首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of microbial lipids using crude glycerol from the biodiesel industry is reviewed in this paper. Approximately 10 wt.% of crude glycerol is obtained for every batch of biodiesel. The crude glycerol accumulated contains various impurities and hence cannot be used for any commercial applications without further purification. Its conversion via biological and chemical routes into valuable products has been studied by different researchers. Varieties of fungal, yeasts, and algal species have been used to produce microbial lipids from crude glycerol. However, research focus on screening a robust industrial oleaginous strain capable of doing this is still on-going. Due to its chemical similarity to vegetable oils, microbial lipids are considered a potential renewable feedstock for biodiesel production and for applications in food and pharmaceutical industries. Its conversion to polyols and subsequently to biobased polymers is also being explored. The rising price of vegetable oils, increasing energy demands, growing environmental concerns, and availability of crude glycerol as a cheap carbon substrate result in considerable potential for the application of these processes in the future.  相似文献   

2.
This study was focused on a comparison of growth and production properties of seven red yeast strains of the genus Rhodotorula, Sporobolomyces and Cystofilobasidium cultivated on glycerol substrate. Production of enriched yeast biomas and specific yeast metabolites (carotenoids, ergosterol, lipids) was evaluated on medium with glucose, pure technical glycerol and/or waste glycerol from biofuel production (40 g/L) and mixture of glycerol and glucose (1:3, 1:1, 3:1; C/N ratio 57 in all cultivations). All tested strains were able to utilize glycerol as the only carbon source. Production of biomass on waste glycerol was in most strains higher than in control as well as in medium with pure technical glycerol and reached 15.97–21.76 g/L. Production of carotenoids and ergosterol was better in glucose medium than in medium with glycerol only. Nevertheless, using glycerol medium with addition of glucose, higher yields of total carotenoids, beta-carotene and ergosterol were obtained than in control. The highest yields of total pigments were reached by Sporobolomyces roseus (3.60 mg/g cell dry weight (CDW); glycerol:glucose 1:3), Sporobolomyces salmonicolor (2.85 mg/g CDW; glycerol:glucose 1:3) and Rhodotorula glutinis (2.80 mg/g CDW; glycerol:glucose 3:1) In glucose medium, most tested strains except Cystofilobasidium capitatum (22.6 %) produced neutral lipids in the range of 11–15 %. Production of triacylglycerols in all strains was in 10–30 % better in glycerol medium, in which Rhodotorula aurantiaca and Sporobolomyces shibatanus also reached intracellular triacylglycerol concentrations up to 20 % of biomass. This study has shown that oleaginous red yeasts could have great potential for converting crude glycerol to valuable lipids and carotenoids in respect of efficient bioresources utilization.  相似文献   

3.
Glycerol and other fermentation products of apiculate wine yeasts   总被引:5,自引:2,他引:3  
Ninety-six strains of apiculate wine yeasts were studied for their ability to produce glycerol, acetaldehyde, ethyl acetate, sulphur dioxide and hydrogen sulphide in synthetic medium. Hanseniaspora guilliermondii produced smaller quantities of glycerol, acetaldehyde and hydrogen sulphide than Kloeckera apiculata , whereas the production of ethyl acetate and sulphur dioxide was found to be similar. Strains characterized by different capacities and properties were found for both species. The existence of apiculate strains differing in secondary compound production is of technological interest, as these yeasts constitute potential flavour producers. Selected strains of apiculate yeasts might favour an enhanced flavour formation and yield desirable characteristics to the final product.  相似文献   

4.
5.
The only species of fission yeasts capable of growing on glycerol or dihydroxyacetone were Schizosaccharomyces pombe and S. malidevorans. When growing on glycerol or grown on glucose until it was exhausted, these species contained glycerol:NAD+ 2-oxidoreductase and dihydroxyacetone kinase but no glycerol kinase, consistent with utilization of glycerol via dihydroxyacetone. When grown to exhaustion of glucose, S. octosporus, S. slooffiae and S. japonicus contained dihydroxyacetone kinase but no glycerol:NAD+ 2-oxidoreductase or glycerol kinase. Prior to exhaustion of glucose in the medium, all species contained dihydroxyacetone kinase, all species except S. japonicus contained glycerol:NADP+ 2-oxidoreductase, and only S. pombe and S. malidevorans contained glycerol:NAD+ 2-oxidoreductase. Possible roles for the glycerol:NAD+ 2-oxidoreductase, glycerol:NADP+ 2-oxidoreductase and dihydroxyacetone kinase in metabolism of glycerol and dihydroxyacetone are discussed.Non-standard abbreviations DHA dihydroxyacetone - DHAK dihydroxyacetone kinase - DHAP dihydroxyacetone phosphate - GK glycerol kinase - G2DH-NAD glycerol - NAD+ 2-oxidoreductase - G2DH-NADP glycerol - NADP+ 2-oxidoreductase - MEA malt extract agar - YEP yeast extract phosphate medium  相似文献   

6.
A specific phenomenon of polyalcohol production by yeasts in the medium containing high concentration of sodium chloride was described. Pichia miso, an excellent polyalcohol producing yeast, produced only one type of polyalcohol, namely glycerol, in the medium containing sodium chloride at high concentration, although the yeast could produce three kinds of polyalcohols, glycerol, d-arabitol and erythritol, in the medium containing high concentration of sugar. It was also found that the various yeasts of non-glycerol producing type, could produce a considerable amount of glycerol in the highly saline medium. This phenomenon suggests that the metabolic pathways of yeasts may be markedly altered by the high concentrations of salts.  相似文献   

7.
The influence of species of Acetobacter and Gluconobacter upon growth of the wine yeasts Saccharomyces cerevisiae, Kloeckera apiculata and Candida stellata was examined during mixed culture in grape juice. Acetobacter pasteurianus, A. aceti and Gluconobacter oxydans grew in conjunction with yeasts during juice fermentation. As determined by viable counts, yeast growth was only slightly impaired by the presence of bacteria. However, as judged by the concentrations of glucose, fructose, ethanol, glycerol, acetaldehyde, ethyl acetate, iso -amyl alcohol and organic acids in the fermented juice, acetic acid bacteria significantly influenced the alcoholic fermentation by yeasts.  相似文献   

8.
Yeasts from high-altitude lakes: influence of UV radiation   总被引:1,自引:0,他引:1  
Mountain lakes located at a high elevation are typically exposed to high UV radiation (UVR). Little is known about the ecology and diversity of yeasts inhabiting these extreme environments. We studied yeast occurrence (with special emphasis on those producing carotenoid pigments) at five high-altitude (>1400 m a.s.l.) water bodies located in the Nahuel Huapi National Park (Bariloche, Argentina). Isolates were identified using a polyphasic approach. Production of photoprotective compounds (carotenoids and mycosporines) by yeast isolates, and UVB resistance of selected species were studied. All water samples contained viable yeast cells in variable numbers, generally ranging from 49 to 209 cells L−1. A total of 24 yeast species was found; at least four represented novel species. Carotenogenic yeasts prevailed in lakes with low water conductivity and higher transparency and chlorophyll a levels. Apparently, the ability to produce photoprotective compounds in yeasts was related to the transparency of mountain lake waters, and strains from more transparent waters developed increased UVB resistance. Our results indicate that UVR is an important environmental factor affecting the yeast community structure in aquatic habitats.  相似文献   

9.
Seven-carbon (7-C) sugars and sugar alcohols are common in higher plants, algae, fungi and bacteria. The biochemical origin and physiological function of these monosaccharides in plants and algae however is not well understood and has not been fully investigated. Here the occurrence, metabolism, and transport of heptuloses, heptitols, and heptoses are integrated in accordance with function to emphasise the importance of these apparently neglected sugars. This therefore is the first comprehensive synthesis of knowledge about 7-C sugar biochemistry, a relatively underexplored area of carbohydrate biology that needs to be integrated into mainstream sugar research. Available information on the metabolism of heptuloses, heptitols, and heptoses in Medicago sativa (alfalfa), Persea americana (avocado), Primula sp., Kalanchoë pinnata, and the red alga Porphyridium sp. was thoroughly investigated and evaluated. Results indicate that 7-C sugars share a common precursor and are products of a TKT-dependent heptulose shunt in which Suc-derived Fru 6-P is converted either to Sed 7-P or mannoheptulose 7-P or both in competent tissues and species. In plants, free heptuloses probably arise as a consequence of phosphatase activity, whereas heptoses appear to be formed by isomerisation of the corresponding phloem translocated heptuloses following import into non-photosynthetic tissue. It is proposed that the major physiological function of 7-C sugars and heptitols, in addition to serving as a carbon sink, involves metal ion chelation, translocation and remobilisation to fulfil nutrient requirements essential for growth and development.  相似文献   

10.
Glycerol production by yeasts under osmotic and sulfite stress.   总被引:3,自引:0,他引:3  
The yeasts Saccharomyces cerevisiae, Candida boidinii, Pichia augusta, and Pichia anomala were tested for glycerol production both under osmotic stress and by addition of a sulfite-steering agent. The osmotic pressure was increased by employing glucose concentrations from 50 to 200 g/L and by supplementing with NaCl (40 g/L). Of all the yeasts, S. cerevisiae exhibited the highest level of osmotolerance. The increased osmotic pressure affected glycerol formation the most in C. boidinii. In both Pichia species, glycerol formation was not sufficiently induced when exposed to sugar and salt stress. The addition of 40 g/L Na2SO3 to the medium containing 100 g/L glucose shifted the metabolism of all yeasts towards glycerol formation. Saccharomyces cerevisiae achieved 68.6%, while C. boidinii reached 25.5% of the theoretical glycerol yield, respectively. The highest glycerol yield, 82.3% of the theoretical, was produced by S. cerevisiae under microaerophilic conditions.  相似文献   

11.
Glycerol production by microbial fermentation: a review   总被引:18,自引:0,他引:18  
Microbial production of glycerol has been known for 150 years, and glycerol was produced commercially during World War I. Glycerol production by microbial synthesis subsequently declined since it was unable to compete with chemical synthesis from petrochemical feedstocks due to the low glycerol yields and the difficulty with extraction and purification of glycerol from broth. As the cost of propylene has increased and its availability has decreased especially in developing countries and as glycerol has become an attractive feedstock for production of various chemicals, glycerol production by fermentation has become more attractive as an alternative route. Substantial overproduction of glycerol by yeast from monosaccharides can be obtained by: (1) forming a complex between acetaldehyde and bisulfite ions thereby retarding ethanol production and restoring the redox balance through glycerol synthesis; (2) growing yeast cultures at pH values near 7 or above; or (3) using osmotolerant yeasts. In recent years, significant improvements have been made in the glycerol production using osmotolerant yeasts on a commercial scale in China. The most outstanding achievements include: (1) isolation of novel osmotolerant yeast strains producing up to 130 g/L glycerol with yields up to 63% and the productivities up to 32 g/(L day); (2) glycerol yields, productivities and concentrations in broth up to 58%, 30 g/(L day) and 110-120 g/L, respectively, in an optimized aerobic fermentation process have been attained on a commercial scale; and (3) a carrier distillation technique with a glycerol distillation efficiency greater than 90% has been developed. As glycerol metabolism has become better understood in yeasts, opportunities will arise to construct novel glycerol overproducing microorganisms by metabolic engineering.  相似文献   

12.
The distribution and diversity of yeast species vectored by and from the crop of eight species groups of Drosophila is described for two rain forest sites and an urban wooded area in Rio de Janeiro, Brazil. The typical forest Drosophila groups guarani, tripunctata, and willistoni showed a higher diversity of yeasts than the cosmopolitan melanogaster species group, suggesting different strategies of utilization of substrates. Apiculate yeasts, including Kloeckera apis, Kloeckera javanica, and Kloeckera japonica, were the prevalent species. Geotrichum spp. and Candida citea were also frequent isolates in the forest sites. Similarities between the yeasts from the external surfaces and crops of Drosophila suggested that the feeding substrates were the main source of the yeasts vectored by these flies. Most of the yeasts were strong fermenters and assimilated few compounds, usually sucrose, cellobiose, and glycerol. This indicated a preference of the flies for food sources such as fruits. Some yeasts were primarily isolated from one group of Drosophila; for example, Kloeckera javanica from the melanogaster group, Debaryomyces vanrijiae var. yarrowii from the tripunctata group, and Kluyveromyces delphensis from the willistoni group. These associations and differences in the yeast communities among the fly groups suggested a differentiation of diets and specialization of the yeast-Drosophila association in the tropical forests.  相似文献   

13.
Enzyme activities involved in the initial step of glycerol metabolism were determined in cells of methylotrophic yeasts grown on glycerol, methanol or glucose. In Candida boidinii (Kloeckera sp.) No. 2201, the activities of glycerol kinase and dihydroxyacetone kinase were detected in cells grown on glycerol and methanol, respectively. The activity of NAD+-linked glycerol dehydrogenase of Hansenula polymorpha dl-1 was induced by glycerol and methanol, while that of Hansenula ofunaensis was induced by glycerol. The enzymes of both strains were subject to catabolite repression by glucose.

The yeasts tested were divided into three groups as to the glycerol dissimilation patterns. Strains of the genera Candida, Saccharomyces, Pichia and Torulopsis had the phosphorylative pathway, in which glycerol is first phosphorylated. H. ofunaensis had the oxidative pathway, in which glycerol is first oxidized. H. polymorpha dl-1 had both the phosphorylative and oxidative pathways.  相似文献   

14.
Production of glycerol by Hansenula anomala in molasses-corn steep liquor based media was studied. The accumulation and yield of glycerol was dependent on the medium composition and aeration rate; pH control did not affect the yield. Intermittent addition of sugar during fermentation resulted in significant increase in production of glycerol.  相似文献   

15.
高浓度盐对耐高渗酵母产多元醇的影响   总被引:2,自引:0,他引:2  
假丝酵母OS-300菌株在含有30%葡萄糖的高浓度基质中能产三种多元醇,甘油,阿拉伯醇和赤藓糖醇,但是在含18%NaCl的高浓度基质中产甘油,。同时,还发现几种原来不产甘油的耐高渗酵母在含有9%NaCl的高浓度培养液中也能形成大量的甘油,该现象表明:产多元醇耐高渗酵母的代谢途径可以在高盐浓度下被明显地改变。  相似文献   

16.
In the past, the fermentation activity of Saccharomyces cerevisiae in substrates with a high concentration of sucrose (HSuc), such as sweet bread doughs, has been linked inversely to invertase activity of yeast strains. The present work defines the limits of the relationship between invertase activity and fermentation in hyperosmotic HSuc medium. Fourteen polyploid, wild-type strains of S. cerevisiae with different invertase levels gave a similar ranking of fermentation activity in HSuc and in medium in which glucose and fructose replaced sucrose (HGF medium). Thus, invertase is unlikely to be the most important determinant of fermentation in sweet doughs. Yeasts produce the compatible solute-osmoprotective compound glycerol when exposed to hyperosmotic environments. Under low sugar concentrations (and nonstressing osmotic pressure), there was no correlation between glycerol and fermentation activities. However, there was a strong correlation between the ability of yeasts to ferment in HSuc or HGF medium and their capacity to produce and retain glycerol intracellularly. There was also a strong correlation between intracellular glycerol and fermentation activity of yeasts in a medium in which the nonfermentable sugar alcohol sorbitol replaced most of the sugars (HSor), but the ability to produce and retain glycerol was greater when yeasts were incubated in HGF medium under the same osmotic pressure. The difference between the amounts of glycerol produced and retained in HSor and in HGF media varied with strains. This implies that high fermentable sugar concentrations cause physiological conditions that allow for enhanced glycerol production and retention, the degree of which is strain dependent. In conclusion, one important prerequisite for yeast strains to ferment media with high concentrations of sugar is the ability to synthesize glycerol and especially to retain it.  相似文献   

17.
Pachysolen tannophilus has recently been shown to be able to convert d-xylose, a pentose, to ethanol. Previously, d-xylose had been considered to be nonfermentable by yeasts. The present study shows that the organism can be used to obtain ethanol from other carbohydrates previously considered as nonfermentable, either by P. tannophilus in particular, d-galactose, or by yeasts in general, glycerol. Such identification for d-galactose allows P. tannophilus to be considered for fermentation of four of the five major plant monosaccharides: d-glucose, d-mannose, d-galactose and d-xylose. The ability to ferment glycerol is of potential use, in part, for the conversion of glycerol derived from algae into ethanol.  相似文献   

18.
AIMS: The purpose of this work was to study the involvement of micro-organisms, which develop together with Botrytis cinerea on grapes, in the SO2 binding power of musts. METHODS AND RESULTS: Yeasts and bacteria were involved. Most bacteria were acetic acid bacteria, mainly of the Gluconobacter genus. Unlike oxidative yeasts, Gluconobacter produce gluconic acid (in balance with delta-gluconolactone) from glucose, 5-oxofructose from fructose and dihydroxyacetone from glycerol. Production of carbonyl compounds from other sugars and polyols was not detected or was very weak. CONCLUSION: Acetic acid bacteria are responsible for the increases in SO2 binding power of musts from botrytized grapes by oxidizing the three main sugars of these grapes. SIGNIFICANCE AND IMPACT OF THE STUDY: Up to 80% of the SO2 binds with products of Gluconobacter which easily grow on 'botrytized' grapes. Depending on climatic conditions, some vintages are particularly difficult to stabilize.  相似文献   

19.
Production of biodiesel from edible plant oils is quickly expanding worldwide to fill a need for renewable, environmentally-friendly liquid transportation fuels. Due to concerns over use of edible commodities for fuels, production of biodiesel from non-edible oils including microbial oils is being developed. Microalgae biodiesel is approaching commercial viability, but has some inherent limitations such as requirements for sunlight. While yeast oils have been studied for decades, recent years have seen significant developments including discovery of new oleaginous yeast species and strains, greater understanding of the metabolic pathways that determine oleaginicity, optimization of cultivation processes for conversion of various types of waste plant biomass to oil using oleaginous yeasts, and development of strains with enhanced oil production. This review examines aspects of oleaginous yeasts not covered in depth in other recent reviews. Topics include the history of oleaginous yeast research, especially advances in the early 20th century; the phylogenetic diversity of oleaginous species, beyond the few species commonly studied; and physiological characteristics that should be considered when choosing yeast species and strains to be utilized for conversion of a given type of plant biomass to oleochemicals. Standardized terms are proposed for units that describe yeast cell mass and lipid production.  相似文献   

20.
Production of mannitol from glycerol by resting cells of Candida magnoliae under aerobic condition was investigated. The resting cells were suspended in aqueous solution of glycerol in Erlenmeyer flasks and incubated on rotary shaker. The samples were analyzed by ion exclusion–HPLC equipped with refractive index and UV detector. The resting cells of C. magnoliae produced mannitol from fructose, sucrose and glycerol but not from glucose. Addition of yeast extract and/or potassium phosphate to the glycerol solution adversely affected its conversion to mannitol. The conversion of glycerol to mannitol was dependent on oxygen availability. Using resting cells, the yield of mannitol was as high as 45%. This is probably the first report of conversion of glycerol to mannitol by osmophilic yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号