phytoplankton biomass and the high concentrations of nutrients are discussed.  相似文献   

4.
High levels of genetic variation enable species to adapt to changing environments and provide plant breeders with the raw materials necessary for artificial selection. In the present study, six AFLP primer pairs were used to assess the genetic diversity of Desmodium triflorum (L.) DC. from 12 populations in South China. A high percentage of polymorphic loci (P = 76.16%) and high total gene diversity (H T = 0.310) were found, indicating that the genetic diversity of D. triflorum is high at the species level. Genetic diversity was also relatively high at the population level (P = 55.85%, H e = 0.230). The coefficient of gene differentiation among populations (G ST) was 0.255, indicating that while most genetic diversity resided within populations, there was also considerable differentiation among populations. AMOVA also indicated 24.29% of the total variation to be partitioned among populations (ΦST = 0.243). UPGMA clustering analysis based on genetic distances showed that the 12 populations could be separated into three subgroups: an eastern, a western, and a central-southern subgroup. However, a Mantel test revealed no significant correlation (r = 0.286, p = 0.983) between the geographical distances and genetic distances separating these populations; mountain barriers to gene flow and human disturbance may have confounded these correlations. The present study has provided some fundamental genetic data that will be of use in the exploitation of D. triflorum.  相似文献   

5.
We examined the relationship between body temperature (Tb) of free flying pigeons and ambient water vapor pressure and temperature. Core or near core Tb of pigeons were measured using thermistors inserted into the cloaca and connected to small transmitters mounted on the tail feathers of free flying tippler pigeons (Columba livia). Wet and dry bulb temperatures were measured using modified transmitters mounted onto free-flying pigeons. These allowed calculation of relative humidity and hence water vapor pressure at flight altitudes. Mean Tb during flight was 42.0 ± 1.3 °C (n = 16). Paired comparisons of a subset of this data indicated that average in-flight Tb increased significantly by 1.2 ± 0.7 °C (n = 7) over that of birds at rest (t = −4.22, P < 0.05, n = 7) within the first 15 min of takeoff. In addition, there was a small but significant increase in Tb with increasing ambient air (Ta) when individuals on replicate flights (n = 35) were considered. Inclusion of water vapor pressure into the regression model did not improve the correlation between body temperature and ambient conditions. Flight Tb also increased a small (0.5 °C) but significant amount (t = 2.827, P < 0.05, n = 8) from the beginning to the end of a flight. The small response of Tb to changing flight conditions presumably reflects the efficiency of convection as a heat loss mechanism during sustained regular flight. The increase in Tb on landing that occurred in some birds was a probable consequence of a sudden reduction in convective heat loss. Accepted: 2 February 1999  相似文献   

6.
Theobroma grandiflorum (cupuassu) is an important fruit tree native to the Brazilian Amazon. Establishing the genetic diversity and structure of populations is critical to define long-term strategies for cupuassu conservation presently threatened by rapid deforestation. Three natural populations collected at the putative center of diversity, three groups of accessions established at a germplasm collection, and one derived from commercial plantings were analyzed. The genetic diversity was assessed using 21 polymorphic microsatellite loci originally developed for Theobroma cacao, disclosing a total of 113 alleles. The estimated genetic diversity parameters averaged over cupuassu populations (A = 3.53 alleles per locus; H e = 0.426; H o = 0.346) were lower than the values reported for other Neotropical tree species. The three natural populations presented a positive and significant fixation index (f), ranging from 0.133 to 0.234. Cupuassu apparently adhered to a general pattern of genetic diversity structure of some Neotropical tree species occurring at low densities, with a low intrapopulation genetic diversity and important levels of endogamy, possibly due to biparental inbreeding derived from the presence of spatial genetic structure in the populations. A high level of genetic divergence was detected among the natural populations (θ p = 0.301), a strong differentiation caused by limited gene flow, and suggesting that human interference in spreading and/or stimulating plantings might have had a smaller effect than expected. The approximate location of the T. grandiflorum center of diversity could not be confirmed by analyzing natural populations from the putative region.  相似文献   

7.
In order to develop a practical approach for fast and non-destructive assay of total fatty acid (TFA) and pigments in the biomass of the marine microalga Nannochloropsis sp. changes in TFA, chlorophyll, and carotenoid contents were monitored in parallel with the cell suspension absorbance. The experiments were conducted with the cultures grown under normal (complete nutrient f/2 medium at 75 μmol PAR photons/(m2 s)) or stressful (nitrogen-lacking media at 350 μmol PAR photons/(m2 s)) conditions. The reliable measurement of the cell suspension absorbance using a spectrophotometer without integrating sphere was achieved by deposition of cells on glass–fiber filters in the chlorophyll content range of 3–13 mg/L. Under stressful conditions, a 30–50% decline in biomass and chlorophyll, retention of carotenoids and a build-up of TFA (15–45 % of dry weight) were recorded. Spectral regions sensitive to widely ranging changes in carotenoid-to-chlorophyll ratio and correlated changes of TFA content were revealed. Employing the tight inter-correlation of stress-induced changes in lipid metabolism and rearrangement of the pigment apparatus, the spectral indices were constructed for non-destructive assessment of carotenoid-to-chlorophyll ratio (range 0.3–0.6; root mean square error (RMSE) = 0.03; r 2 = 0.93) as well as TFA content of Nannochloropsis sp. biomass (range 5.0–45%; RMSE = 3.23 %; r 2 = 0.89) in the broad band 400–550 nm normalized to that in chlorophyll absorption band (centered at 678 nm). The findings are discussed in the context of real-time monitoring of the TFA accumulation by Nannochloropsis cultures under stressful conditions.  相似文献   

8.
The amount, chemical composition, and source of dissolved organic carbon (DOC), together with in situ ultraviolet (UV-B) attenuation, were measured at 1–2 week intervals throughout the summers of 1999, 2000, and 2001 at four sites in Rocky Mountain National Park (Colorado). Eight additional sites, four in Sequoia and Kings Canyon National Park/John Muir Wilderness (California) and four in Glacier National Park (Montana), were sampled during the summer of 2000. Attenuation of UV-B was significantly related to DOC concentrations over the three years in Rocky Mountain (R2 = 0.39, F = 25.71, P < 0.0001) and across all parks in 2000 (R2 = 0.44, F = 38.25, P < 0.0001). The relatively low R2 values, however, reflect significant temporal and spatial variability in the specific attenuation per unit DOC. Fluorescence analysis of the fulvic acid DOC fraction (roughly 600–2,000 Daltons) indicated that the source of DOC significantly affected the attenuation of UV-B. Sites in Sequoia–Kings Canyon were characterized by DOC derived primarily from algal sources and showed much deeper UV-B penetration, whereas sites in Glacier and Rocky Mountain contained a mix of algal and terrestrial DOC-dominated sites, with more terrestrially dominated sites characterized by greater UV-B attenuation per unit DOC. In general, site characteristics that promoted the accumulation of terrestrially derived DOC showed greater attenuation of UV-B per unit DOC; however, catchment vegetation and soil characteristics, precipitation, and local hydrology interacted to make it difficult to predict potential exposure from DOC concentrations.  相似文献   

9.
The carbon-flux via algal bloom events involves bacteria as an important mediator. The present study, carried out during the spring inter-monsoon month of April 2008 onboard CRV Sagar Manjusha-06 in the Eastern Arabian Sea, addresses the bloom-specific flow of carbon to bacteria via chromophoric dissolved organic matter (CDOM). Eleven stations monitored were located in the coastal, shelf and open-ocean areas off Ratnagiri (16°59′N, 73°17′E), Goa (15°30′N, 73°48′E) and Bhatkal (13°58′N, 74°33′E) coasts. Visible bloom of “saw-dust” color in the Ratnagiri shelf were microscopically examined and the presence of cyanobacteria Trichodesmium erythraeum and T. thieabautii with cell concentrations as high as 3.05 × 106 trichomes L−1 was recorded. Total bacterial counts (TBC) varied between 94.09 × 108 cells L−1 in the bloom to 1.34 × 108 cells L−1 in the non-bloom area. Chromophoric dissolved organic matter (CDOM) concentrations averaged 2.27 ± 3.02 m−1 (absorption coefficient 325 nm) in the bloom to 0.28 ± 0.07 m−1 in the non-bloom waters respectively. CDOM composition varied from a higher molecular size with lower aromaticity in the bloom to lower molecular size and increased aromaticity in the non-bloom areas respectively. Strong positive relationship of TBC with Chlorophyll a (R 2 = 0.65, p < 0.01) and CDOM concentrations (R 2 = 0.8373, p = 0.01) in the bloom area indicated hydrolysis and/or uptake of CDOM by bacteria. Absorption by mycosporine-like amino acid palythene (λ max = 360 nm) was recorded in the filtrate of bloom. Morphotypes of Trichodesmium-associated bacteria revealed a higher frequency of Gram-positive rods. The role of bacteria in relation to changing CDOM nature and as a factor in affecting oxygen content of the water column is discussed in context of the Arabian Sea.  相似文献   

10.
Nucleotide variation at several cold candidate genes including seven members of the dehydrin gene family was surveyed in haplotypes of Scots pine (Pinus sylvestris) sampled in populations showing divergence for cold tolerance in Europe. Patterns of nucleotide diversity, linkage disequilibrium, and frequency spectrum of alleles were compared between north and south populations to search for signs of directional selection potentially underlying adaptation to cold. Significant differentiation between populations in allelic frequency or haplotype structure was detected at dhn1, dhn3, and abaH loci. Allelic dimorphism with no evidence of haplotype clustering by geographical distribution was found at dhn9. An excess of fixed non-synonymous mutations as compared to the outgroup P. pinaster pine species was found at dhn1. Differences in nucleotide polymorphisms were found between the members of the Kn class of dehydrin upregulated during cold acclimation (average πsil = 0.004) as compared to the SKn class (average πsil = 0.024). The multilocus nucleotide diversity at silent sites (θ W = 0.009) was moderate compared to other conifer species, but higher than previous estimates for Scots pine. There was an excess of rare and high frequency derived variants as revealed by significantly negative multilocus value of Tajima’s D (D = −0.72, P < 0.01) and negative mean value of Fay and Wu H statistics (H = −0.50). The level of linkage disequilibrium decayed rapidly with an average expected r 2 of 0.2 at about 200 bp. Overall, there was a positive correlation between polymorphism and divergence at ten loci when outgroup sequence was available. The discovered polymorphism will be used for further evaluation of the adaptive role of genes through association mapping studies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Two different types of approach were taken to improve the hydrolytic activity towards crystalline cellulose at elevated temperatures of Melanocarpus albomyces Cel7B (Ma Cel7B), a single-module GH-7 family cellobiohydrolase. Structure-guided protein engineering was used to introduce an additional tenth disulphide bridge to the Ma Cel7B catalytic module. In addition, a fusion protein was constructed by linking a cellulose-binding module (CBM) and a linker from the Trichoderma reesei Cel7A to the C terminus of Ma Cel7B. Both approaches proved successful. The disulphide bridge mutation G4C/M70C located near the N terminus, close to the entrance of the active site tunnel of Ma Cel7B, led to improved thermostability (ΔT m = 2.5°C). By adding the earlier found thermostability-increasing mutation S290T (ΔT m = 1.5°C) together with the disulphide bridge mutation, the unfolding temperature was increased by 4°C (mutant G4C/M70C/S290T) compared to that of the wild-type enzyme, thus showing an additive effect on thermostability. Both disulphide mutants had increased activity towards microcrystalline cellulose (Avicel) at 75°C, apparently solely because of their improved thermostability. The addition of a CBM also improved the thermostability (ΔT m = 2.5°C) and caused a clear (sevenfold) increase in the hydrolysis activity of Ma Cel7B towards Avicel at 70°C.  相似文献   

12.
The growth, biofiltering efficiency and uptake rates of Ulva clathrata were studied in a series of outdoor tanks, receiving waste water directly from a shrimp (Litopenaeus vannamei) aquaculture pond, under constant aeration and two different water regimes: (1) continuous flow, with 1 volume exchange a day (VE day-1) and (2) static regime, with 1 VE after 4 days. Water temperature, salinity, pH, dissolved inorganic nitrogen (DIN), phosphate (PO4), chlorophyll-a (chl-a), total suspended solids (TSS), macroalgal biomass (fresh weight) and tissue nutrient assimilation were monitored over 12 days. Ulva clathrata was highly efficient in removing the main inorganic nutrients from effluent water, stripping 70–82% of the total ammonium nitrogen (TAN) and 50% PO4 within 15 h. Reductions in control tanks were much lower (Tukey HSD, P < 0.05). After 3 days, the mean uptake rates by the seaweed biomass under continuous flow were 3.09 mg DIN g DW day−1 (383 mg DIN m−2 day−1) and 0.13 mg PO4 g DW day−1 (99 mg PO4 m−2 day−1), being significantly higher than in the static regime (Tukey HSD, P < 0.05). The chl-a decreased in seaweed tanks, suggesting that U. clathrata inhibited phytoplankton growth. Correlations between the cumulative values of DIN removed from the water and total nitrogen assimilated into the seaweed biomass (r = 0.7 and 0.8, P < 0.05), suggest that nutrient removal by U. clathrata dominated over other processes such as phytoplankton and bacterial assimilation, ammonia volatilization and nutrient precipitation.  相似文献   

13.
During the austral summer of 1995, distributions of phytoplankton biomass (as chlorophyll a), primary production, and nutrient concentrations along two north-south transects in the marginal ice zone of the northwestern Weddell Sea were examined as part of the 8th Korean Antarctic Research Program. An extensive phytoplankton bloom, ranging from 1.6 to 11.2 mg m−3 in surface chlorophyll a concentration, was encountered along the eastern transect and extended ca. 180 km north of the ice edge. The spatial extent of the bloom was closely related to the density field induced by the input of meltwater from the retreating sea ice. However, the extent (ca. 200 km) of the phytoplankton bloom along the western transect exceeded the meltwater-influenced zone (ca. 18 km). The extensive bloom along the western transect was more closely related to local hydrography than to the proximity of the ice edge and the resulting meltwater-induced stability of the upper water column. In addition, the marginal ice zone on the western transect was characterized by a deep, high phytoplankton biomass (up to 8 mg Chl a m−3) extending to 100-m depth, and the decreased nutrient concentration, which was probably caused by passive sinking from the upper euphotic zone and in situ growth. Despite the low bloom intensity relative to the marginal ice zone in both of the transects, mean primary productivity (2.6 g C m−2 day−1) in shelf waters corresponding to the northern side of the western transect was as high as in the marginal ice zone (2.1 g C m−2 day−1), and was 4.8 times greater than that in open waters, suggesting that shelf waters are as highly productive as the marginal ice zone. A comparison between the historical productivity data and our data also shows that the most productive regions in the Southern Ocean are shelf waters and the marginal ice zone, with emerging evidence of frontal regions as another major productive site. Accepted: 27 September 1998  相似文献   

14.
Phytoplankton biomass and productivity were measured during two cruises in the Bransfield Strait in December 1991 (D91) and January/February 1993 (J93). Strong seasonal variability in productivity values was observed due to differences in the physiological response of phytoplankton. However, although the photosynthetic capacity of phytoplankton was markedly lower in D91 [P m B =0.61 ± 0.25 mg C (mg Chla)−1 h−1] than in J93 [P m B =2.18 ± 0.91 mg C (mg Chla)−1 h−1], average water column chlorophyll values in different areas of the strait were approximately similar in D91 (49–78 mg Chla m−2) and J93 (22–76 mg Chla m−2). The spatial distribution of chlorophyll was patchy and generally associated with the influence of the different water masses that meet together in the Bransfield Strait. No correlation was found between the mixed layer depth and either the integrated chlorophyll or the productivity. Our results suggest that major phytoplankton blooms in the Bransfield Strait are advected from the nearby Gerlache Strait or Bellingshausen Sea following the main eastward surface currents. Accepted: 5 July 1998  相似文献   

15.
Population and community responses of phytoplankton to fluctuating light   总被引:5,自引:0,他引:5  
Elena Litchman 《Oecologia》1998,117(1-2):247-257
Light is a major resource in aquatic ecosystems and has a complex pattern of spatio-temporal variability, yet the effects of dynamic light regimes on communities of phytoplankton are largely unexplored. I examined whether and how fluctuating light supply affects the structure and dynamics of phytoplankton communities. The effect of light fluctuations was tested at two average irradiances: low, 25 μmol quanta m−2 s−1 and high, 100 μmol quanta m−2 s−1 in 2- and 18-species communities of freshwater phytoplankton. Species diversity, and abundances of individual species and higher taxa, depended significantly on both the absolute level and the degree of variability in light supply, while total density, total biomass, and species richness responded only to light level. In the two-species assemblage, fluctuations increased diversity at both low and high average irradiances and in the multispecies community fluctuations increased diversity at high irradiance but decreased diversity at low average irradiance. Species richness was higher under low average irradiance and was not affected by the presence or absence of fluctuations. Diatom abundance was increased by fluctuations, especially at low average irradiance, where they became the dominant group, while cyanobacteria and green algae dominated low constant light and all high light treatments. Within each taxonomic group, however, there was no uniform pattern in species responses to light fluctuations: both the magnitude and direction of response were species-specific. The temporal regime of light supply had a significant effect on the growth rates of individual species grown in monocultures. Species responses to the regime of light supply in monocultures qualitatively agreed with their abundances in the community experiments. The results indicate that the temporal regime of light supply may influence structure of phytoplankton communities by differentially affecting growth rates and mediating species competition. Received: 24 September 1997 / Accepted: 8 July 1998  相似文献   

16.
The phytoplankton periodicity in the Darss-Zingst bodden chain, an estuary-like coastal water of the southern Baltic Sea, was investigated from 1984 to 1990. The following functional groups were established: 1.) nitrogen-fixing Cyanobacteria plus Oscillatoria limnetica, 2.) coccoid Chlorophyceae, Gomphosphaeria pusilla, Lyngbya contorta and Stephanodiscus hantzschii, 3.) coccoid Cyanobacteria except Gomphosphaeria, 4.) diatoms except Stephanodiscus, 5.) Cryptophyceae and some other flagellates. A general seasonal pattern was observable: in cold winters group 5 dominates; in spring a diatom bloom (= group 4) occurred, which was followed by the development of group 2; steep temperature increases caused a summer bloom of nitrogen-fixing cyanobacteria (= group 1), which was followed by groups 2 and 3 in autumn; in bland winters group 2 lasts until spring. Grazing was shown to be of minor importance for the phytoplankton periodicity.  相似文献   

17.
The arctic phytoplankton spring bloom, which is often diatom‐dominated, is a key event that provides the high latitude communities with a fundamental flux of organic carbon. During a bloom, phytoplankton may increase its biomass by orders of magnitude within days. Yet, very little is known about phytoplankton bloom dynamics, including for example how blooming affects genetic composition and diversity of a population. Here, we quantified the genetic composition and temporal changes of the diatom Fragilariopsis cylindrus, which is one of the most important primary producers in the Arctic, during the spring bloom in western Greenland, using 13 novel microsatellite markers developed for this study. We found that genetic differentiation (quantified using sample‐specific FST) decreased between time points as the bloom progressed, with the most drastic changes in FST occurring at the start of the bloom; thus the genetic structure of the bloom is characterized by isolation by time. There was little temporal variation in genetic diversity throughout the bloom (mean HE = 0.57), despite marked fluctuations in F. cylindrus cell concentrations and the temporal change in sample‐specific FST. On the basis of this novel pattern of genetic differentiation, we suggest that blooming behavior may promote genetic diversity of a phytoplankton population.  相似文献   

18.
In the course of a microbial screening of soil samples for new oxidases, different enrichment strategies were carried out. With choline as the only carbon source, a microorganism was isolated and identified as Arthrobacter nicotianae. From this strain, a gene coding for a choline oxidase was isolated from chromosomal DNA. This gene named codA was cloned in Escherichia coli BL21-Gold and the protein (An_CodA) heterologously overexpressed as a soluble intracellular protein of 59.1 kDa. Basic biochemical characterization of purified protein revealed a pH optimum of 7.4 and activity over a broad temperature range (15–70 °C). Specific activities were determined toward choline chloride (4.70 ± 0.12 U/mg) and the synthetic analogs bis(2-hydroxyethyl)-dimethylammonium chloride (0.05 ± 0.45 × 10–2 U/mg) and tris-(2-hydroxyethyl)-methylammonium methylsulfate (0.01 ± 0.12 × 10–2 U/mg). With increasing number of oxidizable groups, a significant decrease in activity was noted. Determination of kinetic parameters in atmorspheric oxygen resulted in K M = 1.51 ± 0.09 mM and V max = 42.73 ± 0.42 mU/min for choline chloride and K M = 4.77 ± 0.76 mM and V max = 48.40 ± 2.88 mU/min for the reaction intermediate betaine aldehyde respectively. Nuclear magnetic resonance spectroscopic analysis of the products formed during the enzyme reaction with choline chloride showed that in vitro the intermediate betaine aldehyde exists also free in solution.  相似文献   

19.
To estimate the age and growth of dominant lanternfishes in the Kuroshio–Oyashio Transition Zone, we examined the sagittal otolith microstructure of Symbolophorus californiensis (n = 30) and Ceratoscopelus warmingii (n = 93) collected from the western North Pacific during 1997–2003. Age of S. californiensis ranged from 81 to 541 days corresponding to postmetamorphosis stage (juveniles and adults), and the von Bertalanffy model was fitted: L t  = 128[1 − exp{−0.003(t − 1.52)}], where L is the standard length (mm) and t is age in days. Age of C. warmingii ranged from 6 to 416 days, and growth before metamorphosis was linear (L t  = 0.346t + 1.51), and the von Bertalanffy model was fitted to the postmetamorphosis stage: L t  = 80.8 [1 − exp{−0.00769(t − 34.4)}]. Growth of these two lanternfishes was faster than that of other lanternfishes in previous studies but considerably slower than that of Japanese sardine (Sardinops melanostictus) and anchovy (Engraulis japonicus) distributed in the Kuroshio–Oyashio Transition Zone. Temperature and prey availability are discussed in relation to this difference in growth rate.  相似文献   

20.
Our objective was to quantify the potential variability in remotely sensed chlorophyll a (Chl a) and primary productivity in coastal waters of the Southern Ocean. From data collected throughout the springs/summers of 1991–1994, we calculated the proportion of water column Chl a and primary productivity within the upper optical attenuation length (K−1 par) and the satellite-weighted depth. The temporal variability was resolved every 2–3 days and was observed to be greater within years than between years. Three-year averages (n=223) revealed that 10.2 ± 3.6% of total Chl a and 14.8 ± 6.5% of production occurred within satellite-weighted depth in predominantly Case I waters. The average values were twice as high within K−1 par, 24.1 ± 8% of total Chl a and 34 ± 9% of production respectively. Masked in these long-term averages are very large changes occurring on short time scales of seasonal blooms. We observed that the patterns of Chl a vertical distribution within blooms are also subject to taxonomic influence and dependent upon the physiological state of the phytoplankton. Highest proportions of water column Chl a in the first optical depth were measured during the rapid onset of surface cryptophyte blooms each year, i.e. 50% within K−1 par and 30% above the satellite-weighted depth. Lowest fractions, 6% and 2% of biomass within K−1 par and satellite-weighted depth respectively, were associated with peak bloom conditions independent of taxonomy. Our analyses suggest that satellite-dependent models of Chl a and subsequent chlorophyll-dependent primary production will be challenging to develop for the near-shore Southern Ocean, especially given the potentially high natural variability in the vertical distribution of Chl a driven by physical forcing, the photoadaptive abilities of polar phytoplankton, and taxonomic influences. Accepted: 27 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号