首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrogen fixation associated with grasses in Oregon.   总被引:1,自引:0,他引:1  
Nitrogen fixation associated with both natural grasslands and grain crops of Oregon was studied using the acetylene-reduction assay. A number of the grasses collected has some acetylene-reducing activity. Agrostis tenuis Sibth. had substantially greater activity than any of the other species, with a mean rate estimated at 37 g N2 fixed per hectare per day. Assuming 100 days of activity, about 3 kg of N2 would be fixed per hectare per year. This quantity of nitrogen may be important in the maintenance of this species under natural conditions. Nitrogen-fixing microorganisms were isolated from the root surfaces of some of the grasses. Cultures of Bacillus macerans, Bacillus polymyxa, and Enterobacter cloacoa were isolated from wheat roots as were two cultures which have not been assigned a specific taxonomic classification. Strains of N2-fixing Bacillus species and Gram-negative aerobic bacteria were isolated from Festuca and Agrostis.  相似文献   

2.
The clinical isolates from biopsy specimen human subcutaneous nodule developed orange-colored and wrinkled colonies on Sabouraud's dextrose agar at 24 C for 2 weeks. The isolates were aerobic and gram-positive. The bacteria were rod-shaped to coccoid and 1 x 5 microm in size. The assimilation tests revealed that the clinical isolate was identical to a reference strain of Nocardia veterana. A nucleotide sequence analysis of the 16S ribosomal DNA from the isolate and a reference strain of N. veterana showed 99.8% similarity. All data are consistent with the conclusion that the isolate in this human case of mycetoma is N. veterana.  相似文献   

3.
不同花生品种根瘤固氮特点及其与产量的关系   总被引:1,自引:0,他引:1  
花生根系着生根瘤,能够直接利用大气中的氮气作为氮源,在花生氮素供应中占有举足轻重的地位.而有关根瘤高效固氮的机理研究甚少.本研究在盆栽条件下,利用15N示踪技术,研究了19个花生品种根瘤固氮特点及其与产量的关系.结果表明: 不同品种根瘤数量、鲜质量、内含物质和固氮量等指标品种间存在显著差异.根瘤数量和鲜质量变异幅度分别为每盆170.59~696.15个和0.83~3.74 g,变异系数分别为36.1%和41.1%;豆血红蛋白含量和固氮酶活性变异幅度分别为每盆15.51~23.23 mg和2.75~20.46 μmol C2H4·h-1,变异系数分别为13.1%和57.2%,后者明显高于前者,表明固氮酶活性除受豆血红蛋白含量影响外,同时受到其他因素的影响.根瘤固氮和全氮积累量变异幅度分别为每盆0.71~1.82和2.16~3.72 g,变异系数分别为21.6%和12.9%,前者明显高于后者,表明花生根瘤固氮不足时,其他氮源在一定程度上能自动补偿根瘤留下的匮缺.花生以根瘤固氮为主,供氮比例平均占总氮量的2/5以上,最高可达50%,培育高供氮比例的品种,可作为花生减氮栽培的途径之一.上述指标中,除根瘤数量外,其余指标间以及这些指标与产量均呈极显著正相关,表明根瘤固氮生理指标与根瘤供氮能力及最终产量密切相关,提高这些指标有助于同时实现高产和化肥减施.  相似文献   

4.
Clostridium butyricum was grown with cellulolytic fungi on the substrates wheat straw and cellulose at a range of oxygen concentrations. The straw was not sterile and was inoculated with Sodaria alcina while the cellulose was sterile and was inoculated with Trichoderma harzianum as examples of cellulolytic organisms. The straw subsequently developed a mixed fungal population. Dinitrogen fixation was only significant at a reduced oxygen concentration: optima being 9.3 and 2.3% O2 for the straw and cellulose experiments, respectively. The efficiencies of N, fixation were 6 mg N per g straw decomposed and 2.3 mg N per g cellulose decomposed and N, fixation occurred only in the presence of significant cellulolysis. Both acetate and butyrate formation increased as the oxygen concentration decreased. With cellulose as a substrate, their formation correlated with a decrease in pH and an increase in final numbers of Cl. butyricum . The thickness of the anaerobic zone at the aerobic/anaerobic interface was linearly related to the square root of the oxygen concentration at the surface of the interface.  相似文献   

5.
Medicago truncatula (barrel medic) A17 is currently being sequenced as a model legume, complementing the sequenced root nodule bacterial strain Sinorhizobium meliloti 1021 (Sm1021). In this study, the effectiveness of the Sm1021-M. truncatula symbiosis at fixing N(2) was evaluated. N(2) fixation effectiveness was examined with eight Medicago species and three accessions of M. truncatula with Sm1021 and two other Sinorhizobium strains. Plant shoot dry weights, plant nitrogen content and nodule distribution, morphology and number were analysed. Compared with nitrogen-fed controls, Sm1021 was ineffective or partially effective on all hosts tested (excluding M. sativa), as measured by reduced dry weights and shoot N content. Against an effective strain, Sm1021 on M. truncatula accessions produced more nodules, which were small, pale, more widely distributed on the root system and with fewer infected cells. The Sm1021-M. truncatula symbiosis is poorly matched for N(2) fixation and the strain could possess broader N(2) fixation deficiencies. A possible origin for this reduction in effectiveness is discussed. An alternative sequenced strain, effective at N(2) fixation on M. truncatula A17, is Sinorhizobium medicae WSM419.  相似文献   

6.
Guar (Cyamopsis tetregonoloba (L.) may be grown when soil temperatures are potentially high enough at the time of planting to inhibit nodulation and N2 fixation. An experiment was conducted using controlled conditions to determine the influence of high root temperature on growth and N2 fixation of guar. The experiment included two strains of rhizobia, two varieties of guar, two mineral N treatments, and root temperatures of 34, 37, and 40°C. Plants were grown for 44 days. The root temperature of 40°C reduced N fixation by at least 80% and nodule weight by more than 50%. Significant interactions occurred between most factors in influencing nodulation, N2 fixation and dry matter production. Guar, nodulated by rhizobial strain GAR022-1 and fully dependent on N2 fixation or provided with starter mineral N (25 mg pot–1), was not influenced by the root temperature of 37°C as compared to 34°C. Nodulation and N2 fixation by strain 32H1 was reduced by at least 40% when no starter mineral N was provided and the root temperature was 37°C. Providing starter mineral N to one variety of guar doubled the quantity of N2 fixed by strain 32H1 at both 34 and 37°C but N2 fixation was lower at the higher root temperature. It appears that root temperatures between 37° and 40°C bracketed the critical root temperature for N2 fixation by nodulated guar and that the critical root temperature for guar dependent on mineral N was above 40°C.  相似文献   

7.
J. H. Becking 《Plant and Soil》1970,32(1-3):611-654
Summary A wide taxonomic range of non-leguminous dicotyledonous plants bear root nodules and are able to fix atmospheric nitrogen. These plants belong to the orders Casuarinales, Myricales, Fagales, Rhamnales, Coriariales, and Rosales. Actinomycetes are involved in the root-nodule symbiosis. Nitrogen fixation is inhibited by hydrogen and carbon monoxide. Combined nitrogen depress nodule formation, but nitrogen fixation still occurs in the presence of combined nitrogen in the medium. In nitrogen-free medium Alnus plants fix in one season of 48 weeks 500 mg N per plant and Ceanothus plants 760 mg N per plant. Fixation by the other plant species is about of the same order. Field estimates showed that the nitrogen increase of the soil was about 61.5–157 kg N per ha per annum, depending on the age of the trees, under Alnus, 58.5 kg N per ha per annum under Casuarina, about 60 kg N per ha per annum under Ceanothus, 27–179 kg N per ha per annum underHippopha? rhamnoides, and about 61.5 kg N per ha per annum underDryas drummondii with someShepherdia spp. Non-leguminous root nodules belong to two types: coralloid root nodules and root nodules where the apex of each nodule lobe produces a negatively geotropic root. The primary infection occurs through the root hairs where a curling effect is observed. In the host cells the endophyte presents itself in three forms: hyphae, vesicles and bacteria-like cells. Vesicles are probably associated with nitrogen fixation, whereas the bacteria-like cells function in the endophyte's survival and dispersal. The endophyte is an obligate symbiont. TheAlnus glutinosa endophyte has been isolated and grownin vitro in root-nodule callus tissue. However, the isolated endophyte produces only ineffective root nodules in re-inoculation tests.  相似文献   

8.
Two strains of facultatively anaerobic, N2-fixing bacteria were isolated from guts of Coptotermes formosanus and identified as Enterobacter agglomerans. The deoxyribonucleic acid base composition of isolates was 52.6 and 53.1 mol% guanine plus cytosine. Both isolates and a known strain of E. agglomerans carried out a mixed acid type of glucose fermentation. N2 fixation by E. agglomerans was inhibited by O2; consequently, N2 served as an N source only for cells growing anaerobically in media lacking a major source of combined N. However, peptone, NH4Cl, or KNO3 served as an N source under either aerobic or anaerobic conditions. It was estimated that 2 x 10(2) cells of E. agglomerans were present per termite gut. This value was 100-fold lower than expected, based on N2 fixation, low recoveries of E. agglomerans may be related to the marked decrease in N2 fixation rates observed when intact termites or their extracted guts were manipulated for the isolation of bacteria. It was concluded that the N2-fixing activity of E. agglomerans may be important to the N economy of C. formosanus.  相似文献   

9.
It has been shown that some aerobic, unicellular, diazotrophic cyanobacteria temporally separate photosynthetic O2 evolution and oxygen-sensitive N2 fixation. Cyanothece sp. ATCC strain 51142 is an aerobic, unicellular, diazotrophic cyanobacterium that fixes N2 during discrete periods of its cell cycle. When the bacteria are maintained under diurnal light-dark cycles, N2 fixation occurs in the dark. Similar cycling is observed in continuous light, implicating a circadian rhythm. Under N2-fixing conditions, large inclusion granules form between the thylakoid membranes. Maximum granulation, as observed by electron microscopy, occurs before the onset of N2 fixation, and the granules decrease in number during the period of N2 fixation. The granules can be purified from cell homogenates by differential centrifugation. Biochemical analyses of the granules indicate that these structures are primarily carbohydrate, with some protein. Further analyses of the carbohydrate have shown that it is a glucose polymer with some characteristics of glycogen. It is proposed that N2 fixation is driven by energy and reducing power stored in these inclusion granules. Cyanothece sp. strain ATCC 51142 represents an excellent experimental organism for the study of the protective mechanisms of nitrogenase, metabolic events in cyanobacteria under normal and stress conditions, the partitioning of resources between growth and storage, and biological rhythms.  相似文献   

10.
11.
Nostoc punctiforme ATCC 29133 is a nitrogen-fixing, heterocystous cyanobacterium of symbiotic origin. During nitrogen fixation, it produces molecular hydrogen (H(2)), which is recaptured by an uptake hydrogenase. Gas exchange in cultures of N. punctiforme ATCC 29133 and its hydrogenase-free mutant strain NHM5 was studied. Exchange of O(2), CO(2), N(2), and H(2) was followed simultaneously with a mass spectrometer in cultures grown under nitrogen-fixing conditions. Isotopic tracing was used to separate evolution and uptake of CO(2) and O(2). The amount of H(2) produced per molecule of N(2) fixed was found to vary with light conditions, high light giving a greater increase in H(2) production than N(2) fixation. The ratio under low light and high light was approximately 1.4 and 6.1 molecules of H(2) produced per molecule of N(2) fixed, respectively. Incubation under high light for a longer time, until the culture was depleted of CO(2), caused a decrease in the nitrogen fixation rate. At the same time, hydrogen production in the hydrogenase-deficient strain was increased from an initial rate of approximately 6 micro mol (mg of chlorophyll a)(-1) h(-1) to 9 micro mol (mg of chlorophyll a)(-1) h(-1) after about 50 min. A light-stimulated hydrogen-deuterium exchange activity stemming from the nitrogenase was observed in the two strains. The present findings are important for understanding this nitrogenase-based system, aiming at photobiological hydrogen production, as we have identified the conditions under which the energy flow through the nitrogenase can be directed towards hydrogen production rather than nitrogen fixation.  相似文献   

12.
A new isolate of Nocardia opaca was obtained by enrichment culture for aerobic lithoautotrophic growth on CO2 and H2. This strain, MR22, is very similar to N. opaca MR11 (formerly 1b) in functioning as a donor for genetic information determining the ability to grow lithoautotrophically (Aut character) in matings with Aut- strains of N. opaca or closely related heterotrophic species. The strain contains a plasmid, pHG33 of about 110 kb. A mutant was isolated from strain MR22 which was plasmid-free, and had lost the Aut character, resistance to 50 microM-thallium salt and susceptibility to the nocardia-specific bacteriophage phi B1. As a recipient of the Aut character, this plasmid-free mutant was as well suited as plasmid-bearing Aut- strains of N. opaca. In matings with the mutant as recipient the frequency of Aut+ transconjugants per donor was 3 X 10(-4) with N. opaca MR11 (pHG31-a, Aut+, Tlr, Strs, phi B1s) and 2 X 10(-3) with N. opaca MR22 (pHG33, Aut+, Tlr, Strs, phi B1r) as donor. Phenotypic characterization of the transconjugants, which had been selected for the Aut marker, revealed that in many cases the Aut marker had been transferred without plasmid transfer. Furthermore, plasmid-free, Aut+ transconjugants functioned as donors for the Aut marker. Both plasmid-free and plasmid-bearing transconjugants transferred the Aut marker to the Aut- strains of N. opaca with a frequency which was one or two orders of magnitude higher than that of the wild-type strains. The plasmids pHG31-a and pHG33 code for thallium resistance (50 microM-thallium acetate). The frequency of thallium-resistant transconjugants was 10(-1) to 10(-2) per donor; all thallium-resistant transconjugants contained the donor plasmid. We conclude that the plasmids pHG31-a of strain MR11 and pHG33 of strain MR22 of N. opaca carry the genetic information for thallium resistance but not the Aut character. As plasmid-free Aut+ strains can function as donors the Aut character is assumed to reside on the chromosome and to function as an independent self-transmissible genetic element.  相似文献   

13.
Summary Experiments were performed to measure the pH-sensitive steps in nodulation and symbiotic fixation byPisum sativum and isolate RP-212-1 ofRhizobium leguminosarum. An aeroponic system with rigorous pH control was used to obtain numerous effective nodules. After exposure to various pH levels, the following responses were measured: (1) legume root growth and development, (2) survival and growth rate of a single effective bacterial isolate, (3) degree of nodulation, (4) rate of nitrogen fixation, (5) plant biomass, and (6) nitrogen content of plants. Both bacterial growth and root development were adequate at all pH levels from 4.4 to 6.6, but efficient nodulation and nitrogen fixation did not occur at pH 4.8 and below. The processes required for symbiosis were about 10 times as sensitive to acidity as either bacterial growth or root growth alone. Nodulation was the most acid-sensitive step.  相似文献   

14.
Twenty naturally occurring strains of Bradyrhizobium japonicum in 11 serogroups were screened for the ability to take up Mo as bacteroids from soybean root nodules. The strains varied greatly in their ability to take up Mo in a 1-min period. The best strain was USDA 136, which had an Mo uptake activity of almost 3.0 pmol/min per mg of bacteroid (dry weight). In contrast, the poorest strain, USDA 62, had an Mo uptake activity of 0.35 pmol of Mo per min per mg of bacteroid. There were similarities in Mo uptake ability among most of the same serogroup members. The variability in Mo uptake rates between the best (USDA 136 and USDA 122) and poorest (USDA 62 and USDA 140) strains was attributed to their differing affinities for Mo. Double-reciprocal plots of velocity versus substrate indicated a Km for USDA 136 and USDA 122 of 0.045 and 0.054 microM, respectively, whereas strains USDA 62 and USDA 140 both exhibited an apparent Km for MoO42- of about 0.36 microM. The two strains with the higher-affinity Mo binding also accumulated four to five times as much Mo over a 30-min period as the other strains. Soybeans were grown in Mo-deficient and Mo-supplemented conditions after inoculation with the three top-ranking Mo uptake strains and the three poorest Mo uptake strains. Two separate greenhouse studies indicated that Mo supplementation significantly increased the N2 fixation activity of USDA 140 nodules; up to a 35% increase in specific nitrogen fixation activity of nodules due to Mo supplementation was observed. Strain USDA 62 nodule N2 fixation responded positively to Mo supplementation in one of the two experiments. The results indicate that MoO42- transport and, specifically, affinity for Mo by the bacteroid may ultimately affect symbiotic N2 fixation activity. Attempts to reactivate nitrogenase by adding molybdate to bacteroids from plants grown in Mo-deficient conditions were unsuccessful.  相似文献   

15.
A new ammonia-oxidizing strain, isolated from an aerobic biofilm in a domestic sewage-treatment system, was identified as a species of Nitrosomonas different from Nitrosomonas europaea. This strain had morphological features and growth characteristics typical of members of the genus Nitrosomonas. The G+C content of the DNA of this strain was 48.5 mol%, being lower than that of known strains of N. europaea. The extent of the homology between the DNA of this strain and that of other strains of N. europaea was less than 30%. After cells of this isolate, immobilized in a polyacrylamide gel, had been added to the aerobic reactor of a laboratory-scale sewage-treatment system, the concentration of ammonium nitrogen in the effluent decreased to 2 mg/l without the accumulation of nitrite, and removal of more than 70% of the nitrogen from the input sewage was achieved.  相似文献   

16.
Rhizobium sp. strain ORS571 conducts synergistic, free-living N2 fixation and nicotinate oxidation. Explicitly, ORS571 is able to fix N2 aerobically because 6-OH-nicotinate acts as an intracellular O2 sink. Because 6-OH-nicotinate oxidation is mandatory for aerobic, free-living N2 fixation and because the synergistic processes yield ammonium from substrates (as the nitrogen source for growth), ORS571 is not a diazotroph.  相似文献   

17.
Azoarcus sp. strain BH72 is an aerobic diazotrophic bacterium that was originally found as an endophyte in Kallar grass. Anticipating that these bacteria are exposed to dissolved O2 concentrations (DOCs) in the nanomolar range during their life cycle, we studied the impact of increasing O2 deprivation on N2 fixation and respiration. Bacteria were grown in batch cultures, where they shifted into conditions of low pO2 upon depletion of O2 by respiration. During incubation, specific rates of respiration (qO2) and efficiencies of carbon source utilization for N2 reduction increased greatly, while the growth rate did not change significantly, a phenomenon that we called "hyperinduction." To evaluate this transition from high- to low-cost N2 fixation in terms of respiratory kinetics and nitrogenase activities at nanomolar DOC, bacteria which had shifted to different gas-phase pO2s in batch cultures were subjected to assays using leghemoglobin as the O2 carrier. As O2 deprivation in batch cultures proceeded, respiratory Km (O2) decreased and Vmax increased. Nitrogenase activity at nanomolar DOC increased to a specific rate of 180 nmol of C2H4 min-1 mg of protein-1 at 32 nM O2. Nitrogenase activity was proportional to respiration but not to DOC in the range of 12 to 86 nM O2. Respiration supported N2 fixation more efficiently at high than at low respiratory rates, the respiratory efficiency increasing from 0.14 to 0.47 mol of C2H4 mol of O2 consumed-1. We conclude that (i) during hyperinduction, strain BH72 used an increasing amount of energy generated by respiration for N2 fixation, and (ii) these bacteria have a high respiratory capacity, enabling them to develop ecological niches at very low pO2, in which they may respire actively and fix nitrogen efficiently at comparatively high rates.  相似文献   

18.
The taxonomic position of a thermoacidophilic crenarchaeote Sulfolobus sp. strain 7, previously isolated from the Beppu Hot Springs in the geothermal area of Kyushu Island, Japan, was investigated by cloning and sequencing, by phylogenetic analysis of the 16S rRNA gene sequence, by DNA-DNA homology with similar species, and by biochemical characterization of the isolate. This isolate is an obligate aerobe and grows optimally at 80 degrees C and pH2.5-3 under aerobic and chemoheterotrophic growth conditions by aerobic respiration rather than simple fermentation. In conjunction with the phenotypic properties, the present phylogenetic analysis based on the 16S rRNA gene sequence and DNA-DNA hybridization experiments indicate that this isolate is related to the described Sulfolobus taxon and should be considered a novel species of the genus. We propose that this isolate is a novel species of the genus Sulfolobus that we name Sulfolobus tokodaii sp. nov. The type strain is strain 7 (JCM 10545).  相似文献   

19.
AIMS: To isolate aerobic denitrifying bacteria which will be applied to piggery wastewater treatment facilities for enhanced nitrate and nitrite removal. METHODS AND RESULTS: Nitrate-supplemented basal medium in airtight, crimp-sealed serum bottles containing an atmosphere of 92% oxygen was inoculated with denitrifiers, strains NS-2 and SM-3, and incubated at 30 degrees C. After 20 h, the concentration of nitrate was decreased rapidly by both NS-2 and SM-3. Nitrite production was almost zero during the whole experimental period for both strains. Nitrogen gas production peaked at the 20 h for both NS-2 (8.20 +/- 1.03 mmol l(-1)) and SM-3 (3.93 +/- 0.16 mmol l(-1)). CONCLUSIONS: Strain NS-2, which produced the highest N2 concentration in this work, was identified as Pseudomonas stutzeri. This strain is the most capable of aerobic and anaerobic conversion of nitrate to N2 without forming a nitrite intermediate. SIGNIFICANCE AND IMPACT OF THE STUDY: Strain NS-2 is highly promising for future application in in situ piggery wastewater treatment.  相似文献   

20.
Nitrogen-fixing activity associated with different wetland rice varieties was measured at various growth stages by an in situ acetylene reduction method after the activities of blue-green algae (cyanobacteria) in the flood water and on the lower portion of the rice stem were eliminated. Nitrogen-fixing activities associated with rice varieties differed with plant growth stages. The activities increased with plant age, and the maximum was about at heading stage. The nitrogen fixed during the whole cropping period was estimated at 5.9 kg of N per ha for variety IR26 (7 days) and 4.8 kg of N per ha for variety IR36 (95 days). The population of aerobic heterotrophic N2-fixing bacteria associated with rice roots and stems was determined by the most-probable-number method, using semisolid glucose-yeast extract and semisolid malate-yeast extract media. The addition of yeast extract to the glucose medium increased the number and activity of aerobic heterotrophic N2-fixing bacteria. The glucose-yeast extract medium gave higher counts of aerobic N2-fixing bacteria associated with rice roots than did the malate-yeast extract medium, on which Spirillum-like bacteria were usually observed. The lower portion of the rice stem was also inhabited by N2-fixing bacteria and was an active site of N2 fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号