首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Either vitamin D3 (or 1 alpha,25--(OH)2-D3) or hydrocortisone (HC) stimulated phosphate accumulation by organ-cultured embryonic chick duodenum. In combination, these two steroids stimulated phosphate uptake synergistically. Phosphate accumulation appeared to be independent of other vitamin D3-stimulated processes: CaBP concentration, cAMP concentration, or alkaline phosphatase activity. L-phenylalanine, a reported alkaline phosphatase inhibitor, when added to the culture medium progressively inhibited either D3- or HC-stimulated phosphate uptake subsequent to culture, but did not inhibit the synergistic action. Under these conditions L-phenylalanine had no consistent effect on alkaline phosphatase activity but unexpectedly, greatly inhibited vitamin D3-stimulated CaBP concentration, but only in the absence of HC. Some limited suggestion of an intestinal phosphoprotein sensitive to either vitamin D3 or HC was observed.  相似文献   

2.
The present studies were conducted to determine if hydrocortisone (HC) and/or 1,25-dihydroxycholecalciferol (1,25(OH)2D3) alter proliferative responses of the cultured duodenum, and if such alterations could be related to the known augmentation of 1,25(OH)2D3-induction of a specific, intestinal calcium-binding protein (CaBP) by glucocorticoids. HC stimulated proliferation in the duodenal epithelium, as indicated by increased DNA synthesis (3H-thymidine uptake), increased cell number/villus, and increased mitotic index after colchicine treatment. Goblet cell numbers were not significantly increased with any hormone treatment. The presence of 1,25(OH)2D3 alone did not affect proliferative responses. CaBP concentration as a function of tissue weight was 50% greater in HC stimulated intestine, indicating that the proliferogenic action of HC on the duodenum alone could not account for the glucocorticoid-1,25(OH)2D3 interaction in CaBP synthesis.  相似文献   

3.
Embryonic chick duodenum maintained in organ culture responds to vitamin D3 in the culture medium by increased cyclic AMP concentration, de novo synthesis of a specific calcium-binding protein and by increased uptake and transmucosal transport of radiocalcium. The presence of bovine PTH, porcine or salmon calcitonin had no effect on these intestinal responses suggesting that these hormones may have no direct effect on the vitamin D3-mediated, intestinal calcium absorptive mechanism.  相似文献   

4.
Duodena from 20-day-old chick embryos can be maintained in large scale organ culture on specially designed stainless-steel grids in contact with serum-free medium for 48 h with excellent preservation of mucosal structure at both the light and electron microscope levels. Although mitotic rate was subnormal, several other factors attest to the essential viability of the cultured intestine: L-leucine incorporation into protein, as well as the synthesis of a specific vitamin D3-induced calcium-binding protein (CaBP), increased over a 48-h culture period, and the electropotential gradient across the intestine was maintained throughout the culture period as was a concentration gradient for calcium. The tissue responded to vitamin D3 in the medium by synthesizing the calcium-binding protein within 6 h and by exhibiting enhanced 45Ca uptake within 12–24 h. Concentrations of vitamin D3, or its 25-hydroxylated derivative, higher than necessary for CaBP induction, also increased the activity of alkaline phosphatase. The 1,25-dihydroxylated derivative of vitamin D3, at a level extremely potent in CaBP induction, did not stimulate alkaline phosphatase. Mucosal to serosal transport of 45Ca could also be measured in everted duodenal sacs, subsequent to culture under similar conditions, and was also increased by vitamin D3 in the medium. Other embryonic organs, esophagus, stomach, liver, pancreas, lung, skin, and muscle, did not produce CaBP in response to vitamin D3 in the culture medium. However, CaBP-synthesizing capacity was present in the entire intestinal tract, exclusive of the rectum. 59Fe and 32P uptake by cultured duodenum were also stimulated by vitamin D3. The system has proven quite useful in the study of the vitamin D-mediated calcium absorptive mechanism but should be applicable to the study of the absorption of other nutrients, drugs, hormones, etc., as well as other studies of intestinal function.  相似文献   

5.
The vitamin D-induced calcium-binding protein (CaBP) was localized in histological sections of chick duodenum using the peroxidase-antiperoxidase immunocytochemical technique. The time-course of appearance of CaBP in rachitic chicks was investigated from 0 to 120 hr after stimulation by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). CaBP was not routinely detected at 0 hr after 1,25(OH)2D3 administration. CaBP was first noted in some, but not all, of the samples taken 2 hr following 1,25(OH)2D3 and was detected in all 2 1/2 hr samples. The number of CaBP-containing absorptive cells and the apparent CaBP concentration both increased to a maximum at about 16-24 hr. At later times, as CaBP free cells migrated up the villi, the CaBP-containing cells decreased in number, but even at 120 hr post 1,25(OH)2D3 dose there were significant numbers of CaBP-containing cells present. The relationships between time-course of CaBP location on intestinal villi, enterocyte migration rates, and the time-course of 1,25(OH)2D3 stimulated intestinal calcium transport are discussed.  相似文献   

6.
The parental cell line (P) of Caco-2 cells and two clones, BBe and TC7, were studied at 11 days postconfluence to test the facilitated diffusion model of vitamin D-mediated intestinal calcium absorption (CaTx). Nuclear vitamin D receptor (nVDR) and calbindin D(9k) (CaBP) were measured by Western blot; 1,25-hydroxyvitamin D(3) 24-hydroxylase (CYP24), CaBP, plasma membrane Ca-ATPase (PMCA), and Ca transport channel (CaT1) mRNA levels were examined by RT-PCR; and net apical-to-basolateral CaTx was examined after treating cells with vehicle or 10 nM calcitriol for 8 (mRNA levels) or 48 h (protein, CaBP mRNA, CaTx). nVDR level was lowest in BBe (38% P value) and directly related to CYP24 induction (TC7 = P, which were 1.56 times greater than BBe). nVDR was inversely related to the vitamin D-induced levels of CaT1 mRNA, CaBP mRNA, PMCA mRNA, and net CaTx, with the highest induction seen in BBe. Basal CaBP mRNA (86 times greater than P) and protein levels were highest in TC7 cells and were not associated with higher net CaTx, suggesting CaBP may not be rate limiting for CaTx in these cells.  相似文献   

7.
The exact role of calbindin D9k in vitamin D-mediated calcium absorption has been debated but remains unsettled. In 129/OlaHsd mice, calbindin D9k was found highest in duodenum (36-50%) and kidney (24-34%) followed by stomach, lung and uterus. Age does not affect the relative distribution of calbindin D9k but it does decline with age in duodenum of both male and female 129/Ola mice. Recently, we produced a null calbindin D9k mutant 129/OlaHsd mouse; this mouse proved to be indistinguishable from the wild-type in phenotype and in a serum calcium level regardless of age or gender. We have now examined directly whether the mutant mouse can absorb calcium from the intestine in response to the active form of vitamin D. The calbindin D9k null mutant mouse is fully able to absorb calcium from the intestine in response to 1,25-dihydroxyvitamin D3. It is, therefore, clear that calbindin D9k is not required for vitamin D-induced intestinal calcium absorption.  相似文献   

8.
The administration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) to rachitic chicks produces an increase in (a) RNA and protein synthesis, (b) calcium binding protein (CaBP) concentration, and (c) alkaline phosphatase activity in the duodenum. These events occur concomitantly with enhanced calcium transport. We inhibited RNA and protein synthesis in richitic chicks and measured the subsequent response to 1,25(OH)2D3. Actinomycin D, injected prior to and following 1,25(OH)2D3 administration, inhibited intestinal RNA polymerase activity, blocked the rise in serum calcium, reduced the amount of CaBP, and increased alkaline phosphatase activity. Cycloheximide injected in similar fashion, inhibited the 1,25(OH)2D3-mediated increase in intestinal protein synthesis, serum calcium, CaBP, and alkaline phosphatase activity. Neither inhibitor blocked the ability of 1,25(OH)2D3 to stimulate calcium transport as measured in isolated duodenal loops in vivo. The ability of either inhibitor to block 1,25(OH)2D3-mediated calcium transport despite inhibition of CaBP production and alkaline phosphatase activity (by cycloheximide) indicates that de novo RNA and protein synthesis, and in particular CaBP and alkaline phosphatase, are not required for the 1,25(OH)2D3 stimulation of calcium transport.  相似文献   

9.
We have previously described the molecular cloning of a cDNA fragment synthesized from rat duodenal mRNA coding for a 9000-dalton vitamin D-induced calcium-binding protein (9-kDa CaBP) (3). We now report the use of this cloned cDNA to study the cytological distribution of 9-kDa CaBP mRNA in rat duodenum by in situ hybridization. Tissue sections, fixed in ethanol:acetic acid, were hybridized to the 3H-cDNA probe and processed for autoradiography. The specificity of the CaBP mRNA-DNA hybrid formation was checked using 3H-labeled plasmid pBR322 DNA as a control probe. 9k-Da CaBP mRNA, visualized by silver grains, was found only in the absorptive epithelial cells, and the concentration was greater in the cells at the villous tips than in those of the crypts. The 9k-Da CaBP mRNA was observed mainly in the cytoplasm of the columnar cells and less frequently in the nucleus. Labeling was not seen in the brush border and goblet cells. The submucosa, with Brunner's glands and muscularis, also showed no specific 9-kDa CaBP mRNA concentration. This demonstration of 9-kDa CaBP gene activity in the columnar cells of the rat duodenum illustrates the usefulness of in situ hybridization for characterization of specific cells involved in the expression of 1,25(OH)2 D3 activity.  相似文献   

10.
Summary The molecular cloning of a cDNA fragment synthesised from rat duodenal mRNA coding for cholecalcin (calbindin), a 9000 Mr vitamin D-induced calcium-binding protein (CaBP), has been previously described. DNA/RNA hybridisation assays have been used to examine CaBP mRNA production in the uterine horns and duodena of pregnant (21 day) rats using the cloned CaBP cDNA. Northern hybridisation studies showed that the 32P cDNA sequence hybridised to a single 500–600 nucleotide species in both the uterus and the duodenum, thus demonstrating identical CaBP mRNA processing in both tissues. Dot blot hybridisation studies showed that the CaBP mRNA concentration was greatest in the duodenum while that of the uterine horns was about 10% of the duodenal level. The observed differences in CaBP mRNA levels correlate well with the in vivo CaBP concentrations. In situ hybridisation histochemistry using 3H cDNA revealed that CaBP mRNA visualised by silver grains was found in all the parts of the endometrium and the myometrium. However, CaBP mRNA was more concentrated in the outer and inner muscular fibres and in the luminal cells of the endometrium than in the stroma cells. These results demonstrate that the CaBP gene is expressed in specific cells of the rat uterus.  相似文献   

11.
Calbindin-D (vitamin D-induced calcium-binding protein; CaBP) is known to be present in blood at concentrations which vary directly with levels in the intestinal mucosa. Employing a sensitive radioimmunoassay and sampling mesentery venous blood, the present experiments demonstrated a direct relationship between intestinal calcium absorption and serum CaBP. Solutions containing 150 mM NaCl and 45Ca-labeled calcium chloride (5 or 20 mM) were placed in the lumen of ligated duodenal preparations in situ and mesentery venous blood sampled with time. The concentration of absorbed 45Ca in serum was maximal at 5 min, followed by a significant increase in mesentery CaBP maximizing at 15-20 min. Elevation of serum CaBP was not observed when calcium in the dosing solution was omitted or replaced by either glucose or glycine. The possible transfer of absorbed calcium from the enterocyte to the circulation as a CaBP complex was ruled out by calculations revealing that considerably more calcium was transferred than could be accounted for by the low and high affinity binding sites on the protein. It is proposed that vitamin D-dependent enhanced transcellular calcium transport constitutes a stimulus for the increased release of intestinal CaBP into the circulation.  相似文献   

12.
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) induces de novo biosynthesis of a specific calcium-binding protein (CaBP) in embryonic chick duodenum in organ culture. Using a highly sensitive and specific, peroxidase-antiperoxidase immunocytochemical procedure, 1,25(OH)2D3-induced CaBP in the organ-cultured duodenum was found only in the cytoplasm of absorptive cells, corresponding to its localization in rachitic chick duodenal cells after a single injection of 1,25(OH)2D3 in vivo. This observation, along with evidence correlating CaBP with calcium transport, strongly supports the use of the embryonic chick duodenal organ culture system as a physiologically relevant model of the vitamin D-dependent calcium absorptive mechanism.  相似文献   

13.
Betamethasone (50 micrograms/kg body weight/day) given to young pigs reduced calcium absorption, growth and plasma vitamin D dependent calcium binding protein (CaBP) concentration. No changes occurred in plasma 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and intestinal CaBP concentrations. 1,25(OH)2D3 (0.1 microgram/kg body weight/day) given with betamethasone increased calcium absorption although growth and plasma CaBP concentrations remained low. Intestinal CaBP levels remained unchanged. Plasma CaBP concentrations were not consistently related to intestinal CaBP or calcium absorption in the presence of betamethasone. We conclude that betamethasone-induced depression of calcium absorption was not mediated by alterations in intestinal CaBP, but the mechanism remains obscure.  相似文献   

14.
Several proteins from various animal tissues with possible transport function have been briefly described, with emphasis given to a vitamin D-induced calcium-binding protein (CaBP) implicated in calcium translocation across epithelial membranes. The latter protein was shown to be present in the small intestine, colon, kidney, and the uterus (shell gland) of the chicken. CaBP was also found in the small intestine of the rat, dog, bovine, and monkey. This protein has been isolated in high purity from chick intestinal mucosa and some of its properties determined. Its molecular weight is about 28,000, its formation constant, about 2.6 x 105 M-1, and its binding capacity, 1 calcium atom per protein molecule. Correlative studies have shown that CaBP concentration in intestinal mucosa varies with the calcium absorptive capacity of the gut, thereby suggesting that CaBP is intimately involved in the process of calcium absorption. CaBP has been localized in the brush border region of the intestinal absorptive cell and within goblet cells. Among other proteins mentioned were the intrinsic factor required for vitamin B12 absorption and the protein(s) associated with iron translocation.  相似文献   

15.
Mechanisms of intestinal calcium absorption   总被引:10,自引:0,他引:10  
Calcium is absorbed in the mammalian small intestine by two general mechanisms: a transcellular active transport process, located largely in the duodenum and upper jejunum; and a paracellular, passive process that functions throughout the length of the intestine. The transcellular process involves three major steps: entry across the brush border, mediated by a molecular structure termed CaT1, intracellular diffusion, mediated largely by the cytosolic calcium-binding protein (calbindinD(9k) or CaBP); and extrusion, mediated largely by the CaATPase. Chyme travels down the intestinal lumen in approximately 3 h, spending only minutes in the duodenum, but over 2 h in the distal half of the small intestine. When calcium intake is low, transcellular calcium transport accounts for a substantial fraction of the absorbed calcium. When calcium intake is high, transcellular transport accounts for only a minor portion of the absorbed calcium, because of the short sojourn time and because CaT1 and CaBP, both rate-limiting, are downregulated when calcium intake is high. Biosynthesis of CaBP is fully and CaT1 function is approximately 90% vitamin D-dependent. At high calcium intakes CaT1 and CaBP are downregulated because 1,25(OH)(2)D(3), the active vitamin D metabolite, is downregulated.  相似文献   

16.
The mechanism of calmodulin-stimulated alkaline phosphatase activity was studied in the rat. In calmodulin-treated rats (2.5 micrograms/animal, intraperitoneally) alkaline phosphatase (ALP) activity was elevated 11-fold in the ileum, 1.5-fold in the duodenum and calvarium, 3-fold in serum, and not at all in liver. The elevated ALP activity was prevented by prior treatment with flunarizine, a calcium channel blocker, and by W-7, a calmodulin antagonist. cAMP content in ileum paralleled the timing and changes in ALP activity, but was not elevated in the duodenum or calvarium. Calcium ionophore A23187 and calcitonin treatment also increased ileal, duodenal, and calvarial ALP activity, but by less than the response to calmodulin. All of these treatments caused a 2-fold elevation in serum 1,25-dihydroxyvitamin D-3 (1,25(OH)2D3) levels. Pretreatment of the animals with parathyroid hormone prevented the rise of both ALP activity and of 1,25(OH)2D3. Administration of 1,25(OH)2D3 alone stimulated a different pattern of increased ALP activity, greater in duodenum than ileum. The uptake of 45Ca by calmodulin was also elevated in ileum and calvarium. These data suggest that shifts in calcium movement, perhaps mediated by vitamin D, can alter ALP activity, and may provide a mechanism for rapid control of the secretion of this enzyme.  相似文献   

17.
The possible involvement of plasma calcium and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] in the regulation of the concentration of kidney calcium-binding protein (CaBP) was investigated. Chicks were fed diets varying in Ca2+ and P, with or without vitamin D. CaBP and 1,25(OH)2D3 were determined by competitive binding assays. A significant correlation between plasma and kidney 1,25(OH)2D3 was found, the linear regression equation of best-fit was plasma 1,25(OH)2D3 = 0.14 + 1.56 kidney 1,25(OH)2D3. In the vitamin D-fed chicks, kidney CaBP varied independently of the circulating or organ level of 1,25(OH)2D3 (P greater than 0.05), but was lower in the vitamin D-deficient than in the vitamin D-fed birds. A significant correlation was observed between kidney CaBP and plasma calcium (Cap). The regression equations were CaBP = Cap/(85.57-4.00 Cap) (R = 0.845) and CaBP = 0.0558 + 0.0404 Cap (R = 0.749), for vitamin D-treated and vitamin D-deficient chicks, respectively. The results suggest that the concentration of kidney CaBP is modulated by plasma calcium, but one or more of the vitamin D metabolites may be required for its synthesis.  相似文献   

18.
Renal calcium binding protein (CaBP), a vitamin D-dependent protein of 28,000 Mr, may be involved in calcium transport by cells of the renal tubule. The streptozotocin-diabetic rat is hypercalciuric and shows markedly decreased concentration of 1,25-dihydroxycholecalciferol [1,25-(OH)2D3] in serum and of CaBP in small intestine. To examine the relationship of renal CaBP in diabetes to 1,25-(OH)2D3 and urinary calcium excretion, renal CaBP, serum 1,25-(OH)2D3, and urinary calcium were measured in control, diabetic, and insulin-treated diabetic rats. Treatment of the diabetic rat with insulin decreased urinary calcium excretion and elevated 1,25-(OH)2D3 toward normal. Renal CaBP was found to be the same in controls and diabetics despite a tenfold difference in concentration of 1,25-(OH)2D3 in serum, and to be unaffected by insulin treatment, which elevated 1,25-(OH)2D3 by a factor of 7 above untreated diabetics. It is concluded that in the diabetic rat either (1) the threshold concentration of 1,25-(OH)2D3 for inducing synthesis of renal CaBP is set at a much lower level than that for intestinal CaBP, or (2) since both 1,25-(OH)2D3 and renal CaBP are produced in the kidney, 1,25-(OH)2D3 exerts a paracrine effect on renal CaBP production because of its high local concentration. The increased urinary calcium excretion in the untreated streptozotocin-diabetic rat is not secondary to an alteration in renal CaBP.  相似文献   

19.
The hormonally active form of vitamin D, 1,25-dihydroxy vitamin D3, is known to induce in the intestine and kidney of chicks the synthesis of a calcium-binding protein (CaBP). Here we report a correlation between the tissue levels of CaBP and the levels of apparent messenger RNA in total polysomes as determined by the vitamin D and dietary calcium status. Polysomes from pooled duodenal mucosa and kidney were prepared by the Mg2+ precipitation method. After translation in a heterologous, rabbit nuclease-treated reticulocyte system, the immunoprecipitated pellet of CaBP was dissolved and the proteins were separated on 10% sodium dodecyl sulfate-polyacrylamide gels. When 13 nmol of D3 was given to 4-week-old rachitic chicks which were sacrificed 48 h later, it was found that the duodenum had eightfold more apparent mRNA for CaBP in the polysomes than the kidney. This was also reflected in the values of CaBP/mg protein in these tissues (duodenum, 7 μg/mg vs kidney, 0.9 μ/mg). Also, after giving D3, there was a twofold increase in both apparent mRNA levels in the polysomes and in CaBP levels in the duodena of chicks which were raised on low-calcium diets versus chicks raised on high-calcium diets. While apparent mRNA for CaBP was present in polysomes from rachitic chick kidney, it was not detectable in the duodenum. From these studies it appears that the induction of CaBP by 1,25(OH)2D3 in both the intestine and kidney is determined by similar control mechanisms.  相似文献   

20.
Lead-binding properties of intestinal calcium-binding proteins   总被引:5,自引:0,他引:5  
The bovine and chick vitamin D-induced intestinal calcium-binding proteins (CaBP) bind lead. Bovine CaBP binds 2 atoms of lead/molecule, and chick CaBP binds 4 atoms of lead per molecule and these values are identical to those for calcium binding. 45Calcium-displacement studies indicate significantly higher affinities for lead than for calcium for both proteins. All evidence indicates that lead is bound to the 4 high affinity calcium-binding sites on chick CaBP and to the corresponding 2 high affinity sites on bovine CaBP, and that binding of lead to sulfhydryl groups is, relatively, not significant. Calmodulin, troponin C, and oncomodulin also bind lead with high affinities and in preference to calcium, indicating that lead binding is a general property of proteins belonging to the troponin C superfamily of calcium-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号