首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Collagens are thought to represent one of the most important molecular innovations in the metazoan line. Basement membrane type IV collagen is present in all Eumetazoa and was found in Homoscleromorpha, a sponge group with a well-organized epithelium, which may represent the first stage of tissue differentiation during animal evolution. In contrast, spongin seems to be a demosponge-specific collagenous protein, which can totally substitute an inorganic skeleton, such as in the well-known bath sponge. In the freshwater sponge Ephydatia mülleri, we previously characterized a family of short-chain collagens that are likely to be main components of spongins. Using a combination of sequence- and structure-based methods, we present evidence of remote homology between the carboxyl-terminal noncollagenous NC1 domain of spongin short-chain collagens and type IV collagen. Unexpectedly, spongin short-chain collagen-related proteins were retrieved in nonsponge animals, suggesting that a family related to spongin constitutes an evolutionary sister to the type IV collagen family. Formation of the ancestral NC1 domain and divergence of the spongin short-chain collagen-related and type IV collagen families may have occurred before the parazoan-eumetazoan split, the earliest divergence among extant animal phyla. Molecular phylogenetics based on NC1 domain sequences suggest distinct evolutionary histories for spongin short-chain collagen-related and type IV collagen families that include spongin short-chain collagen-related gene loss in the ancestors of Ecdyzosoa and of vertebrates. The fact that a majority of invertebrates encodes spongin short-chain collagen-related proteins raises the important question to the possible function of its members. Considering the importance of collagens for animal structure and substratum attachment, both families may have played crucial roles in animal diversification.  相似文献   

2.
Type IV collagen alpha1-alpha6 chains have important roles in the assembly of basement membranes and are implicated in the pathogenesis of Goodpasture syndrome, an autoimmune disorder, and Alport syndrome, a hereditary renal disease. We report comparative sequence analyses and structural predictions of the noncollagenous C-terminal globular NC1 domain (28 sequences). The inferred tree verified that type IV collagen sequences fall into two groups, alpha1-like and alpha2-like, and suggested that vertebrate alpha3/alpha4 sequences evolved before alpha1/alpha2 and alpha5/alpha6. About one fifth of NC1 residues were identified to confer either the alpha1 or alpha2 group-specificity. These residues accumulate opposite charge in subdomain B of alpha1 (positive) and alpha2 (negative) sequences and may play a role in the stoichiometric chain selection upon type IV collagen assembly. Neural network secondary structure prediction on multiple aligned sequences revealed a subdomain core structure consisting of six hydrophobic beta-strands and one short alpha-helix with a significant hydrophobic moment. The existence of opposite charges in the alpha-helices may carry implications for intersubdomain interactions. The results provide a rationale for defining the epitope that binds Goodpasture autoantibodies and a framework for understanding how certain NC1 mutations may lead to Alport syndrome. A search algorithm, based entirely on amino acid properties, yielded a possible similarity of NC1 to tissue inhibitor of metalloproteinases (TIMP) and prompted an investigation of a possible functional relationship. The results indicate that NC1 preparations decrease the activity of matrix metalloproteinases 2 and 3 (MMP-2, MMP-3) toward a peptide substrate, though not to [14C]-gelatin. We suggest that an ancestral NC1 may have been incorporated into type IV collagen as an evolutionarily mobile domain carrying proteinase inhibitor function.  相似文献   

3.
Folding of collagen IV   总被引:5,自引:0,他引:5  
Collagen IV dimers of two collagen IV molecules connected by their C-terminal globular NC1 domains were isolated by limited digestion with bacterial collagenase from mouse Engelbreth-Holm-Swarm (EHS) sarcoma tissue. The collagenous domains were only 300 nm long as compared to 400 nm of intact collagen IV but the disulfide bonds in the N-terminal region of the major triple helix were retained. Unfolding of the collagenous domains as monitored by circular dichroism occurred in a temperature range of 30 to 44 degrees C with a midpoint at 37 degrees C. The transition is significantly broader than that of the continuous triple helices in collagens I, II and III, a feature which can be explained by the frequent non-collagenous interruptions in the triple-helical domain of collagen IV. Refolding at 25 degrees C following complete unfolding at 50 degrees C was monitored by circular dichroism, selective proteolytic digestion of non-refolded segments and by a newly developed method in which the recovered triple-helical segments were visualized by electron microscopy. Triple-helix formation was found to proceed in a zipper-like fashion from the C-terminal NC1 domains towards the N-terminus, indicating that this domain is essential for nucleations. For collagen IV dimers with intact NC1 domains the rate of triple-helix growth was of comparable magnitude to that of collagen III, demonstrating that the non-collagenous interruptions do not slow down the refolding process where the rate-limiting step is the cis-trans isomerization of proline peptide bonds. Refolding was near to 100% and the refolding products were similar to the starting material as judged by thermal stability and electron microscopic appearance. Removal of the NC1 domains by pepsin or dissociation of their hexametric structures by acetic acid led to a loss of the refolding ability. Instead products with randomly dispersed short triple-helical segments were formed in a slow reaction. In no case, even when the disulfide bonds in the N-terminal region of the triple-helical domain were intact, was refolding from the N- towards the C-terminus observed. Taken together with results in other collagens, this suggests that C to N directionality might be an intrinsic property of triple-helix folding.  相似文献   

4.
NC1, the C-terminal non-collagenous globular domain of collagen IV, represents one of the two end regions responsible for the assembly and cross-linking of the extracellular network of basement membrane collagen. Several cDNA clones for the NC1 domain of the alpha 1(IV) collagen chain of mouse have been isolated by using synthetic oligonucleotides as screening probes for mouse libraries. The oligonucleotides were synthesized according to known stretches of the corresponding protein sequence. Sequencing of the overlapping cDNA clones allowed the complete amino acid sequence of the NC1 domain to be deduced as well as the C-terminal 165 amino acid residues of the triple helix. It consists of 229 amino acid residues which comprise two homologous regions with a high content of cysteine. These DNA and protein sequences are compared to the corresponding sequences of other collagens and discussed with respect to their structural and biological significance.  相似文献   

5.
Vascular basement membrane is an important structural component of blood vessels. During angiogenesis this membrane undergoes many alterations and these changes are speculated to influence the formation of new capillaries. Type IV collagen is a major component of vascular basement membrane, and recently we identified a fragment of type IV collagen alpha2 chain with specific anti-angiogenic properties (Kamphaus, G. D., Colorado, P. C., Panka, D. J., Hopfer, H., Ramchandran, R., Torre, A., Maeshima, Y., Mier, J. W., Sukhatme, V. P., and Kalluri, R. (2000) J. Biol. Chem. 275, 1209-1215). In the present study we characterize two different antitumor activities associated with the noncollagenous 1 (NC1) domain of the alpha3 chain of type IV collagen. This domain was previously discovered to possess a C-terminal peptide sequence (amino acids 185-203) that inhibits melanoma cell proliferation (Han, J., Ohno, N., Pasco, S., Monboisse, J. C., Borel, J. P., and Kefalides, N. A. (1997) J. Biol. Chem. 272, 20395-20401). In the present study, we identify the anti-angiogenic capacity of this domain using several in vitro and in vivo assays. The alpha3(IV)NC1 inhibited in vivo neovascularization in matrigel plug assays and suppressed tumor growth of human renal cell carcinoma (786-O) and prostate carcinoma (PC-3) in mouse xenograft models associated with in vivo endothelial cell-specific apoptosis. The anti-angiogenic activity was localized to amino acids 54-132 using deletion mutagenesis. This anti-angiogenic region is separate from the 185-203 amino acid region responsible for the antitumor cell activity. Additionally, our experiments indicate that the antitumor cell activity is not realized until the peptide region is exposed by truncation of the alpha3(IV)NC1 domain, a requirement not essential for the anti-angiogenic activity of this domain. Collectively, these results effectively highlight the distinct and unique antitumor properties of the alpha3(IV)NC1 domain and the potential use of this molecule for inhibition of tumor growth.  相似文献   

6.
We have isolated two overlapping cDNA clones covering 2425 base pairs encoding a short type VIII collagen chain synthesized by rabbit corneal endothelial cells. The cDNAs encode an open reading frame of 744 amino acid residues containing a triple-helical domain of 454 residues flanked by 117- and 173-residue amino and carboxyl non-triple-helical domains (called NC2 and NC1, respectively). Based on the identity between the DNA-derived amino acid sequence and the amino acid sequence of a type VIII collagen CNBr peptide obtained from rabbit corneal Descemet's membrane, we conclude that the cDNAs code for a type VIII collagen chain. We give this chain the designation alpha 1(VIII). The alpha 1(VIII) triple-helical domain contains eight imperfections in the Gly-X-Y repeated structure with Gly-X instead of a full triplet. The length of the triple-helical domain and number and relative locations of these imperfections are remarkably similar to those of chicken alpha 1(X) collagen. The amino acid sequence of the carboxyl three-quarters of the NC1 domain has high sequence similarity to that of alpha 1(X) collagen. These data suggest that the triple-helix coding portions and carboxyl three-quarters of the NC1 domains of the alpha 1(VIII) and alpha 1(X) genes have a common evolutionary origin.  相似文献   

7.
Collagens comprise a large superfamily of extracellular matrix proteins that play diverse roles in tissue function. The mechanism by which newly synthesized collagen chains recognize each other and assemble into specific triple-helical molecules is a fundamental question that remains unanswered. Emerging evidence suggests a role for the non-collagenous domain (NC1) located at the C-terminal end of each chain. In this study, we have investigated the molecular mechanism underlying chain selection in the assembly of collagen IV. Using surface plasmon resonance, we have determined the kinetics of interaction and assembly of the alpha1(IV) and alpha2(IV) NC1 domains. We show that the differential affinity of alpha2(IV) NC1 domain for dimer formation underlies the driving force in the mechanism of chain discrimination. Given its characteristic domain recognition and affinity for the alpha1(IV) NC1 domain, we conclude that the alpha2(IV) chain plays a regulatory role in directing chain composition in the assembly of (alpha1)(2)alpha2 triple-helical molecule. Detailed crystal structure analysis of the [(alpha1)(2)alpha2](2) NC1 hexamer and sequence alignments of the NC1 domains of all six alpha-chains from mammalian species revealed the residues involved in the molecular recognition of NC1 domains. We further identified a hypervariable region of 15 residues and a beta-hairpin structural motif of 13 residues as two prominent regions that mediate chain selection in the assembly of collagen IV. To our knowledge, this report is the first to combine kinetics and structural data to describe molecular basis for chain selection in the assembly of a collagen molecule.  相似文献   

8.
We have identified a point mutation in the type IV collagen alpha 5 chain gene (COL4A5) in Alport syndrome. Variant PstI (Barker et al., 1990, Science 248, 1224-1227), and BglII restriction sites with complete linkage with the Alport phenotype have been found in the 3' end of the COL4A5 gene in the large Utah Kindred P. The approximate location of the variant sites was determined by restriction enzyme mapping, after which this region of the gene (1028 bp) was amplified with the polymerase chain reaction (PCR) from DNA of normal and affected individuals for sequencing analysis. The PCR products showed the absence or presence of the variant PstI and BglII sites in DNA from normal and affected individuals, respectively. DNA sequencing revealed a single base change in exon 3 (from the 3' end) in DNA from affected individuals, changing the TGT codon of cysteine to the TCT codon for serine. This single base mutation also generated new restriction sites for PstI and BglII. The mutation involves a cysteine residue that has remained conserved in the carboxyl-end noncollagenous domain (NC domain) of all known type IV collagen alpha chains from Drosophila to man. It is presumably crucial for maintaining the right conformation of the NC domain, which is important for both triple-helix formation and the formation of intermolecular cross-links of type IV collagen molecules.  相似文献   

9.
We have previously identified three distinctive amino acid sequences from type IV collagen which specifically bound to heparin and also inhibited the binding of heparin to intact type IV collagen. One of these chemically synthesized domains, peptide Hep-I, has the sequence TAGSCLRKFSTM and originates from the a1(noncollagenous [NC1]) chain of type IV collagen (Koliakos, G. G., K. K. Koliakos, L. T. Furcht, L. A. Reger, and E. C. Tsilibary. 1989. J. Biol. Chem. 264:2313-2323). We describe in this report that this same peptide also bound to intact type IV collagen in solid-phase assays, in a dose-dependent and specific manner. Interactions between peptide Hep-I and type IV collagen in solution resulted in inhibition of the assembly process of this basement membrane glycoprotein. Therefore, peptide Hep-I should represent a major recognition site in type IV collagen when this protein polymerizes to form a network. In addition, solid phase-immobilized peptide Hep-I was able to promote the adhesion and spreading of bovine aortic endothelial cells. When present in solution, peptide Hep-I competed for the binding of these cells to type IV collagen- and NC1 domain-coated substrata in a dose-dependent manner. Furthermore, radiolabeled peptide Hep-I in solution also bound to endothelial cells in a dose-dependent and specific manner. The binding of radiolabeled Hep-I to endothelial cells could be inhibited by an excess of unlabeled peptide. Finally, in the presence of heparin or chondroitin/dermatan sulfate glycosaminoglycan side chains, the binding of endothelial cells to peptide Hep-I and NC1 domain-coated substrates was also inhibited. We conclude that peptide Hep-I should have a number of functions. The role of this type IV collagen-derived sequence in such diverse phenomena as self-association, heparin binding and cell binding and adhesion makes Hep-I a crucial domain involved in the determination of basement membrane ultrastructure and cellular interactions with type IV collagen-containing matrices.  相似文献   

10.
Binding of laminin to type IV collagen: a morphological study   总被引:18,自引:14,他引:4       下载免费PDF全文
A mixture of laminin and type IV collagen was analyzed by rotary shadowing using carbon/platinum and electron microscopy. Laminin was found to form distinct complexes with type IV collagen: one site of interaction is located 140 nm from the COOH-terminal, noncollagenous (NC1) domain and the other is located within the NH2-terminal region. The isolated NC1 fragment of type IV collagen does not appear to interact with laminin, while pepsin-treated type IV collagen, which lacks the NC1 domain, retains its ability to form complexes with laminin. Analysis of the laminin-type IV complexes indicates that laminin binds to type IV collagen via the globular regions of either of its four arms. This finding is supported by experiments using fragment P1 of laminin which lacks the globular regions and which does not bind to type IV collagen in a specific way. In addition, after heat-denaturation of laminin no specific binding is observed.  相似文献   

11.
The complete primary structure of the human type IV collagen alpha 2(IV) chain has been determined by nucleotide sequencing of cDNA clones. The overlapping cDNA clones cover 6,257 base pairs with a 5'-untranslated region of 283 base pairs, the 5,136-base pair open reading frame, and the 3'-untranslated region of 838 base pairs. The predicted amino acid sequence demonstrates that the complete translation product consists of 1,712 residues corresponding in molecular weight to 167,560. The translated polypeptide has a signal peptide of 36 amino acids, an amino-terminal noncollagenous part of 21 residues, a 1,428-residue collagenous domain with 23 interruptions, and a carboxyl-terminal noncollagenous (NC) domain of 227 residues. The calculated molecular mass of the mature human alpha 2(IV) chain is 163,774 Da.  相似文献   

12.
13.
A large kindred with adult-type X-linked Alport syndrome was studied with regard to a defect in the recently described COL4A5 collagen gene. Southern blot analysis with COL4A5 cDNA probes showed loss of a MspI restriction site. Direct sequencing of cDNA amplified from lymphoblast mRNA demonstrated a single-base substitution converting a glycine codon to arginine at position 325 in the alpha 5 chain of type IV collagen. The triple-helical collagenous domain of alpha 5(IV), characterized by a Gly-X-Y repeat sequence, is interrupted 22 times by noncollagenous sequences. The mutation creates an additional interruption in the Gly-X-Y repeat motif, between interruptions 4 and 5. It is interesting that such glycine substitutions inside the COL1A1 or COL1A2 genes have been associated with many cases of osteogenesis imperfecta. This gly325-to-arg substitution presumably alters the triple-helix formation, and, in turn, modifies the ultrastructural and functional characteristics of the type IV collagen network inside the glomerular basement membrane.  相似文献   

14.
Type IX collagen in cartilage consists of molecules composed of three genetically distinct polypeptide subunits. One of the subunits, alpha 2(IX), contains a covalently attached glycosaminoglycan side chain whereas a second subunit, alpha 1(IX), contains a large noncollagenous, amino-terminal domain called NC4. In this report, we describe for the first time the complete primary structure of this noncollagenous domain, based on cloning and sequencing of cDNA and genomic DNA as well as amino acid sequencing of tryptic peptides. Analysis of genomic clones has also allowed determination of the exon structure of NC4. Our results demonstrate that the noncollagenous, amino-terminal domain of alpha 1(IX) chains contains 266 amino acid residues (including the signal peptide) with 5 cysteinyl residues forming two disulfide bridges. The domain is basic with an estimated pI of 9.7, thus supporting the idea that it may participate in ionic interactions with polyanionic glycosaminoglycans in cartilage. Both the sequence and exon structure of the NC4 domain is unique among collagens and there is no obvious homology with the noncollagenous domains of other types of collagen, including the propeptides of fibrillar collagens.  相似文献   

15.
The noncollagenous domain of collagen from three different basement membranes of bovine origin (glomerular, lens capsule, and placental) was excised with bacterial collagenase, purified under nondenaturing conditions, and characterized. In each case the domain existed as a hexamer comprised of four distinct subunits (alpha 1 (IV) NC1, alpha 2 (IV) NC1, M2*, and M3). Each subunit exists in both monomeric and dimeric (disulfide-cross-linked) forms. Certain dimers also exist which contain nonreducible cross-links. The hexamers from the three membranes differ with respect to stoichiometry of subunits and subunit isoforms and to the degree of cross-linking of monomers into dimers. The minor subunits, M2* and M3, vary in quantity over a 20-fold range relative to the major ones among the three hexamers. The results indicate that: 1) at least two populations of triple-helical collagen molecules, differing in chain composition, exist in each membrane and that their relative proportions are tissue-specific; and 2) the chemical nature of the noncollagenous domain of these populations is tissue-specific with regard to subunit isoforms and relative proportion of reducible and nonreducible cross-links in dimers. A novel structural feature of the noncollagenous domain of basement membrane collagen was also evinced from these studies. Namely, that each of the four monomeric subunits exists in charge isoforms.  相似文献   

16.
Tumor progression may be controlled by various fragments derived from noncollagenous 1 (NC1) C-terminal domains of type IV collagen. We demonstrated previously that a peptide sequence from the NC1 domain of the alpha3(IV) collagen chain inhibits the in vitro expression of matrix metalloproteinases in human melanoma cells through RGD-independent binding to alpha(v)beta(3) integrin. In the present paper, we demonstrate that in a mouse melanoma model, the NC1 alpha3(IV)-(185-203) peptide inhibits in vivo tumor growth in a conformation-dependent manner. The decrease of tumor growth is the result of an inhibition of cell proliferation and a decrease of cell invasive properties by down-regulation of proteolytic cascades, mainly matrix metalloproteinases and the plasminogen activation system. A shorter peptide comprising the seven N-terminal residues 185-191 (CNYYSNS) shares the same inhibitory profile. The three-dimensional structures of the CNYYSNS and NC1 alpha3(IV)-(185-203) peptides show a beta-turn at the YSNS (188-191) sequence level, which is crucial for biological activity. As well, the homologous MNYYSNS heptapeptide keeps the beta-turn and the inhibitory activity. In contrast, the DNYYSNS heptapeptide, which does not form the beta-turn at the YSNS level, is devoid of inhibitory activity. Structural studies indicate a strong structure-function relationship of the peptides and point to the YSNS turn as necessary for biological activity. These peptides could act as potent and specific antitumor antagonists of alpha(v)beta(3) integrin in melanoma progression.  相似文献   

17.
We cloned three overlapping cDNAs covering 2,452 base pairs encoding a new basement membrane collagen chain, alpha 4(IV), from rabbit corneal endothelial cell RNA. Nucleotide sequence analysis demonstrated that the clones encoded a triple-helical domain of 392 1/3 amino acid residues and a carboxyl non-triple-helical (NC1) domain of 231 residues. We also isolated a genomic DNA fragment for the human alpha 4(IV) chain, which contained two exons encoding from the carboxyl end of the triple-helical domain to the amino end of the NC1 domain. Identification of the clones was based on the amino acid sequence identity between the cDNA-deduced amino acid sequence and the reported amino acid sequence obtained from a fragment of the alpha 4(IV) collagen polypeptide M28+ (Butkowski, R. J., Shen, G.-Q., Wieslander, J., Michael, A. F., and Fish, A. J. (1990) J. Lab. Clin. Med. 115, 365-373). When compared with four other type IV collagen chains, the NC1 domain contained 12 cysteinyl residues in positions identical to those of the residues in those chains. The domain demonstrated 61, 70, 55, and 60% amino acid similarity with human alpha 1, human alpha 2, bovine alpha 3, and human alpha 5 chains, respectively. The human genomic DNA fragment allowed us to map the alpha 4(IV) gene (COL4A4) to the 2q35-2q37.1 region of the human genome.  相似文献   

18.
We have determined the primary structure of the alpha 1(IV)-chain of human type IV collagen by nucleotide sequencing of overlapping cDNA clones that were isolated from a human placental cDNA library. The present data provide the sequence of 295 amino acids not previously determined. Altogether, the alpha 1(IV)-chain contains 1642 amino acids and has a molecular mass of 157625 Da. There are 1413 residues in the collagenous domain and 229 amino acids in the carboxy-terminal globular domain. The human alpha 1(IV)-chain contains a total of 21 interruptions in the collagenous Gly-X-Y repeat sequence. These interruptions vary in length between two and eleven residues. The alpha 1(IV)-chain contains four cysteine residues in the triple-helical domain, four cysteines in the 15-residue long noncollagenous sequence at the amino-terminus and 12 cysteines in the carboxy-terminal NC-domain.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号