首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have examined structural interactions between Gag proteins within Moloney murine leukemia virus (M-MuLV) particles by making use of the cysteine-specific cross-linking agents iodine and bis-maleimido hexane. Virion-associated wild-type M-MuLV Pr65Gag proteins in immature particles were intermolecularly cross-linked at cysteines to form Pr65Gag oligomers, from dimers to pentamers or hexamers. Following a systematic approach of cysteine-to-serine mutagenesis, we have shown that cross-linking of Pr65Gag occurred at cysteines of the nucleocapsid (NC) Cys-His motif, suggesting that the Cys-His motifs within virus particles are packed in close proximity. The M-MuLV Pr65Gag protein did not cross-link to the human immunodeficiency virus Pr55Gag protein when the two molecules were coexpressed, indicating either that they did not coassemble or that heterologous Gag proteins were not in close enough proximity to be cross-linked. Using an assembly-competent, protease-minus, cysteine-minus Pr65Gag protein as a template, novel cysteine residues were generated in the M-MuLV capsid domain major homology region (MHR). Cross-linking of proteins containing MHR cysteines showed above-background levels of Gag-Gag dimers but also identified a novel cellular factor, present in virions, that cross-linked to MHR residues. Although the NC cysteine mutation was compatible with M-MuLV particle assembly, deletions of the NC domain were not tolerated. These results suggest that the Cys-His motif is held in close proximity within immature M-MuLV particles by interactions between CA domains and/or non-Cys-His motif domains of the NC.  相似文献   

2.
Human immunodeficiency virus type 1 particles form by budding at the surface of most cell types. In this process, a piece of the plasma membrane is modified into an enveloped virus particle. The process is driven by the internal viral protein Pr55(gag). We have studied how host proteins in the membrane are dealt with by Pr55(gag) during budding. Are they included in or excluded from the particle? The question was approached by measuring the relative concentrations of host and viral proteins in the envelope of Pr55(gag) particles and in their donor membranes in the cell. We observed that the bulk of the host proteins, including actin and clathrin, were passively included into the virus-like Gag particles. This result suggests that budding by Pr55(gag) proceeds without significant alteration of the original host protein composition at the cell membrane. Nevertheless, some proteins were concentrated in the particles, and a few were excluded. The concentrated proteins included cyclophilin A and Tsg-101. These were recruited to the plasma membrane by Pr55(gag). The membrane-bound cyclophilin A was concentrated into particles as efficiently as Pr55(gag), whereas Tsg-101 was concentrated more efficiently. The latter finding is consistent with a role for Tsg-101 in Gag particle release.  相似文献   

3.
M Hansen  L Jelinek  S Whiting    E Barklis 《Journal of virology》1990,64(11):5306-5316
We have studied the process of Moloney murine leukemia virus (M-MuLV) assembly by characterization of core (gag) protein mutants and analysis of wild-type (wt) gag proteins produced by cells in the presence of the ionophore monensin. Our genetic studies involved examination of linker insertion mutants of a Gag-beta-galactosidase (Gag-beta-gal) fusion protein, GBG2051, which is incorporated into virus particles when expressed in the presence of wt viral proteins. Analysis indicated that the amino-terminal two-thirds of the gag matrix domain is essential for targeting of proteins to the plasma membrane; mutant proteins localized to the cytoplasm or were trapped on intracellular membranes. Mutations through most of the coding region of the gag capsid domain generated proteins which were released from cells in membrane vesicles but not in virions. In contrast, linker insertions into p12gag or carboxy-terminal portions of the matrix or capsid coding regions did not affect assembly of fusion proteins into virus particles. Monensin, which blocks vesicular transport, inhibited gag protein intracellular transport and release from cells. Our results suggest that a significant proportion of M-MuLV myristylated gag proteins travel via vesicles to the cell surface. Specific matrix protein polypeptide regions and myristic acid modification are both necessary for appropriate gag protein transport, while capsid protein interactions appear to mediate the final phase of virion formation.  相似文献   

4.
The assembly and budding of human immunodeficiency virus type 1 (HIV-1) at the plasma membrane are directed by the viral core protein Pr55(gag). We have analyzed whether Pr55(gag) has intrinsic affinity for sphingolipid- and cholesterol-enriched raft microdomains at the plasma membrane. Pr55(gag) has previously been reported to associate with Triton X-100-resistant rafts, since both intracellular membranes and virus-like Pr55(gag) particles (VLPs) yield buoyant Pr55(gag) complexes upon Triton X-100 extraction at cold temperatures, a phenotype that is usually considered to indicate association of a protein with rafts. However, we show here that the buoyant density of Triton X-100-treated Pr55(gag) complexes cannot be taken as a proof for raft association of Pr55(gag), since lipid analyses of Triton X-100-treated VLPs demonstrated that the detergent readily solubilizes the bulk of membrane lipids from Pr55(gag). However, Pr55(gag) might nevertheless be a raft-associated protein, since confocal fluorescence microscopy indicated that coalescence of GM1-positive rafts at the cell surface led to copatching of membrane-bound Pr55(gag). Furthermore, extraction of intracellular membranes or VLPs with Brij98 yielded buoyant Pr55(gag) complexes of low density. Lipid analyses of Brij98-treated VLPs suggested that a large fraction of the envelope cholesterol and phospholipids was resistant to Brij98. Collectively, these results suggest that Pr55(gag) localizes to membrane microdomains that are largely resistant to Brij98 but sensitive to Triton X-100, and these membrane domains provide the platform for assembly and budding of Pr55(gag) VLPs.  相似文献   

5.
All gammaretroviruses, including murine leukemia viruses (MuLVs), feline leukemia viruses, and gibbon-ape leukemia virus, encode an alternate, glycosylated form of Gag polyprotein (glyco-Gag or gPr80gag) in addition to the polyprotein precursor of the viral capsid proteins (Pr65gag). gPr80gag is translated from an upstream in-frame CUG initiation codon, in contrast to the AUG codon used for Pr65gag. The role of glyco-Gag in MuLV replication has been unclear, since gPr80gag-negative Moloney MuLV (M-MuLV) mutants are replication competent in vitro and pathogenic in vivo. However, reversion to the wild type is frequently observed in vivo. In these experiments, in vivo inoculation of a gPr80gag mutant, Ab-X-M-MuLV, showed substantially lower (2 log) initial infectivity in newborn NIH Swiss mice than that of wild-type virus, and revertants to the wild type could be detected by PCR cloning and DNA sequencing as early as 15 days postinfection. Atomic force microscopy of Ab-X-M-MuLV-infected producer cells or of the PA317 amphotropic MuLV-based vector packaging line (also gPr80gag negative) revealed the presence of tube-like viral structures on the cell surface. In contrast, wild-type virus-infected cells showed the typical spherical, 145-nm particles observed previously. Expression of gPr80gag in PA317 cells converted the tube-like structures to typical spherical particles. PA317 cells expressing gPr80gag produced 5- to 10-fold more infectious vector or viral particles as well. Metabolic labeling studies indicated that this reflected enhanced virus particle release rather than increased viral protein synthesis. These results indicate that gPr80gag is important for M-MuLV replication in vivo and in vitro and that the protein may be involved in a late step in viral budding or release.  相似文献   

6.
A Moloney murine leukemia virus (M-MuLV) recombinant carrying the v-src gene of avian sarcoma virus was generated by the introduction of a cloned portion of v-src from Schmidt-Ruppin A avian sarcoma virus into a molecular clone of M-MuLV provirus at the recombinant DNA level. The v-src sequences (lacking a portion of the 5' end of v-src) were inserted into the p30 region of the M-MulV gag gene so that M-MuLV gag and v-src were in the same reading frame. Transfection of this chimeric clone, pMLV(src), into NIH 3T3 cells which were constitutively producing M-MuLV gag and pol protein resulted in the formation of foci of transformed cells. Infectious and transforming virus could be recovered from the transformed cells. This virus was designated M-MuLV(src). M-MuLV(src)-transformed cells contained two novel proteins of 78 and 90 kilodaltons. The 78-kilodalton protein, p78gag-src, contained both gag and src determinants, exhibited kinase activity in an immune kinase assay, and is probably a fusion of Pr65gag and src. The 90-kilodalton protein, which is of the appropriate size to be the gPr80gag fused to src, contained gag determinants as well as a V8 protease cleavage fragment typical of the carboxy terminus of avian sarcoma virus pp60src. However, it could not be immunoprecipitated with an anti-v-src serum. M-MuLV(src)-transformed cells showed elevated levels of intracellular phosphotyrosine in proteins, although the elevation was intermediate compared with cells transformed with wild-type v-src. M-MuLV and amphotropic murine leukemia virus pseudotypes of M-MuLV(src) were inoculated into newborn NIH Swiss mice. Inoculated mice developed solid tumors at the site of inoculation after 3 to 6 weeks, with most animals dying by 14 weeks. Histopathological analysis indicated that the solid tumors were mesenchymally derived fibrosarcomas that were both invasive and metastatic.  相似文献   

7.
Assembly of human immunodeficiency virus type 1 (HIV-1) is directed by the viral core protein Pr55gag. Depending on the cell type, Pr55gag accumulates either at the plasma membrane or on late endosomes/multivesicular bodies. Intracellular localization of Pr55gag determines the site of virus assembly, but molecular mechanisms that define cell surface or endosomal targeting of Pr55gag are poorly characterized. We have analyzed targeting of newly synthesized Pr55gag in HeLa H1 cells by pulse-chase studies and subcellular fractionations. Our results indicated that Pr55gag was inserted into the plasma membrane and, when coexpressed with the viral accessory protein Vpu, Pr55gag remained at the plasma membrane and virions assembled at this site. In contrast, Pr55gag expressed in the absence of Vpu was initially inserted into the plasma membrane, but subsequently endocytosed, and virus assembly was partially shifted to internal membranes. This endocytosis of Pr55gag required the host protein Tsg101. These results identified a previously unknown role for Vpu and Tsg101 as regulators for the endocytic uptake of Pr55gag and suggested that the site of HIV-1 assembly is determined by factors that regulate the endocytosis of Pr55gag.  相似文献   

8.
D Bonnet  P F Spahr 《Journal of virology》1990,64(11):5628-5632
In avian cells, the product of the gag gene of Rous sarcoma virus, Pr76gag, has been shown to be targeted to the plasma membrane, to form virus particles, and then to be processed into mature viral gag proteins. To explore how these phenomena may be dependent upon cellular (host) factors, we expressed the Rous sarcoma virus gag gene in a lower eucaryote, Saccharomyces cerevisiae, and studied the behavior of the gag gene product. We show here that Pr76gag is processed in yeast cells and that this processing is specific, since it is abolished in a mutant in which the active site of the gag protease has been destroyed. In this mutant, the uncleaved precursor is found associated with the yeast plasma membrane, yet no virus particles were detected in cells or in the culture medium. From our results, we can speculate either that in yeast cells, a host protease initiates Pr76gag processing in the cytosol or that in avian cells, an inhibitor prevents the processing until the viral particle is formed.  相似文献   

9.
Myristoylation of the Pr65gag protein from Moloney murine leukemia virus has been shown to be essential for virus particle formation [Rein et al., Proc. Natl. Acad. Sci. USA 83 (1986) 7246-7250], and by analogy, myristoylation of the human immunodeficiency virus (HIV) Gag precursor could possibly play a similar role. We have investigated the expression and myristoylation of the complete HIV Gag precursor Pr55gag in yeast, the subcellular localization of that protein, and the contribution of the myristoyl-glycine residue to this localization. Immunogold labelling of myristoylated Pr55gage with antibodies directed against HIV Gag products was apparent in the vicinity of the plasma membrane. On the contrary, non-myristoylated derivatives of Pr55gag were only detected in relatively well-defined regions of the cytoplasm. These results show that targeting and accumulation of the HIV Gag precursor, Pr55gag, at the plasma membrane occurs in yeast in the absence of other viral components and requires the N-myristoyl-glycine residue.  相似文献   

10.
11.
Targeting of the human immunodeficiency virus type 1 (HIV-1) Gag precursor Pr55(gag) to the plasma membrane, the site of virus assembly, is primarily mediated by the N-terminal matrix (MA) domain. N-myristylation of MA is essential for the stable association of Pr55(gag) with membranes and for virus assembly. We now show that single amino acid substitutions near the N terminus of MA can dramatically impair assembly without compromising myristylation. Subcellular fractionation demonstrated that Gag membrane binding was compromised to a similar extent as in the absence of the myristyl acceptor site, indicating that the myristyl group was not available for membrane insertion. Remarkably, the effects of the N-terminal modifications could be completely suppressed by second-site mutations in the globular core of MA. The compensatory mutations enhanced Gag membrane binding and increased viral particle yields above wild-type levels, consistent with an increase in the exposure of the myristyl group. Our results support a model in which the compact globular core of MA sequesters the myristyl group to prevent aberrant binding to intracellular membranes, while the N terminus is critical to allow the controlled exposure of the myristyl group for insertion into the plasma membrane.  相似文献   

12.
In HTG2 hamster cells infected with the replication-defective Gazdar murine sarcoma virus only immature virus particles are formed, with the uncleaved gag precursor Pr65 as the only major protein in the virion. We have investigated the structure of these particles by using in situ cross-linking followed by chemical and enzymatic cleavages of Pr65 to localize sites of lipid-protein and protein-protein interactions. Lipid-protein cross-links were localized within a 10-kDa fragment in the p15 region of Pr65. Homotypic protein-protein cross-links between Pr65 units were localized within the p15 regions and also within the p10 regions of Pr65. Similar data for processed gag proteins in Rauscher murine leukemia virus, a prototype of a mature C-type virus, suggest that these interactions of the gag precursor are not altered during maturation. To identify the sites of cross-linking within Pr65, we have developed a two-dimensional peptide mapping technique that is based on nearest neighbor analysis of fragments released by cyanogen bromide treatment of partial cleavage products in gel slices. In conjunction with cross-linking, the peptide mapping technique is a powerful means for localizing specific interactions on a polypeptide backbone.  相似文献   

13.
Retrovirus morphogenesis involves assembly of structural Gag polyproteins with subsequent budding from the plasma membrane, followed by proteolytic cleavage by the viral proteinase (PR) and extracellular maturation to the infectious virion. Intracisternal A-type particles (IAPs) are defective retroviruses that assemble and bud at the membranes of the endoplasmic reticulum (ER), where they remain as immature particles consisting exclusively of uncleaved polyproteins. To analyze requirements for intracellular polyprotein transport and PR activation, we constructed deletion and substitution mutations in the IAP gag gene, including the putative ER-targeting signal. Mutant polyproteins were transported to various intracellular locations, including the nucleus, the cytoplasm, the ER, and the plasma membrane. Interestingly, assembly of capsid-like particle structures occurred at almost all sites. However, only those polyproteins transported to the plasma membrane were efficiently and specifically cleaved by viral PR, with cleavage occurring predominantly within the virus particle. Thus, at least in the experimental system presented here, retroviral particle assembly can occur at almost any location within the cell, while polyprotein processing and, consequently, virion maturation are confined to a specific cellular site. These results suggest that a factor restricted to the plasma membrane is required to trigger PR activation and maturation of infectious retroviruses.  相似文献   

14.
The gag precursor polyprotein of Moloney murine leukemia virus (MuLV) is normally modified by myristylation of the N-terminal glycine. Previous work showed that the Pr65gag lacking the myristylation site does not associate with cellular membranes or assemble into virus particles. We now report that it also is not cleaved to the mature gag cleavage products within the cell and that it sediments as a free 65-kilodalton monomer in detergent-free cell extracts containing 0.3 M NaCl. Even when the cells containing the mutant are productively infected with wild-type MuLV, the mutant Pr65gag is not processed into cleavage products and is not incorporated into the virions produced by these cells. Thus, the mutant gag molecules seem unable to participate in the normal processes of self-assembly and maturation. We propose that myristate-mediated membrane association is an essential first step in MuLV assembly. This association may also play a role in budding of MuLV.  相似文献   

15.
M Ruta  M J Murray  M C Webb  D Kabat 《Cell》1979,16(1):77-88
Cells infected with a temperature-sensitive mutant (ts-26) of Rauscher murine leukemia virus (R-MuLV) or with wild-type virus were labeled with 35S-methionine, and cell extracts were examined for radioactive polypeptides which could be precipitated by monospecific antisera to viral proteins. When shifted from permissive (31 degrees C) to nonpermissive (39 degrees C) temperature, cells infected with ts-26 rapidly begin to accumulate gPr90enr, the glycoprotein precursor to the membrane envelope glycoprotein gp70 and to the membrane-associated protein p15E. Simultaneously, formation of these mature virion proteins ceases. In addition, lactoperoxidase-catalyzed surface labeling with 125I--iodine indicates that the plasma membrane of cells infected with ts-26 becomes depleted of gp70 antigens at 39 degrees C. Nevertheless, at 39 degrees C these cells release defective MuLVs which lack gp70 and p15E but contain an outer membrane. The released particles also contain an aberrantly processed form of the major virion core protein p30, and many of these virion cores have an unusual immature crescent shape. It has previously been reported that cells infected with the ts-26 mutant of R-MuLV process a 65,000 dalton precursor (Pr65gag) of the virion core proteins more slowly at 39 degrees C than do cells infected with wild-type virus (Stephenson, Tronick and Aaronson, 1975). Although we have confirmed these results, this effect is relatively small and it is known that various alterations of MuLV assembly can lead secondarily to inhibited processing of Pr65gag. We propose that the ts-26 mutant has a primary temperature-sensitive defect in membrane glycoprotein synthesis and that this change causes pleiotropic effects on core morphogenesis.  相似文献   

16.
To examine the potential role of the GAG precursor polyprotein in morphogenesis and assembly of the simian immunodeficiency virus (SIV), we have expressed the gag gene of SIVMac using a baculovirus expression vector. Infection of insect cells with recombinant virus containing the entire gag gene results in high expression of the GAG precursor protein, Pr57gag. The recombinant protein is myristylated and is released in the culture supernatant in an insoluble particulate form. A point mutation in the N-terminal glycine codon (Gly----Ala) inhibits myristylation. This mutated product is highly expressed but is not found in the culture supernatant. Electron microscopy and immunogold labelling of infected cells show that the native Pr57gag protein assembles into 100-120 nm virus-like particles that bud from the cell plasma membrane and are released in the culture supernatant. The unmyristylated protein also assembles into particulate structures which only accumulate inside the cells. These results demonstrate that the unprocessed GAG precursor of SIV can spontaneously assemble into particles in the absence of other viral proteins. Myristylation of the Pr57gag precursor is necessary for its association with the cell plasma membrane, for budding and for extracellular release.  相似文献   

17.
Murine AIDS (MAIDS) is characterized by severe lymphadenopathy and splenomegaly. The proliferation of the infected target B cells is also an important manifestation of the disease (M. Huang, C. Simard, D. G. Kay, and P. Jolicoeur, J. Virol. 65:6562-6571, 1991). The etiologic agent of MAIDS is a defective murine leukemia virus that is deleted of most of its pol and env genes and appears to encode a single protein, the Gag precursor Pr60gag protein. Pr60gag is myristylated and attached to the plasma membrane. To study the role myristylation on the function of Pr60gag, we have generated a myristylation-negative (Myr-) mutant of the MAIDS defective virus. We found that Myr- Pr60gag interacted less tightly with the plasma membrane. In addition, the Myr- MAIDS defective virus mutant was unable to induce expansion of infected cells and was nonpathogenic. These results emphasize the essential role of Pr60gag in the disease process. Our data also suggest that Pr60gag, once recruited to the cell membrane through its myristylation, interacts with other membrane-bound effectors to send signals to induce proliferation of the infected cells and to initiate immune dysfunctions.  相似文献   

18.
Murine acquired immunodeficiency syndrome is induced by a defective retrovirus. Sequencing of this defective viral genome revealed a long open reading frame which encodes a putative gag/fusion protein, N-MA-p12-CA-NC-COOH, (D. C. Aziz, Z. Hanna, and P. Jolicoeur, Nature (London) 338:505-508, 1989). We raised a specific antibody to the unique p12 domain of this gag fusion precursor, Pr60gag. We found that Pr60gag was indeed encoded by the defective viral genome both in cell-free translation reticulocyte extracts and in infected mouse fibroblasts. Pr60gag was found to be myristylated, phosphorylated, and attached to the cell membrane, like other helper murine leukemia virus (MuLV) gag precursors. Pr60gag was not substantially cleaved within the nonproducer cells and was not released from these cells. However, in the presence of helper MuLV proteins, it formed phenotypically mixed particles. In these particles, Pr60gag was only partially cleaved. In helper MuLV-producing cells harboring the defective virus, a gag-related p40 intermediate was generated both intracellularly and extracellularly. In these cells, Pr60gag appeared to behave as a dominant negative mutant, interfering with proper cleavage of helper Pr65gag. Our data indicate that Pr60gag is a major (and possibly the only) gene product of the defective murine acquired immunodeficiency syndrome virus and is likely to harbor some determinants of pathogenicity of this virus.  相似文献   

19.
The roles of the human immunodeficiency virus precursor polyproteins Pr55gag and Pr160gag-pol in viral core assembly were studied in CMT3-COS cells. To do this, the precursors were expressed separately by using a simian virus 40 late replacement vector system described previously. Consistent with previously published data, our results show that the Pr55gag precursor, when expressed alone, was able to form particles which had an immature morphology and that particle formation required the presence of a myristate addition signal at the amino terminus of the precursor. In contrast, the Pr160gag-pol precursor was not able to form particles when expressed alone, although it still underwent proteolytic processing. Coexpression of the two precursor polyproteins from separate vectors in the same cell resulted in processing of the Pr55gag in trans by the protease embedded in Pr160gag-pol and the formation of virus-like particles containing the products of both precursors. Proteolytic processing occurred independently of the presence of a functional myristate addition signal on either precursor. On the other hand, removal of myristate from one or the other precursor had nonreciprocal effects on virus particle formation. Cells expressing Pr55gag lacking myristate and Pr160gag-pol containing it did not produce particles. Cells expressing a myristylated Pr55gag and unmyristylated Pr160gag-pol still produced virus-like particles which contained nearly normal amounts of Pr160gag-pol. The results suggest that the incorporation of Pr160gag-pol into particles is largely determined by intermolecular protein-protein interactions between the two precursor polypeptides.  相似文献   

20.
DBA/2 mice carry a single endogenous ecotropic murine leukemia provirus designated Emv-3. Although this provirus appears to be nondefective by genomic restriction enzyme mapping, weanling mice do not produce virus and only about one-third of adult mice ever express virus. 5-Iododeoxyuridine and 5-azacytidine, two potent inducers of ecotropic virus expression, are relatively ineffective at inducing Emv-3 expression. However, the chemical carcinogen 7,12-dimethylbenz(a)anthracene can induce ecotropic virus expression in approximately 95% of treated DBA/2 mice. Previous experiments involving DNA transfection and marker rescue analysis of molecularly cloned Emv-3 DNA suggested that Emv-3 carries a small defect(s) in the gag gene, not detectable by restriction enzyme mapping, that inhibits virus expression in vivo and in vitro. Using a combination of approaches, including DNA sequencing, peptide mapping, and metabolic labeling of cells with [3H]myristate, we have demonstrated that the defect in Emv-3 most likely results from a single nucleotide substitution within the gene for p15gag that inhibits myristylation of the Pr65gag N terminus. Myristylation of Pr65gag is thought to be required for this protein to associate with the plasma membrane and is essential for virus particle formation. These results provide a conceptual framework for understanding how Emv-3 expression is regulated during development and after chemical induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号