首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The firing activity pattern of 50 slow-adapting pulmonary receptors (SAPR) was investigated in anesthetized cats under conditions of normal respiration and quasi-static and dynamic lung inflation. A non-linear relationship was found between change in activity rate and lung capacity during inspiration in 74% of SAPR; the rate rose in proportion to an increase in lung volume in a further 16%, and changes in the rate during the respiratory cycle followed a different atypical pattern in the remaining 10%. A non-linear relationship persisted between rate and volume during quasi-static inflation of the lungs in40% of the SAPR investigated (linear in 50% of cases). During dynamic inflation, nonlinear and linear SAPR numbered 70% and 20% respectively. Summated flow of impulses from all SAPR investigated stood in a non-linear relationship to lung volume during normal breathing. Reasons for the different relationships between the activity rate of individual SAPR and lung volume during normal pulmonary ventilation and during inflation of the lungs are discussed together with possible synaptic connections between pulmonary afferents and bulbar respiratory neurons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 4, pp. 518–525, July–August, 1988.  相似文献   

2.
We assessed the effects of chest wall distortion, changes in lung volume, and abolition of airway smooth muscle tone on the discharge patterns of 92 pulmonary slowly adapting receptors (SAR) in decerebrate, spontaneously breathing cats. Distortion resulted from their inspiratory efforts against an occluded airway at functional residual capacity and at increased end-expiratory lung volumes. Approximately 40% of SAR increased discharge frequencies during occlusions. Modulation of SAR discharge during occlusions persisted after administration of atropine to eliminate airway smooth muscle tone. Phasic modulation of SAR discharge was eliminated during no-inflation tests after paralyzing the cats and ventilating them on a cycle-triggered pump. We conclude 1) parasympathetic modulation of airway smooth muscle tone makes no obvious contribution to SAR discharge in spontaneously breathing cats; 2) the no-inflation test (withholding of lung inflation during neural inspiration) in paralyzed and ventilated cats is a valid test for the presence of projections from SAR to medullary respiratory neurons; and 3) in the absence of tidal volume changes, distortion stimulates some SAR. Sensory feedback from receptors in the lung, not just those in the chest wall, may therefore provide information about abnormal chest wall configurations.  相似文献   

3.
Odor perception depends on the odorant-evoked changes on Mitral/Tufted cell firing pattern within the olfactory bulb (OB). The OB exhibits a significant "ongoing" or spontaneous activity in the absence of sensory stimulation. We characterized this ongoing activity by simultaneously recording several single neurons in the mitral cell layer (MCL) of anesthetized rats and determined the extent of synchrony and oscillations under nasal and tracheal breathing. We recorded 115 neurons and found no significant differences in the mean firing rates between both breathing conditions. Surprisingly, nearly all single units exhibited a long refractory period averaging 14.4 ms during nasal respiration that was not different under tracheal breathing. We found a small incidence (2% of neurons) of gamma band oscillations and a low incidence (8.1%) of correlated firing between adjacent MCL cells. During nasal respiration, a significant oscillation at the respiratory rate was observed in 12% of cells that disappeared during tracheal breathing. Thus, in the absence of odorants, MCL cells exhibit a long refractory period, probably reflecting the intrinsic OB network properties. Furthermore, in the absence of sensory stimulation, MCL cell discharge does not oscillate in the gamma band and the respiratory cycle can modulate the firing of these cells.  相似文献   

4.
We monitored the steady-state ventilatory responses of anesthetized cats to increases in lung volume produced by expiratory threshold loads (ETL) to study the roles of peripheral and central neural mechanisms in controlling respiration at elevated lung volumes. Application of an ETL of 5 cmH2O produced a significant decrease in respiratory frequency (-18%) but no change in minute ventilation (VE) due to a significant increase in tidal volume (VT) (19.3%). The drop in frequency was due solely to an increase in expiratory duration. ETL of 10 cmH2O significantly reduced VE (-17.5%) for the same reason. VT was maintained or increased at elevated lung volumes due to both an increase in the rate of rise of phrenic activity and a maintenance of inspiratory duration (TI) despite increases in both chemical drive and pulmonary stretch receptor (PSR) activity. No PSR adapted completely to the maintained change in lung volume. The sensitivity of the inspiratory off-switch mechanism to increases in lung volume, given by the reciprocal of the VT-TI relationship, decreased significantly during breathing on ETL. The results are consistent with the hypothesis that central habituation, not just peripheral adaptation of PSR, determines breathing pattern at elevated lung volumes.  相似文献   

5.
 The goal of our study was to determine whether evidence for chaos in heart rate variability (HRV) can be observed when the respiratory input to the autonomic controller of heart rate is forced by the deterministic pattern associated with periodic breathing. We simultaneously recorded, in supine healthy volunteers, RR intervals and breathing volumes for 20 to 30 min (1024 data point series) during three protocols: rest (control), fixed breathing (15 breath/min) and voluntary periodic breathing (3 breaths with 2 s inspiration and 2 s expiration followed by an 8 s breath hold). On both the RR interval and breathing volume series we applied the non-linear prediction method (Sugihara and May algorithm) to the original time series and to distribution-conserved isospectral surrogate data. Our results showed that, in contrast to the control test, during both fixed and voluntary periodic breathing the variability of breathing volumes was clearly deterministic non-chaotic. During all the three protocols, the RR-interval series’ non-linear predictability was consistent with one of a chaotic series. However, at rest, no clear difference was observed between the RR-interval series and their surrogates, which means that no clear chaos was observed. During fixed breathing a difference appeared, and this difference seemed clearer during voluntary periodic breathing. We concluded that HRV dynamics were chaotic when respiration was forced with a deterministic non-chaotic pattern and that normal spontaneous respiratory influences might mask the normally chaotic pattern in HRV. Received: 7 August 1995 / Accepted in revised form: 20 March 1997  相似文献   

6.
Mechanisms of interaction between central and receptor neurons of the crayfish (the principal inhibitory neuron — PIN — and the slow-adapting stretch receptor — SAR) when functioning under different conditions were investigated: during regular spontaneous activity of SAR, grouped discharges of PIN, and regular spontaneous activity of PIN. A close connection was found between the various parameters of the PIN and SAR responses. Adaptation of SAR to the action of adequate, regular repetitive stimulation takes place faster in the presence of stationary background activity of PIN. The appearance and disappearance of SAR spike activity are determined by the ratio between the firing rates of SAR and PIN: at the moment of changeover the neuron with the higher firing rate is predominant.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Institute of Zoology, Academy of Sciences of the Moldavian SSR, Kishinev. Translated from Neirofiziologiya, Vol. 4, No. 4, pp. 429–438, July–August, 1972.  相似文献   

7.
We compared respiratory parameters during natural and self-controlled mechanical breathing to investigate mechanisms of respiratory control in alert humans. The self-control of mechanical breathing is realised manually: duration and velocity of air flow are controlled by left and right hands, resp. In this case, the respiratory afferent information is used to control activity of hand muscles but not of breathing muscles. The findings show that lung ventilation during self-controlled mechanical breathing increases by 7.5 l/min. at resting, by 6.3 l/min. during an exercise, as compared with the natural breathing. The increase in the lung ventilation occurs on account of an increase in the tidal volume but the frequency of the self-controlled mechanical breathing tends to be lesser at resting and was statistically significantly lower in exercise that at natural breathing. The exercise increases the lung ventilation by 13.0 l/min. at natural breathing and by 11.8 l/min. during self-controlled mechanical breathing. The findings suggest that the increased lung ventilation during self-controlled mechanical breathing is connected with creation of a new movement skill, and the modified pattern of self-controlled mechanical breathing is caused by a process of cortical transformation of respiratory afferents signals to efferent signals towards the hand muscles.  相似文献   

8.
In acute experiments on urethane-anesthetized rats, the respiratory effects ofmicroinjections of 10(-5), 10(-8) and 10(-10) M gastrin-releasing peptide (GRP) into the solitary tract nucleus were investigated. It was found that microinjections of the neuropeptide induced an increase in tidal volume, amplitude of diaphragm and external intercostal muscles firing activity and in expiratory duration. The most obvious respiratory responses observed when 10(-8) M GRP was used, while 10(-10) M GRP appeared to be sub-threshold and didn't alter the breathing pattern and activity of inspiratory muscles. In some experiments, where the blood pressure and the heart rate was monitored alone with breathing pattern, these parameters did not change after GRP microinjections into the solitary tract nucleus. The obtained data together with particularities of the distribution of GRP receptors in the brainstem suggest the possibility of GRP involvement into the respiratory control mechanisms at the level of solitary tract nucleus.  相似文献   

9.
Respiratory sinus arrhythmia (RSA) is related to cardiac vagal outflow and the respiratory pattern. Prior infant studies have not systematically examined respiration rate and tidal volume influences on infant RSA or the extent to which infants'' breathing is too fast to extract a valid RSA. We therefore monitored cardiac activity, respiration, and physical activity in 23 six-month old infants during a standardized laboratory stressor protocol. On average, 12.6% (range 0–58.2%) of analyzed breaths were too short for RSA extraction. Higher respiration rate was associated with lower RSA amplitude in most infants, and lower tidal volume was associated with lower RSA amplitude in some infants. RSA amplitude corrected for respiration rate and tidal volume influences showed theoretically expected strong reductions during stress, whereas performance of uncorrected RSA was less consistent. We conclude that stress-induced changes of peak-valley RSA and effects of variations in breathing patterns on RSA can be determined for a representative percentage of infant breaths. As expected, breathing substantially affects infant RSA and needs to be considered in studies of infant psychophysiology.  相似文献   

10.
Newborn infants, in contrast to adults, dynamically maintain end-expiratory lung volume (EEV) above relaxation volume. The purpose of this study was to determine at what age children develop a breathing strategy that is relaxed, i.e., determined by the mechanical characteristics of the lung and chest wall. Forty studies were performed in 27 healthy infants and children aged 1 mo to 8 yr during natural sleep. Volume changes were recorded with the use of respiratory inductance plethysmography (RIP). The volume signal was differentiated to yield flow. Flow-volume representations were generated for a random sample of the recorded breaths to determine the predominant breathing strategy utilized, i.e., relaxed, interrupted, or indeterminate. The respiratory pattern was predominantly interrupted below 6 mo of age and predominantly relaxed over 1 yr of age. Mixed patterns were observed in children 6-12 mo of age. The number of breaths that could not be classified (indeterminate) decreased with age. Respiratory frequency measured from the sample of breaths decreased with age and was accompanied by an increase in expiratory time. We conclude that a relaxed EEV develops at the end of the first year of life and may be related to changes in the mechanical properties of the chest wall associated with growth as well as changes in respiratory timing.  相似文献   

11.
The functional state of external respiration and the features of its regulation in healthy persons were studied under conditions of microgravity simulated using dry immersion. The lung volume, the ratio of thoracic and abdominal components during quiet breathing and performing various respiratory maneuvers, as well as the parameters that characterize the regulation of breathing (the duration of breath holding and the ability to voluntarily control respiratory movements), were recorded during the baseline period, on days 2 and 4 of dry immersion, and after the end of the dry immersion. It has been shown that the breathing pattern did not significantly change under conditions of dry immersion compared to the baseline period; however, the inspiratory reserve volume increased (p < 0.05), while the expiratory reserve volume decreased (p < 0.01). Dry immersion did not alter pulmonary ventilation, yet most of the subjects trended toward an increase in the contribution of the abdominal component of breathing movements during quiet breathing and demonstrated a statistically significant increase in this parameter during the lung vital capacity maneuver. The durations of the inspiratory and expiratory maximal breath holding under conditions of immersion did not differ from the background values. During the immersion, the accuracy of voluntary control of breathing increased. We believe that immersion, similar to microgravity, leads to changes in the reserve lung volume, which are partly because of changes in the body position; changes in relative contributions of the thoracic and abdominal components in the breathing movements; and changes in voluntary breath regulation.  相似文献   

12.
Negative pressure applied to the upper airway has an excitatory effect on the activity of upper airway muscles and an inhibitory effect on thoracic inspiratory muscles. The role of lung volume feedback in this response was investigated in 10 anesthetized spontaneously breathing adult rabbits. To alter lung volume feedback, the lower airway was exposed to SO2 (250 ppm for 15 min), thereby blocking slowly adapting receptors (SARs). Negative pressure pulses (5, 10, and 20 cmH2O, 300-ms duration) were applied to the functionally isolated upper airway before and after SAR blockade. Tracheal airflow and electromyogram (EMG) of the genioglossus and alae nasi were recorded. Peak EMG, peak inspiratory flow, tidal volume, and respiratory timing of control breaths (3 breaths immediately preceding test) and test breaths were determined. Analysis of variance was used to determine the significance of the effects. Negative pressure pulses increased peak EMG of genioglossus and alae nasi and inspiratory duration and decreased peak inspiratory flow. These effects were larger after SAR blockade. We conclude that a decrease in volume feedback from the lung augments the response to upper airway pressure change.  相似文献   

13.
Relaxed expirations were obtained from five anesthetized dogs under control conditions and during various rates of intravenous infusion of histamine. All volume vs. time curves obtained from 20 ms to 2 s after the start of expiration were poorly described by a single exponential function but were fitted very well by a biexponential function. The resistance of the respiratory system as a function of frequency from 2 to 26 Hz was also determined by the forced oscillation method in the same dogs. Three two-compartment models of the respiratory system were identified from the exponentials fitted to the relaxed expiration data, and the one that had the most plausible parameter values under control conditions consisted of a homogeneous lung compartment connected to a viscoelastic compartment. Although a two-compartment model is arguably appropriate for describing relaxed expirations in normal dogs, physiological considerations suggest that there should be more than two interacting components with histamine infusion. We cannot identify all these components from our data, however. The equivalent complex impedance of the respiratory system was also calculated from the biexponential curves and showed significant variation in resistance over the frequency range from 0 to 2 Hz and negligible variation above 2 Hz. The calculated resistances at 2 Hz were consistently higher than those obtained by the forced oscillation method, which may be due to the nonlinear behavior of the respiratory system during relaxed expiration. We conclude that the single-breath and forced oscillation methods should be viewed as providing complimentary information about respiratory resistance.  相似文献   

14.
Coordination of swallowing and respiration in unconscious subjects   总被引:2,自引:0,他引:2  
We investigated the coordination of swallowing and breathing in 11 unconscious patients with an endotracheal tube in place during the recovery period from general anesthesia. Swallows occurred during both the inspiratory and expiratory phases with no preponderant occurrence during either phase. When a swallow occurred during inspiration, the inspiration was interrupted immediately and was followed by expiration, but the durations of both inspiration and expiration were progressively increased as the time from the onset of inspiration to the onset of swallowing was progressively delayed. A swallow coinciding with the expiratory phase progressively prolonged the duration of the expiration that had been interrupted as the timing of swallowing was progressively delayed. Repeated swallows invariably and in a predictable manner caused changes in the breathing pattern. Thus when the frequency of regularly repeated swallows was relatively high, the breathing pattern was characterized by regular, shallow, and rapid breaths. When the frequency of regularly repeated swallows was relatively low, the breathing pattern was characterized by regular, deep, and slow breaths. When the frequency of repeated swallows was irregular, the breathing patterns were characterized by inconsistent changes in tidal volume and respiratory frequency. Our results indicate that, in unconscious subjects, some mechanisms integrating respiration and swallowing are operative and responsible for changes in breathing patterns during swallowing.  相似文献   

15.
Single units of slowly adapting pulmonary stretch receptors (PSRs) were investigated in anesthetized cats during spontaneous breathing on continuous positive airway pressure (2-5 cmH2O), before and after lung lavage and then after instillation of surfactant to determine the PSR response to surfactant replacement. PSRs were classified as high threshold (HT) and low threshold (LT), and their instantaneous impulse frequency (f imp) was related to transpulmonary pressure (Ptp) and tidal volume (Vt). Both the total number of impulses and maximal f imp of HT and LT PSRs decreased after lung lavage (55 and 45%, respectively) in the presence of increased Ptp and decreased Vt. While Ptp decreased markedly and Vt remained unchanged after surfactant instillation, all except one PSR responded with increased total number of impulses and maximal f imp (42 and 26%, respectively). Some HT PSRs ceased to discharge after lung lavage but recovered after surfactant instillation. The end-expiratory activity of LT PSRs increased or was regained after surfactant instillation. After instillation of surfactant, respiratory rate increased further with a shorter inspiratory time, resulting in a lower inspiratory-to-expiratory time ratio. Arterial pH decreased (7.31 +/- 0.04 vs. 7.22 +/- 0.06) and Pco2 increased (5.5 +/- 0.7 vs. 7.2 +/- 1.3 kPa) after lung lavage, but they were the same after as before instillation of surfactant (pH = 7.21 +/- 0.08 and Pco2 = 7.6 +/- 1.4 kPa) during spontaneous breathing. In conclusion, surfactant instillation increased lung compliance, which, in turn, increased the activity of both HT and LT PSRs. A further increase in respiratory rate due to a shorter inspiratory time after surfactant instillation suggests that the partially restored PSR activity after surfactant instillation affected the breathing pattern.  相似文献   

16.
We studied whether bronchodilatation occurs with exercise during the late asthmatic reaction (LAR) to allergen (group 1, n = 13) or natural asthma (NA; group 2, n = 8) and whether this is sufficient to preserve maximum ventilation (VE(max)), oxygen consumption (VO(2 max)), and exercise performance (W(max)). In group 1, partial forced expiratory flow at 30% of resting forced vital capacity increased during exercise, both at control and LAR. W(max) was slightly reduced at LAR, whereas VE(max), tidal volume, breathing frequency, and VO(2 max) were preserved. Functional residual capacity and end-inspiratory lung volume were significantly larger at LAR than at control. In group 2, partial forced expiratory flow at 30% of resting forced vital capacity increased greatly with exercise during NA but did not attain control values after appropriate therapy. Compared with control, W(max) was slightly less during NA, whereas VO(2 max) and VE(max) were similar. Functional residual capacity, but not end-inspiratory lung volume at maximum load, was significantly greater than at control, whereas tidal volume decreased and breathing frequency increased. In conclusion, remarkable exercise bronchodilation occurs during either LAR or NA and allows VE(max) and VO(2 max) to be preserved with small changes in breathing pattern and a slight reduction in W(max).  相似文献   

17.
Role of upper airway in ventilatory control in awake and sleeping dogs   总被引:1,自引:0,他引:1  
We examined the role of the upper airway in the regulation of the pattern of breathing in six adult dogs during wakefulness and sleep. The dogs breathed through a fenestrated endotracheal tube inserted through a tracheostomy. The tube was modified to allow airflow to be directed either through the nose or through the tracheostomy. When airflow was diverted from nose to tracheostomy there was an abrupt increase in the rate of expiratory airflow, resulting in prolongation of the end-expiratory pause but no change in overall expiratory duration or respiratory frequency. Furthermore, electromyogram recordings from implanted diaphragmatic and laryngeal muscle electrodes did not show any changes that could be interpreted as an attempt to delay expiratory airflow or increase end-expiratory lung volume. The effects of switching from nose to tracheostomy breathing could be reversed by adding a resistance to the endotracheal tube so as to approximate upper airway resistance. The findings indicate that under normal conditions in the adult dog upper airway receptors play little role in regulation of respiratory pattern and that the upper airway exerts little influence on the maintenance of end-expiratory lung volume.  相似文献   

18.
To evaluate the role of endothelin (ET) in respiratory homeostasis we studied the effects of the ET(A) and ET(B) receptor blocking agent bosentan on respiratory mechanics and control in seven anaesthetised spontaneously breathing pigs, for 180 min after single bolus administration (20 mg/kg i.v.). The results show that the block of ET receptors induced a significant increase in compliance and decrease in resistance of the respiratory system, entailing a significant reduction of diaphragmatic electromyographic activity, without affecting the centroid frequency of the power spectrum. Bosentan administration induced a significant increase in tidal volume (V(T)), accompanied by a significant decrease in respiratory frequency, without any significant change in pulmonary ventilation, CO(2) arterial blood gas pressure or pH. Since the relationship between V(T) and inspiratory time remained substantially constant after bosentan administration, the changes in respiratory pattern appear to be the result of an upward shift in inspiratory off-switch threshold. Both inspiratory and expiratory times during occluded breathing were increased by block of ET receptors, suggesting also a central respiratory neuromodulator effect of ET. In conclusion the present results suggest that the block of ET receptors in spontaneously breathing pigs exerts a role on mechanical properties of the respiratory system as well as on peripheral and central mechanisms of breathing control.  相似文献   

19.
In acute experiments on anesthetized rabbits we investigated the spike activity of cold fibers of the infraorbital nerve during a steady decrease in skin temperature from 39 to 7°C at a rate of 0.8 ± 0.05°/min. Analysis of interspike intervals (ISI) in the firing of receptors demonstrated that in the investigated range of skin temperatures the ISI histograms changed significantly several times, reflecting a shift in the pattern of firing. In addition, the reactions of each cold thermoreceptor had individual aspects, which lays the foundation for discussion of the perception of various characteristics of the temperature stimulus of the set of thermoreceptors.I. P. Pavlov Physiology Institute, Russian Academy of Sciences, Saint Petersburg. Translated from Neirofiziologiya, Vol. 24, No. 5, pp. 559–566, September–October, 1992.  相似文献   

20.
The purpose of this study was to describe the distribution and activity pattern of respiratory neurons located in the ventrolateral medulla (VLM) of the dog. Spike activity of 129 respiratory neurons was recorded in 23 ketamine-anesthetized spontaneously breathing dogs. Pontamine blue dye was used to mark the location of each neuron. Most VLM neurons displaying respiratory related spike patterns were located in a column related closely to ambigual and retroambigual nuclei. Both inspiratory and expiratory neurons were present with inspiratory units being grouped more rostrally. The predominant inspiratory neuron firing pattern was "late" inspiratory, although eight "early" types were located. All expiratory firing patterns were the late expiratory variety. Each neuron burst pattern was characterized by determining burst duration (BD), spikes per burst (S/B), peak frequency (PF), time to peak frequency (TPF), rate of rise to peak frequency (PF/TPF), and mean frequency. CO2-induced minute ventilation increases were associated with decreases in BD and TPF and increases in PF, S/B, and PF/TPF. In 11 experiments the relative influences of vagotomy and tracheal occlusion on late inspiratory units were compared. Tracheal occlusion increased late inspiratory BD and S/B but did not alter PF/TPF. Vagotomy increased BD and S/B beyond those obtained by tracheal occlusion and, in some neurons, decreased the PF/TPF. We conclude that the location of respiratory units in the VLM of the dog is similar to that in other species, the discharge pattern of VLM respiratory units is similar to those in cat VLM, and vagotomy and tracheal occlusion affect discharge patterns differently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号