首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bone conduction (BC) sound is the perception of sound transmitted in the skull bones and surrounding tissues. To better understand BC sound perception and the interaction with surrounding tissues, the power transmission of BC sound is investigated in a three-dimensional finite-element model of a whole human head. BC sound transmission was simulated in the FE model and the power dissipation as well as the power flow following a mechanical vibration at the mastoid process behind the ear was analyzed. The results of the simulations show that the skull bone (comprises the cortical bone and diploë) has the highest BC power flow and thereby provide most power transmission for BC sound. The soft tissues was the second most important media for BC sound power transmission, while the least BC power transmission is through the brain and the surrounding cerebrospinal fluid (CSF) inside the cranial vault. The vibrations transmitted in the skull are mainly concentrated at the skull base when the stimulation is at the mastoid. Other vibration transmission pathways of importance are located at the occipital bone at the posterior side of the head while the transmission of sound power through the face, forehead and vertex is minor. The power flow between the skull bone and skull interior indicate that some BC power is transmitted to and from the skull interior but the transmission of sound power through the brain seem to be minimal and only local to the brain–bone interface.  相似文献   

2.
Biodynamics and injury potential of operators in stand-up rider lift truck accidents have been investigated with a special focus on head injury. An anthropomorphic test device (ATD) model was used as an operator surrogate in computer simulations of off-the-dock (OTD) and tip-over (TO) accidents. The biomechanical model representing the ATD was developed based on rigid body segments, and then combined with a rigid body truck model in the accident simulations. The operator compartment of the truck model was enclosed with a rear door. The computed kinematics are in agreement with the results of previous experimental testing. A 2D finite element model of the head was created to compute head impact decelerations in the sagittal plane. Values of the head injury criterion for the TO cases were computed from the model and shown to compare favourably with experimental values. The results advance the state of knowledge concerning injury potential in TO and OTD accidents and simulation models for such accidents.  相似文献   

3.
Biodynamics and injury potential of operators in stand-up rider lift truck accidents have been investigated with a special focus on head injury. An anthropomorphic test device (ATD) model was used as an operator surrogate in computer simulations of off-the-dock (OTD) and tip-over (TO) accidents. The biomechanical model representing the ATD was developed based on rigid body segments, and then combined with a rigid body truck model in the accident simulations. The operator compartment of the truck model was enclosed with a rear door. The computed kinematics are in agreement with the results of previous experimental testing. A 2D finite element model of the head was created to compute head impact decelerations in the sagittal plane. Values of the head injury criterion for the TO cases were computed from the model and shown to compare favourably with experimental values. The results advance the state of knowledge concerning injury potential in TO and OTD accidents and simulation models for such accidents.  相似文献   

4.
An EEG analysis of drug effects after mild head injury in mice.   总被引:3,自引:0,他引:3  
An electroencephalographic (EEG) and behavioral model of head injury in unanesthetized, free moving mice has been used to test the effects of TRH and GM1. In our experimental conditions a mechanical head injury capable of inducing loss of righting reflex for 2 to 60 sec, also induces a consistent decrease of the total power of the spectrum of EEG and a decrease of the power of fast beta band (20-40 Hz) for at least 120 min. TRH, injected after trauma in dose of 10 mg/kg, caused improvement of EEG total power of the spectrum. GM1 in high (30 mg/kg) but not in low dose (5 mg/kg) caused more rapid restoration of both the total power and fast as well as slow beta band power. These results suggest that GM1 has favorable effects on post-concussive neurophysiological symptoms in head injured animals.  相似文献   

5.
Abusive head trauma (AHT) is a potentially fatal result of child abuse, but the mechanisms by which injury occur are often unclear. To investigate the contention that shaking alone can elicit the injuries observed, effective computational models are necessary. The aim of this study was to develop a probabilistic model describing infant head kinematics in AHT. A deterministic model incorporating an infant’s mechanical properties, subjected to different shaking motions, was developed in OpenSim. A Monte Carlo analysis was used to simulate the range of infant kinematics produced as a result of varying both the mechanical properties and the type of shaking motions. By excluding physically unrealistic shaking motions, worst-case shaking scenarios were simulated and compared to existing injury criteria for a newborn, a 4.5 month-old, and a 12 month-old infant. In none of the three cases were head kinematics observed to exceed previously-estimated subdural haemorrhage injury thresholds. The results of this study provide no biomechanical evidence to demonstrate how shaking by a human alone can cause the injuries observed in AHT, suggesting either that additional factors, such as impact, are required, or that the current estimates of injury thresholds are incorrect.  相似文献   

6.
Consequences of head size following trauma to the human head.   总被引:4,自引:0,他引:4  
The objective of the present study was to evaluate whether variation of human head size results in different outcome regarding intracranial responses following a direct impact. Finite Element models representing different head sizes and with various element mesh densities were created. Frontal impacts towards padded surfaces as well as inertial loads were analyzed. The variation in intracranial stresses and intracranial pressures for different sizes of the geometry and for various element meshes were investigated. A significant correlation was found between experiment and simulation with regard to intracranial pressure characteristics. The maximal effective stresses in the brain increased more than a fourfold, from 3.6kPa for the smallest head size to 16.3kPa for the largest head size using the same acceleration impulse. When simulating a frontal impact towards a padding, the head injury criterion (HIC) value varies from the highest level of 2433 at a head mass of 2.34kg to the lowest level of 1376 at a head mass of 5.98kg, contradicting the increase in maximal intracranial stresses with head size. The conclusion is that the size dependence of the intracranial stresses associated with injury, is not predicted by the HIC. It is suggested that variations in head size should be considered when developing new head injury criteria.  相似文献   

7.
Blast waves generated by improvised explosive devices can cause mild, moderate to severe traumatic brain injury in soldiers and civilians. To understand the interactions of blast waves on the head and brain and to identify the mechanisms of injury, compression-driven air shock tubes are extensively used in laboratory settings to simulate the field conditions. The overall goal of this effort is to understand the mechanics of blast wave–head interactions as the blast wave traverses the head/brain continuum. Toward this goal, surrogate head model is subjected to well-controlled blast wave profile in the shock tube environment, and the results are analyzed using combined experimental and numerical approaches. The validated numerical models are then used to investigate the spatiotemporal distribution of stresses and pressure in the human skull and brain. By detailing the results from a series of careful experiments and numerical simulations, this paper demonstrates that: (1) Geometry of the head governs the flow dynamics around the head which in turn determines the net mechanical load on the head. (2) Biomechanical loading of the brain is governed by direct wave transmission, structural deformations, and wave reflections from tissue–material interfaces. (3) Deformation and stress analysis of the skull and brain show that skull flexure and tissue cavitation are possible mechanisms of blast-induced traumatic brain injury.  相似文献   

8.
A recently published finite element (FE) head model is modified to consider the viscoelasticity of the meninges, the spongy and compact bone in the skull. The cerebrospinal fluid (CSF) is simulated explicitly as a hydrostatic fluid by using a surface-based fluid modelling method, which allows fluid and structure interaction. It is found that the modified model yields smoother pressure responses in a head impact simulation. The baseline model underestimated the peak von Mises stress in the brain by 15% and the peak principal stress in the skull by 33%. The increase in the maximum principal stress in the skull is mainly caused by the updation of the material's viscoelasticity, and the change in the maximum von Mises stress in the brain is mainly caused by the improvement of the CSF simulation. The study shows that the viscoelasticity of the head tissue should be considered, and that the CSF should be modelled as a fluid, when using FE analysis to study head injury due to impact.  相似文献   

9.
A recently published finite element (FE) head model is modified to consider the viscoelasticity of the meninges, the spongy and compact bone in the skull. The cerebrospinal fluid (CSF) is simulated explicitly as a hydrostatic fluid by using a surface-based fluid modelling method, which allows fluid and structure interaction. It is found that the modified model yields smoother pressure responses in a head impact simulation. The baseline model underestimated the peak von Mises stress in the brain by 15% and the peak principal stress in the skull by 33%. The increase in the maximum principal stress in the skull is mainly caused by the updation of the material's viscoelasticity, and the change in the maximum von Mises stress in the brain is mainly caused by the improvement of the CSF simulation. The study shows that the viscoelasticity of the head tissue should be considered, and that the CSF should be modelled as a fluid, when using FE analysis to study head injury due to impact.  相似文献   

10.
This paper proposes a modified nonlinear viscoelastic Bilston model (Bilston et al., 2001, Biorheol., 38, pp. 335-345). for the modeling of brain tissue constitutive properties. The modified model can be readily implemented in a commercial explicit finite element (FE) code, PamCrash. Critical parameters of the model have been determined through a series of rheological tests on porcine brain tissue samples and the time-temperature superposition (TTS) principle has been used to extend the frequency to a high region. Simulations by using PamCrash are compared with the test results. Through the use of the TTS principle, the mechanical and rheological behavior at high frequencies up to 10(4) rads may be obtained. This is important because the properties of the brain tissue at high frequencies and impact rates are especially relevant to studies of traumatic head injury. The averaged dynamic modulus ranges from 130 Pa to 1500 Pa and loss modulus ranges from 35 Pa to 800 Pa in the frequency regime studied (0.01 rads to 3700 rads). The errors between theoretical predictions and averaged relaxation test results are within 20% for strains up to 20%. The FEM simulation results are in good agreement with experimental results. The proposed model will be especially useful for application to FE analysis of the head under impact loads. More realistic analysis of head injury can be carried out by incorporating the nonlinear viscoelastic constitutive law for brain tissue into a commercial FE code.  相似文献   

11.
Deformation of the human brain induced by mild angular head acceleration   总被引:1,自引:0,他引:1  
Deformation of the human brain was measured in tagged magnetic resonance images (MRI) obtained dynamically during angular acceleration of the head. This study was undertaken to provide quantitative experimental data to illuminate the mechanics of traumatic brain injury (TBI). Mild angular acceleration was imparted to the skull of a human volunteer inside an MR scanner, using a custom MR-compatible device to constrain motion. A grid of MR "tag" lines was applied to the MR images via spatial modulation of magnetization (SPAMM) in a fast gradient echo imaging sequence. Images of the moving brain were obtained dynamically by synchronizing the imaging process with the motion of the head. Deformation of the brain was characterized quantitatively via Lagrangian strain. Consistent patterns of radial-circumferential shear strain occur in the brain, similar to those observed in models of a viscoelastic gel cylinder subjected to angular acceleration. Strain fields in the brain, however, are clearly mediated by the effects of heterogeneity, divisions between regions of the brain (such as the central fissure and central sulcus) and the brain's tethering and suspension system, including the dura mater, falx cerebri, and tentorium membranes.  相似文献   

12.
Every year, thousands of fatalities result from head injuries, the majority of which are sustained in automotive accidents. In this paper, an experimental study of the response of the human head to impact is presented. A rapid prototyped model of a human head was generated based on high-resolution magnetic resonance imaging (MRI) scan data. The physical model was subjected to low velocity impacts using a metallic pendulum and a sensitivity study was performed to explore the influence of various parameters, including mass and velocity of the impactor, on the response. The experimental response characteristics are compared with predictions from an analytical model as well as with numerical predictions from finite element (FE) models generated from the same MRI data set. The results from the experimental tests closely match those predicted by both the analytical and the FE models and thus provide us with substantive corroboration of all three approaches. The remarkable agreement obtained between the measured response characteristics of rapid-prototyped skulls and numerical (FE) models obtained from in vivo MRI data clearly demonstrates the potential use of rapid-prototyping to generate experimental models for head impact studies, and, more generally, for the study of the response of complex bio-structures to loading. In addition, the quantitative and qualitative accuracy of the predictions from the analytical model is clearly demonstrated by the FE and experimental corroboration. In particular, the analytical prediction that, as impact mass drops the impact duration becomes increasingly short, appears to be substantiated, which has important implications for the onset of high pressure and shear strain gradients in the brain with potentially deleterious effects.  相似文献   

13.

Finite element head (FE) models are important numerical tools to study head injuries and develop protection systems. The generation of anatomically accurate and subject-specific head models with conforming hexahedral meshes remains a significant challenge. The focus of this study is to present two developmental works: first, an anatomically detailed FE head model with conforming hexahedral meshes that has smooth interfaces between the brain and the cerebrospinal fluid, embedded with white matter (WM) fiber tracts; second, a morphing approach for subject-specific head model generation via a new hierarchical image registration pipeline integrating Demons and Dramms deformable registration algorithms. The performance of the head model is evaluated by comparing model predictions with experimental data of brain–skull relative motion, brain strain, and intracranial pressure. To demonstrate the applicability of the head model and the pipeline, six subject-specific head models of largely varying intracranial volume and shape are generated, incorporated with subject-specific WM fiber tracts. DICE similarity coefficients for cranial, brain mask, local brain regions, and lateral ventricles are calculated to evaluate personalization accuracy, demonstrating the efficiency of the pipeline in generating detailed subject-specific head models achieving satisfactory element quality without further mesh repairing. The six head models are then subjected to the same concussive loading to study the sensitivity of brain strain to inter-subject variability of the brain and WM fiber morphology. The simulation results show significant differences in maximum principal strain and axonal strain in local brain regions (one-way ANOVA test, p < 0.001), as well as their locations also vary among the subjects, demonstrating the need to further investigate the significance of subject-specific models. The techniques developed in this study may contribute to better evaluation of individual brain injury and the development of individualized head protection systems in the future. This study also contains general aspects the research community may find useful: on the use of experimental brain strain close to or at injury level for head model validation; the hierarchical image registration pipeline can be used to morph other head models, such as smoothed-voxel models.

  相似文献   

14.
A new human head phantom has been proposed by CENELEC/IEEE, based on a large scale anthropometric survey. This phantom is compared to a homogeneous Generic Head Phantom and three high resolution anatomical head models with respect to specific absorption rate (SAR) assessment. The head phantoms are exposed to the radiation of a generic mobile phone (GMP) with different antenna types and a commercial mobile phone. The phones are placed in the standardized testing positions and operate at 900 and 1800 MHz. The average peak SAR is evaluated using both experimental (DASY3 near field scanner) and numerical (FDTD simulations) techniques. The numerical and experimental results compare well and confirm that the applied SAR assessment methods constitute a conservative approach.  相似文献   

15.
Of 1900 head injuries serious enough to be admitted to the neurosurgical unit in Glasgow over a five year period, 52 (2.7%) were due to "sport." Golf, horse-riding, and Association football were the sports most commonly linked with serious head injury. Golfing injuries were all compound depressed fractures, and all these patients made a good recovery; horse-riding produced more severe injuries, three of the eight patients being left with residual disability. Much attention has been directed to preventing repeated minor head injury in boxing, but this study emphasises the need for preventing both the primary head injury and secondary complications associated with other sports.  相似文献   

16.
17.
Repeated traumatic brain injury, leads to cumulative neuronal injury and neurological impairments. There are currently no effective treatments to prevent these consequences. Growing interest is building in the use of transcranial photobiomodulation (PBM) therapy to treat traumatic brain injury. Here, we examined PBM in a repeated closed head injury (rCHI) rat model. Rats were administered a total of three closed head injuries, with each injury separated by 5 days. PBM treatment was initiated 2 hours after the first injury and administered daily for a total of 15 days. We found that PBM‐treated rCHI rats had a significant reduction in motor ability, anxiety and cognitive deficits compared to CHI group. PBM group showed an increase of synaptic proteins and surviving neurons, along with a reduction in reactive gliosis and neuronal injury. These findings highlight the complexity of gliosis and neuronal injury following rCHI and suggest that PBM may be a viable treatment option to mitigate these effects and their detrimental consequences.  相似文献   

18.
The present work deals with the application of an innovative in-house developed wavelet-based methodology for the analysis of the acceleration responses of a human head complex model as a simulated diffused oedema progresses. The human head complex has been modeled as a structure consisting of three confocal prolate spheroids, whereas the three defined regions by the system of spheroids, from the outside to the inside, represent the scull, the region of cerebrospinal fluid, and the brain tissue. A Dirac-like pulse has been used to excite the human head complex model and the acceleration response of the system has been calculated and analyzed via the wavelet-based methodology. For the purpose of the present analysis, a wave propagation commercial finite element code, LS-DYNA 3D, has been used. The progressive diffused oedema was modeled via consecutive increases in brain volume accompanied by a decrease in brain density. It was shown that even a small increase in brain volume (at the level of 0.5%) can be identified by the effect it has on the vibration characteristics of the human head complex. More precisely, it was found that for some of the wavelet decomposition levels, the energy content changes monotonically as the brain volume increases, thus providing a useful index of monitoring an oncoming brain oedema before any brain damage appears due to uncontrolled intracranial hypertension. For the purpose of the present work and for the levels of brain volume increase considered in the present analysis, no pressure increase was assumed into the cranial vault and, associatively, no brain compliance variation.  相似文献   

19.
A new head exposure system for double blinded human provocation studies, which requires EEG recording during exposure with GSM900- and UMTS-like signals has been developed and dosimetrically evaluated. The system uses planar patch antennas fixed at 65 mm distance from the subject's head by a special headset, which provides minimum impairment of the test subjects and ensures an almost constant position of the antennas with respect to the head, even in case of head movements. Compared to exposure concepts operating small antennas in close proximity to the head, the concept of planar antennas at a certain distance from the head produces a much more homogeneous SAR distribution in the temporal and parietal lobe of the brain. At the same time the resulting uncertainty of exposure due to variations in head size, variations of the dielectric properties of tissues and unavoidable small changes of the antenna's position with respect to the head, is reduced to the order of approximately 3 dB, which is a significant improvement to comparable head exposure systems reported in literature in the past. To avoid electromagnetic interference on the EEG recording caused by the incident RF-field an appropriate double-shielded filter circuit has been developed. Furthermore, the effect of the presence of the sintered Ag/AgCl EEG electrodes and electrode wires on the SAR distribution inside the head has been investigated and was found to be minimal if the electrode wires are arranged orthogonal to the incident electric field vector. EEG electrode arrangement parallel to the incident field vector, however, might cause drastic changes in the SAR distribution inside the head.  相似文献   

20.
Blunt and rotational head impacts due to vehicular collisions, falls and contact sports cause relative motion between the brain and skull. This increases the normal and shear stresses in the (skull/brain) interface region consisting of cerebrospinal fluid (CSF) and subarachnoid space (SAS) trabeculae. The relative motion between the brain and skull can explain many types of traumatic brain injuries (TBI) including acute subdural hematomas (ASDH) and subarachnoid hemorrhage (SAH) which is caused by the rupture of bridging veins that transverse from the deep brain tissue to the superficial meningeal coverings. The complicated geometry of the SAS trabeculae makes it impossible to model all the details of the region. Investigators have compromised this layer with solid elements, which may lead to inaccurate results. In this paper, the failure of the cerebral blood vessels due to the head impacts have been investigated. This is accomplished through a global/local modelling approach. Two global models, namely a global solid model (GSM) of the skull/brain and a global fluid model (GFM) of the SAS/CSF, were constructed and were validated. The global models were subjected to two sets of impact loads (head injury criterion, HIC = 740 and 1044). The relative displacements between the brain and skull were determined from GSM. The CSF equivalent fluid pressure due to the impact loads were determined by the GFM. To locally study the mechanism of the injury, the relative displacement between the brain and skull along with the equivalent fluid pressure were implemented into a new local solid model (LSM). The strains of the cerebral blood vessels were determined from LSM. These values were compared with their relevant experimental ultimate strain values. The results showed an agreement with the experimental values indicating that the second impact (HIC = 1044) was strong enough to lead to severe injury. The global/local approach provides a reliable tool to study the cerebral blood vessel ruptures leading to ASDH and/or SAH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号