首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In multi-segmented total-human-body models the most difficult and the least successful modeling of a major articulating joint has been the shoulder complex because of the lack of appropriate biomechanical data as well as the anatomical complexity of the region. In this paper, quantitative results on the three-dimensional passive resistive properties beyond the voluntary shoulder complex sinus are presented by applying the methodology developed in part I. Constant-restoring-force(moment) contours are established for the shoulder complex and the numerical results are presented for the three subjects tested. In addition, functional expansions are presented for the voluntary and restoring force(moment) contours using spherical coordinates.  相似文献   

2.
3.
4.
5.
6.
Translational stiffness of the replaced shoulder joint   总被引:4,自引:0,他引:4  
Results after a total shoulder arthroplasty in rheumatoid patients are poor, indicated by loosening of especially the glenoid component, bad joint functionality and the possibility of a joint dislocation. The failure mechanisms behind this are multiple, including patient, surgical and design factors. These results must be improved. At present, the optimal geometrical prosthesis component design, focused on joint conformity and constraint, still has to be investigated.

Proper understanding of the effect of geometrical design parameters on the theoretical relationship between joint translations and joint forces may contribute to improved designs. The main objective of this study is to theoretically describe this relationship and to investigate the joint translational stiffness, which can be used to investigate the effect of design parameters on joint motion. Joint translational stiffness is the gradient of the subluxation force with respect to the humeral head displacement.

For this static analysis a potential field is introduced, as the result of a joint compressive force (muscle forces) and a subluxation force (external forces). The positive and negative stiffness during articulation inside and subluxation outside the glenoid cavity, lead to stable and unstable equilibrium joint positions, respectively. A most lateral position of the humeral head centre coincides with a zero subluxation force; at this position the humerus is dislocated and a restoring force is needed to relocate the humeral head.

Joint conformity and compression force influence the joint translational stiffness during articulation inside the glenoid cavity, whereas during articulating outside the glenoid cavity this is influenced by the joint compression force and humeral radius of curvature. The glenoid radius of curvature influences the contact point and, in combination with the glenoid superior–inferior chord length, it also influences the constraintness angle, which influences the maximum allowable subluxation load to prevent a joint dislocation. This constraintness angle together with the joint conformity also influences maximum joint translations before articulation outside the glenoid cavity. Furthermore, the sign of the joint translational stiffness determines the stability of shoulder motion, which is stable and unstable if this stiffness is positive and negative, respectively.  相似文献   


7.
8.
We aimed to determine the role of the wrist, elbow and shoulder joints to single-finger tapping. Six human subjects tapped with their index finger at a rate of 3 taps/s on a keyswitch across five conditions, one freestyle (FS) and four instructed tapping strategies. The four instructed conditions were to tap on a keyswitch using the finger joint only (FO), the wrist joint only (WO), the elbow joint only (EO), and the shoulder joint only (SO). A single-axis force plate measured the fingertip force. An infra-red active-marker three-dimensional motion analysis system measured the movement of the fingertip, hand, forearm, upper arm and trunk. Inverse dynamics estimated joint torques for the metacarpal-phalangeal (MCP), wrist, elbow, and shoulder joints. For FS tapping 27%, 56%, and 18% of the vertical fingertip movement were a result of flexion of the MCP joint and wrist joint and extension of the elbow joint, respectively. During the FS movements the net joint powers between the MCP, wrist and elbow were positively correlated (correlation coefficients between 0.46 and 0.76) suggesting synergistic efforts. For the instructed tapping strategies (FO, WO, EO, and SO), correlations decreased to values below 0.35 suggesting relatively independent control of the different joints. For FS tapping, the kinematic and kinetic data indicate that the wrist and elbow contribute significantly, working in synergy with the finger joints to create the fingertip tapping task.  相似文献   

9.
In this paper the concept of a three-dimensional biomechanical model of the human shoulder is introduced. This model is used to analyze static load sharing between the muscles, the bones and the ligaments. The model consists of all shoulder structures, which means that different positions and different load situations may be analyzed using the same model. Solutions can be found for the complete range of shoulder motion. However, this article focuses only on elevation in the scapular plane and on forces in structures attached to the humerus. The intention is to expand the model in future studies to also involve the forces acting on the other shoulder bones: the scapula and the clavicle. The musculoskeletal forces in the shoulder complex are predicted utilizing the optimization technique with the sum of squared muscle stresses as an objective function. Numerical results predict that among the muscles crossing the glenohumeral joint parts of the deltoideus, the infraspinatus, the supraspinatus, the subscapularis, the pectoralis major, the coracobrachialis and the biceps are the muscles most activated during this sort of abduction. Muscle-force levels reached values of 150 N when the hand load was 1 kg. The results from the model seem to be qualitatively accurate, but it is concluded that in the future development of the model the direction of the contact force in the glenohumeral joint must be constrained.  相似文献   

10.
The biceps brachii is a bi-articular muscle affecting motion at the shoulder and elbow. While its' action at the elbow is well documented, its role in shoulder elevation is less clear. Therefore, the purpose of this project was to investigate the influence of shoulder and elbow joint angles on the shoulder elevation function of the biceps brachii. Twelve males and 18 females were tested on a Biodex dynamometer with the biceps brachii muscle selectively stimulated at a standardized level of voltage. The results indicated that both shoulder and elbow joint angles influence the shoulder joint elevation moment produced by the biceps brachii. Further analysis revealed that the elevation moment was greatest with the shoulder joint at 0 degrees and the elbow flexed 30 degrees or less. The greatest reduction in the elevation moment occurred between shoulder angles of 0 degrees and 30 degrees . The shoulder elevation moment was near zero when shoulder elevation reached or exceeded 60 degrees regardless of elbow angle. These results clarify the role of the biceps in shoulder elevation, as a dynamic stabilizer, and suggest that it is a decelerator of the arm during the throwing motion.  相似文献   

11.
The aim of this study was to determine the relative contributions of the deltoid and rotator cuff muscles to glenohumeral joint stability during arm abduction. A three-dimensional model of the upper limb was used to calculate the muscle and joint-contact forces at the shoulder for abduction in the scapular plane. The joints of the shoulder girdle-sternoclavicular joint, acromioclavicular joint, and glenohumeral joint-were each represented as an ideal three degree-of-freedom ball-and-socket joint. The articulation between the scapula and thorax was modeled using two kinematic constraints. Eighteen muscle bundles were used to represent the lines of action of 11 muscle groups spanning the glenohumeral joint. The three-dimensional positions of the clavicle, scapula, and humerus during abduction were measured using intracortical bone pins implanted into one subject. The measured bone positions were inputted into the model, and an optimization problem was solved to calculate the forces developed by the shoulder muscles for abduction in the scapular plane. The model calculations showed that the rotator cuff muscles (specifically, supraspinatus, subscapularis, and infraspinatus) by virtue of their lines of action are perfectly positioned to apply compressive load across the glenohumeral joint, and that these muscles contribute most significantly to shoulder joint stability during abduction. The middle deltoid provides most of the compressive force acting between the humeral head and the glenoid, but this muscle also creates most of the shear, and so its contribution to joint stability is less than that of any of the rotator cuff muscles.  相似文献   

12.
Upper-arm evaluation including shoulder motion in physiotherapy has no three-dimensional tool for an arm-functioning evaluation, which hampers an uniform, objective comparison. Human shoulder complex models suffer from lack of shoulder girdle kinematic data. A kinematic shoulder-complex model with six degrees of freedom is proposed as the composition of the inner joint representing the shoulder-girdle joints and outer joint representing the glenohumeral joint. The outer shoulder joint has three perpendicular rotations: adduction/abduction, retroflexion/flexion and internal/external rotation of the humerus. The inner shoulder joint has two rotations, depression/elevation and retraction/protraction, and one translation, which are all dependent on the elevation angle of the humerus. The human arm-reachable workspace that represents the area within reach of the wrist is calculated on the basis of the shoulder-complex model and the additional elbow-joint direct kinematics. It was demonstrated that cross-sections of the calculated workspace are in agreement with the measured arm-reachable workspace in all three anatomical planes. The arm-reachable workspace volume and graphics were calculated and a comparison of the arm's workspaces during a patient's shoulder treatment was made. The obtained numerical and graphical arm-reachable workspaces can be used for arm-functioning evaluations in rehabilitation and ergonomics.  相似文献   

13.
A dynamical finite-element model of the shoulder mechanism consisting of thorax, clavicula, scapula and humerus is outlined. The parameters needed for the model are obtained in a cadaver experiment consisting of both shoulders of seven cadavers. In this paper, in particular, the derivation of geometry parameters from the measurement data is described. The results for one cadaver are presented as a typical example. Morphological structures are modelled as geometrical forms. Parameters describing this form are estimated from 3-D position coordinates of a large number of datapoints on the morphological structure, using a least-squares criterion. Muscle and ligament attachments are represented as a plane or as a (curved) line. Muscle paths are determined by a geometrical form of the bony contour around which the muscle is wrapped. Muscle architecture is determined by the distribution of muscle bundles over the attachment area, mapping the distribution of the origin to the insertion. Joint rotation centers are derived from articular surfaces. Hence, muscle moment arms can be calculated. The result of this study is a set of parameters for each cadaver, describing very precisely the geometry of the shoulder mechanism. This set allows positioning of muscle force vectors a posteriori, and recalculation of position coordinates and moment arms for any position of the shoulder.  相似文献   

14.
The Euler/Cardan angles are commonly used to define the motions of the upper arm with respect to the trunk. This definition, however, has a problem in that the angles of both the horizontal flexion/extension and the axial rotation of the shoulder joint become unstable at the gimbal-lock positions. In this paper, a new definition of the axial rotation angle was proposed. The proposed angle was stable over the entire range of the shoulder motion. With the new definition, the neutral position of the axial rotation agreed with that in the conventional anatomy. The advantage of the new definition was demonstrated by measuring actual complex motions of the shoulder with a three-dimensional motion capture system.  相似文献   

15.
The aim of the present study was to determine how the intra-muscular segments of three shoulder muscles were coordinated to produce isometric force impulses around the shoulder joint and how muscle segment coordination was influenced by changes in movement direction, mechanical line of action and moment arm (ma). Twenty male subjects (mean age 22 years; range 18-30 years) with no known history of shoulder pathologies, volunteered to participate in this experiment. Utilising an electromyographic technique, the timing and intensity of contraction within 19 muscle segments of three superficial shoulder muscles (Pectoralis Major, Deltoid and Latissimus Dorsi) were studied and compared during the production of rapid (e.g. approximately 400ms time to peak) isometric force impulses in four different movement directions of the shoulder joint (flexion, extension, abduction and adduction). The results of this investigation have suggested that the timing and intensity of each muscle segment's activation was coordinated across muscles and influenced by the muscle segment's moment arm and its mechanical line of action in relation to the intended direction of shoulder movement (e.g. flexion, extension, abduction or adduction). There was also evidence that motor unit task groups were formed for individual motor tasks which comprise motor units from both adjacent and distant muscles. It was also confirmed that for any particular motor task, individual muscle segments can be functionally classified as prime mover, synergist or antagonist - classifications which are flexible from one movement to the next.  相似文献   

16.
17.
Despite its importance for the understanding of joint mechanics in healthy subjects and patients, there has been no three-dimensional (3D) in vivo data on the translation of the humeral head relative to the glenoid during abduction under controlled mechanical loading. The objective was therefore to analyze humeral head translation during passive and active elevation by applying an open MR technique and 3D digital postprocessing methods. Fifteen healthy volunteers were examined with an open MR system at different abduction positions under muscular relaxation (30-150 degrees of abduction) and during activity of shoulder muscles (60-120 degrees ). After segmentation and 3D reconstruction, the center of mass of the glenoid and the midpoint of the humeral head were determined and their relative position calculated. During passive elevation, the humeral head translated inferiorly from +1.58mm at 30 degrees to +0. 36mm at 150 degrees of abduction, and posteriorly from +1.55mm at 30 degrees to -0.07mm at 150 degrees of abduction. Muscular activity brought about significant changes in glenohumeral translation, the humeral head being in a more inferior position and more centered, particularly at 90 and 120 degrees of abduction (p<0.01). In anterior/posterior direction the humeral head was more centered at 60 and 90 degrees of abduction during muscle activity. The data demonstrate the importance of neuromuscular control in providing joint stability. The technique developed can also be used for investigating the effect of muscle dysfunction and their relevance on the mechanics of the shoulder joint.  相似文献   

18.
This paper presents a novel method to explore the intrinsic morphological correlation between the bones of a shoulder joint (humerus and scapula). To model this correlation, canonical correlation analysis (CCA) is used. We also propose a technique to predict a three-dimensional (3D) bone shape from its adjoining segment at a joint based on partial least squares regression (PLS). The high dimensional 3D surface information of a bone is represented by a few variables using principal component analysis, which also captures the pattern of variability of the shapes in our datasets. Our results show that the humerus set and scapula set have highly linear morphological relationship and that the correlation information can be used as a classifier. In this study, primate shoulder bone datasets were categorised into two clusters: great apes (including humans) and monkeys. A leave one out experiment was performed to test the robustness of this prediction method. The prediction behaviour using this method shows statistically significantly better results than using the mean shape from the training set.  相似文献   

19.
This study was conducted to test whether glenohumeral geometry, as measured through MRI scans, is correlated with upper arm strength. The isometric shoulder strength of 12 subjects during one-handed arm abduction in the coronal plane, in a range from 5 degrees to 30 degrees , was correlated with the geometries of their glenoid fossas. Seven parameters describing the glenohumeral joint geometry in the coronal plane were identified as having expected influence on shoulder strength. In addition to these, a new geometric parameter, named the area of glenoid asymmetry (AGA), was considered to reflect the concavity-compression mechanism as well as the inclination of the glenoid surface. As a result of the high correlation between the AGA and mean force and mean moment (0.80, p0.01 and 0.69, p 相似文献   

20.
Control of movement in the avian shoulder joint is fundamental to understanding the avian wingstroke. The acrocoracohumeral ligament (AHL) is thought to play a key role in stabilizing the glenoid and balancing the pectoralis in gliding flight. If the AHL has to be taut to balance the pectoralis, then it must constrain glenohumeral motion during flapping flight as well. However, birds vary wing kinematics depending on flight speed and behavior. How can a passive ligament accommodate such varying joint movements? Herein, mechanical testing and 3-D modeling are used to link the mechanical properties and morphology of the AHL to its functional role during flapping flight. The bone-ligament-bone complex of the pigeon (Columba livia) fails at a tensile loading of 141 ± 18 N (± s .D., n = 10) or 39 times body weight, which corresponds to a failure stress of 51 MPa, well above expected loads during flight. Simulated AHL length changes, comparisons to glenohumeral kinematics from the literature, and manipulations of partially dissected pigeon specimens all support the hypothesis that the AHL remains taut through downstroke and most of upstroke while becoming slack during the downstroke/upstroke transition. The digital AHL model provides a mechanism for explaining how the AHL can stabilize the shoulder joint under a broad array of humeral paths by constraining the coordination of glenohumeral degrees of freedom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号