首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysozyme, cytochrome c, poly(L-lysine), myelin basic protein and ribonuclease were used to form multilayer dispersions containing about 50% protein (by weight) with bovine brain diacyl phosphatidylserine (PS). 31P nuclear magnetic resonance shift anisotropies, spin-spin (T2) and spin-lattice (T1) relaxation times for the lipid headgroup phosphorus were measured at 36.44 MHz. At pH 7.5, lysozyme, cytochrome c, poly(L-lysine) and ribonuclease were shown to increase the chemical shift anisotropy of PS by between 12-20%. Myelin basic protein altered the shape of the phosphate resonance, suggesting the presence of two lipid components, one of which had a modified headgroup conformation. The presence of cytochrome c led to the formation of a narrow spike at the isotropic shift position of the spectrum. Of the various proteins or peptides we have studied, only poly(L-lysine) and cytochrome c had any effect on the T1 of PS (1050 ms). Both caused a 20-30% decrease in T1 of the lamellar-phase phosphate peak. The narrow peak in the presence of cytochrome c had a very short T1 of 156 ms. The possibility is considered that the cytochrome Fe3+ contributes to the phosphate relaxation in this case. The effect of all proteins on the T2 of the phosphorus resonance was to cause an increase from the value for pure PS (1.6 ms) to between 2 and 5 ms. The results obtained with proteins are compared with the effects of small ions and intrinsic membrane proteins on the order and motion of the headgroups of lipids in bilayers.  相似文献   

2.
The orientation of the disaccharide headgroup of a lactose-containing lipid, 3-O-(4-O-beta-D-galactopyranosyl-beta-D-glucopyranosyl)-1,2-di-O-tetrade cyl-sn- glycerol (DTLL), relative to the surface of bilayer membranes has been determined via 2H NMR. The lactosyl headgroup is extended away from the membrane surface into the aqueous phase. The headgroup motion has axial symmetry as evidenced by the spectral line shape and order parameter tensor. 2H NMR of oriented multibilayers of DTLL confirms that the director of motional averaging is the bilayer normal. The two sugar residues have segmental order parameters S (glucose, 0.53; galactose, 0.51) which indicate that the headgroup fluctuates about the bilayer normal as a rigid unit. 2H spin-lattice relaxation times T1z for deuterons on each of the two sugar rings are similar, indicating further that there is no substantial motion about the disaccharide linkage within the headgroup. The magnitude of the relaxation times (4 ms) suggests that the rigid body motions of the headgroup are approaching the Larmor frequency; however, they increase with increasing temperature, indicating that the motions are rapid enough to be in the fast motional regime (omega o2 tau c2 less than 1). The conformation about the galactose-glucose intersaccharide linkage, calculated from the 2H NMR data, is shown to differ substantially from those found in X-ray diffraction studies of crystalline lactose and high-resolution NMR studies of methyl lactoside in nonviscous solution. The orientations of the hydroxymethyl groups in the headgroup have been calculated from the 2H NMR data. For the galactosyl residue the data are consistent with the presence of more than one rotamer about the C5"-C6" bond which are in fast exchange on the 2H NMR time scale. The hydroxymethyl group of the glucose residue exists in two rotameric forms about the C5'-C6' bond which have relative populations of ca. 2:1 and which are in slow exchange on the 2H NMR time scale (10(-5) s). The two rotamers differ from those deduced from X-ray crystallography of crystalline lactose and 13C NMR studies of methyl lactoside in solution.  相似文献   

3.
The motional properties of the inner and outer monolayer headgroups of egg phosphatidylcholine (PC) small unilamellar vesicles (SUV) were investigated by 31P-NMR temperature-dependent spin-lattice relaxation time constant (T1) and 31P[1H] nuclear Overhauser effect (NOE) analyses. Three different aspects of the dynamics of PC headgroups were investigated using the T1 analysis. First, differences in the dynamics of the headgroup region of both surfaces of the SUV were measured after application of a chemical shift reagent, PrCl3, to either the extra- or intravesicular volumes. Second, the ability of the T1 experiment to resolve the different motional states was evaluated in the absence of shift reagent. Third, comparison between correlation times obtained from a resonance frequency dependent 31P[1H] NOE analysis allowed a determination of the applicability of a simplified motional model to describe phosphorus dipolar relaxation. Temperature-dependent 31P-NMR T1 values obtained for the individual monolayers at 81.0 and 162.0 MHz were modelled assuming that phosphorus undergoes both a dipolar and an anisotropic chemical shielding relaxation mechanism, each being described by the same correlation time, tau. At 162.0 MHz, the position of the T1 minimum for the inner monolayer was 9 degrees higher than that of the outer region, indicating a higher level of motional restriction for the inner leaflet, in agreement with 31P[1H] NOE measurements. The 162.0 MHz T1 profile of the combined SUV monolayers exhibited a smooth minimum located at the midpoint of the monolayer minima positions, effectively masking the presence of the individual surfaces. 31P[1H] NOE results obtained at 32.3, 81.0 and 162.0 MHz did not agree with those predicted from a simple dipolar relaxation model. These results suggest a T1-temperature method can neither discriminate two or more closely related motional time scales in a heterogeneous environment (such as incorporation of protein into lipid bilayers) nor allow accurate determination of the correlation time at the position of the minimum when the dipolar relaxation rate makes a significant contribution to the overall rate.  相似文献   

4.
Tang H  Hills BP 《Biomacromolecules》2003,4(5):1269-1276
To investigate the domain structure and dynamics of polysaccharides in the native starch granules, a variety of high resolution, solid-state (13)C NMR techniques have been applied to all three (A-, B-, and C-) types of starch with different water content. Both single-pulse-excitation magic-angle-spinning (SPEMAS) and cross-polarization-magic-angle-spinning (CPMAS) methods have been employed together with the PRISE (proton relaxation induced spectral-editing) techniques to distinguish polysaccharide fractions in different domains and having distinct dynamics. It has been found that, for all three types of dry starch granules, there are two sets of NMR signals corresponding to two distinct ordered polysaccharides. Hydration leads to substantial mobilization of the polysaccharides in the amorphous regions, but no fundamental changes in the rigidity of the polysaccharides in the crystalline (double) helices. Full hydration also leads to limited mobility changes to the polysaccharides in the amorphous lamellae (branching zone) within the amylopectin clusters and in the gaps between the arrays of the amylopectin clusters. Under magic-angle spinning, proton relaxation-time measurements showed a single component for T(1), two components for T(1rho), and three components for T(2). PRISE experiments permitted the neat separation of the (13)C resonances of polysaccharides in the crystalline lamellae from those in the amorphous lamellae and the amylose in the gaps between amylopectin clusters. It has been found that the long (1)H T(1rho) component ( approximately 30 ms) is associated with polysaccharides in the crystalline lamellae in the form of double helices, whereas the short T(1rho) component (2-4 ms) is associated with amylose in the gaps between amylopectin clusters. The short (1)H T(2) component ( approximately 14 micros) is associated with polysaccharides in the crystalline lamellae; the intermediate component (300-400 micros) is associated with polysaccharides in the amorphous lamellae and amylose in the gaps between amylopectin clusters. The long T(2) component is associated with both mobile starch protons and the residue water protons.  相似文献   

5.
The dynamic structure of detergent-resistant membranes (DRMs) isolated from RBL-2H3 cells was characterized using two different acyl chain spin-labeled phospholipids (5PC and 16PC), a headgroup labeled sphingomyelin (SM) analog (SD-Tempo) and a spin-labeled cholestane (CSL). It was shown, by comparison to dispersions of SM, dipalmitoylphosphatidylcholine (DPPC), and DPPC/cholesterol of molar ratio 1, that DRM contains a substantial amount of liquid ordered phase: 1) The rotational diffusion rates (R( perpendicular)) of 16PC in DRM between -5 degrees C and 45 degrees C are nearly the same as those in molar ratio DPPC/Chol = 1 dispersions, and they are substantially greater than R( perpendicular) in pure DPPC dispersions in the gel phase studied above 20 degrees C; 2) The order parameters (S) of 16PC in DRM at temperatures above 4 degrees C are comparable to those in DPPC/Chol = 1 dispersions, but are greater than those in DPPC dispersions in both the gel and liquid crystalline phases. 3) Similarly, R( perpendicular) for 5PC and CSL in DRM is greater than in pure SM dispersions in the gel phase, and S for these labels in DRM is greater than in the SM dispersions in both the gel and liquid crystalline phases. 4) R( perpendicular) of SD-Tempo in DRM is greater than in dispersions of SM in both gel and liquid phases, consistent with the liquid-like mobility in the acyl chain region in DRM. However, S of SD-Tempo in DRM is substantially less than that of this spin label in SM in gel and liquid crystalline phases (in absolute values), indicating that the headgroup region in DRMs is less ordered than in pure SM. These results support the hypothesis that plasma membranes contain DRM domains with a liquid ordered phase that may coexist with a liquid crystalline phase. There also appears to be a coexisting region in DRMs in which the chain labels 16PC and 5PC are found to cluster. We suggest that other biological membranes containing high concentrations of cholesterol also contain a liquid ordered phase.  相似文献   

6.
Fish antifreeze proteins and glycoproteins (AF(G)Ps) prevent ice crystal growth and are able to protect mammalian cells and tissues from hypothermic damage in the sub-zero Polar oceans. This protective mechanism is not fully understood, and further data is required to explain how AF(G)Ps are able to stabilize lipid membranes as they pass through their phase transition temperatures. Solid-state NMR spectroscopy was used as a direct method to study the interaction of the 37-residue alpha-helical type I AFP, TTTT, and the low molecular weight fraction glycoprotein, AFGP8, with dimyristoylphosphatidylcholine membranes above and below the gel-fluid phase transition temperature. In contrast to previous studies in fluid phase bilayers these experiments have provided direct information regarding both the mobility of the phosphate headgroups and perturbation of the acyl chains at a range of temperatures under identical conditions on the same sample. At 5 degrees C changes in the (2)H and (31)P spectra and a dramatic increase in the (31)P T(1) relaxation times were consistent with a significant disruption of the membrane by TTTT. Heating to 30 degrees C appeared to expel the peptide from the lipid and re-cooling showed that the interaction of TTTT was not reversible. By contrast, (31)P spectra of the membranes with AFGP8 were consistent with interaction with the phosphate headgroups at both 5 and 30 degrees C. Although both peptides interact with the phospholipid bilayer surface, which may stabilize the membrane at lower temperatures, the longer (31)P T(1) values and the (2)H NMR data obtained for TTTT compared with AFGP8 suggest that TTTT causes a greater reduction of phosphate headgroup mobility and has a greater effect on the lipid acyl chains at 5 degrees C.  相似文献   

7.
A model membrane system composed of egg sphingomyelin (SM), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and cholesterol was studied with static and magic angle spinning (31)P NMR spectroscopy. This model membrane system is of significant biological relevance since it is known to form lipid rafts. (31)P NMR under magic angle spinning conditions resolves the SM and DOPC headgroup resonances allowing for extraction of the (31)P NMR parameters for the individual lipid components. The isotropic chemical shift, chemical shift anisotropy, and asymmetry parameter can be extracted from the spinning side band manifold of the individual components that form liquid-ordered and liquid-disordered domains. The magnitude of the (31)P chemical shift anisotropy and the line width is used to determine headgroup mobility and monitor the gel-to-gel and gel-to-liquid crystalline phase transitions of SM as a function of temperature in these mixtures. Spin-spin relaxation measurements are in agreement with the line width results, reflecting mobility differences and some heterogeneities. It will be shown that the presence of DOPC and/or cholesterol greatly impacts the headgroup mobility of SM both above and below the liquid crystalline phase transition temperature, whereas DOPC displays only minor variations in these lipid mixtures.  相似文献   

8.
Dynamics and orientation of glycolipid headgroups by 2H-NMR: gentiobiose   总被引:1,自引:0,他引:1  
Deuterium nuclear magnetic resonance has been used to investigate the dynamics and determine the orientation of the headgroup of the glycolipid 1,2-di-O-tetradecyl-3-O-(6-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl )-sn- glycerol (beta-DTDGL), in aqueous multilamellar dispersions. In addition, its anomeric analog, having an alpha glucose-glycerol linkage, was prepared and examined. The lipids were labelled with deuterium at specific positions in the disaccharide moiety. Analysis of the deuterium quadrupolar splittings for the first glucose ring (glycerol-linked) gave segmental order parameters of 0.43 and 0.35 for the beta and alpha isomers, respectively. Both isomers had similar orientations of the sugar ring relative to the bilayer surface, as determined for lipid in the liquid-crystalline phase. 2H-NMR results for the lipid labelled at C-6' are consistent with a single conformation about the C-5'-C-6' bond of the first glucose residue, with a dihedral angle (O-5'-C-5'-C-6'-O-6') of -17 degrees. The results obtained for the second sugar ring suggest that two conformers may be present, which are in slow exchange on the 2H-NMR timescale. Measurements of longitudinal relaxation times, T1z, gave similar values for both sugar moieties in the headgroup, suggesting that the disaccharide does not exhibit the flexibility expected about the 1----6 linkage. Since T1z for 2H in these compounds decreases with increasing temperature and increases with magnetic field strength, the motion(s) dominating relaxation is in the long-correlation-time regime [omega 0 tau c)2 greater than 1). Thus, the gentiobiosyl headgroup undergoes the slowest motion of the glycolipid headgroups studied to date.  相似文献   

9.
C H Hsieh  W G Wu 《Biophysical journal》1996,71(6):3278-3287
Deuterium NMR relaxation and intensity measurements of the 2H-labeled H2O/dimyristoyl phosphatidylcholine bilayer were performed to understand the molecular origin of the freezing event of phospholipid headgroup and the structure and dynamics of unfrozen water molecules in the interbilayer space at subzero temperatures. The results suggest that about one to two water molecules associated with the phosphate group freeze during the freezing event of phospholipid headgroups, whereas about five to six waters near the trimethylammonium group behave as a water cluster and remain unfrozen at temperatures as low as -70 degrees C. In addition, temperature-dependent T1 and T2 relaxation times suggest that dynamic coupling occurs not only between the phosphate group and its bound water, but also between the methyl group and the adjacent water molecules. Based on these observations, the primary hydration shell of phosphatidylcholine headgroup at subzero temperatures is suggested to consist of two distinct regions: a clathrate-like water cluster, most likely a water pentamer, near the hydrophobic methyl group, and hydration water molecules associated with the phosphate group.  相似文献   

10.
Galactosyl- and glucosylceramide, globoside, and dihydrolactosylceramide, bearing [2,2-2H2]stearic acid, have been studied at a concentration of 10 mol% in bilayers of dimyristoylphosphatidylcholine by 2H NMR. The quadrupolar splitting delta vQ of the C2 deuterons were measured at several temperatures in the range of 30-60 degrees C. Spin-lattice relaxation times T1 of C2 deuterons were determined in the same temperature range for all lipids but globoside. T1 values at 30 and 50 degrees C were unexpectedly short (6-8 ms), indicating reduced mobility of the ceramide acyl chains compared to that of the host phospholipid. At all temperatures, both delta vQ and T1 were essentially identical for the monoglycosylated species, GalCer and GlcCer, indicating that the order and dynamics of the upper portion of the fatty acyl chain are insensitive to this small change in the headgroup structure. In the case of globoside, where the glycolipid headgroup is equivalent to that of GlcCer extended by three sugar residues, values for the quadrupolar splittings associated with the acyl chain C2-position were very close to those obtained for Gal- and GlcCer. In contrast, the delta vQ values obtained for the diglycosyl species, LacCer, were significantly different at all temperatures. This different behavior of LacCer relative to that of the other glycolipids most likely originates from an orientational change of the acyl chain at the C2-position due to the absence of a 4,5 double bond in dihydrosphingosine. T1 values for the GlcCer and GalCer systems increased with temperature, indicating that the motions responsible for relaxation were in the short correlation time regime.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The polar headgroup structure of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) in inverted micelles in chloroform or benzene was investigated by the selective 31P(H) nuclear Overhauser effect (NOE). In the frequency dependence of the 31P(1H) NOE, PC micelles in CDCl3 showed two maxima. The larger maximum was located at the resonance of the glycerol-CH2OP protons and the smaller at the resonance of the N-methyl protons. In PC/PE mixed micelles in C6D6, both PC and PE showed three maxima which were located at the resonance of the CH2OP protons, the N-methyl protons and the amino protons in the frequency dependence of the 31P-NOE. The N-methyl protons of PC and the amino protons of PE were closely spaced to the phosphate groups of neighboring lipid molecules. The polar headgroups of PC and PE in the mixed micelles were concluded to lie in the plane perpendicular to the molecular axes. The frequency dependence of the 31P(H) NOE for PS micelles in C6D6 showed the maxima at the resonances of the amino protons and the CH2OP protons. The polar headgroups of PS molecules were not extended parallel to the molecular axes in the inverted micelles.  相似文献   

12.
Sphingomyelins (SMs) and sterols are important constituents of the plasma membrane and have also been identified as major lipid components in membrane rafts. Using SM analogs with decreasing headgroup methylation, we systemically analyzed the effect of headgroup size on membrane properties and interactions with cholesterol. An increase in headgroup size resulted in a decrease in the main phase transition. Atom-scale molecular-dynamics simulations were in agreement with the fluorescence anisotropy experiments, showing that molecular areas increased and acyl chain order decreased with increasing headgroup size. Furthermore, the transition temperatures were constantly higher for SM headgroup analogs compared to corresponding phosphatidylcholine headgroup analogs. The sterol affinity for phospholipid bilayers was assessed using a sterol-partitioning assay and an increased headgroup size increased sterol affinity for the bilayer, with a higher sterol affinity for SM analogs as compared to phosphatidylcholine analogs. Moreover, the size of the headgroup affected the formation and composition of cholesterol-containing ordered domains. Palmitoyl-SM (the largest headgroup) seemed to attract more cholesterol into ordered domains than the other SM analogs with smaller headgroups. The ordering and condensing effect of cholesterol on membrane lipids was also largest for palmitoyl-SM as compared to the smaller SM analogs. The results show that the size of the SM headgroup is crucially important for SM-SM and SM-sterol interactions. Our results further emphasize that interfacial electrostatic interactions are important for stabilizing cholesterol interactions with SMs.  相似文献   

13.
Differential scanning calorimetry (DSC) and nuclear magnetic resonance (NMR) spectroscopy are applied to characterize the nonfreezable water molecules in fully hydrated D2O/sphingomyelin at temperatures below 0 degrees C. Upon cooling, DSC thermogram displays two thermal transitions peaked at -11 and -34 degrees C. The high-temperature exothermic transition corresponds to the freezing of the bulk D2O, and the low-temperature transition, which has not previously been reported, can be ascribed to the freezing of the phosphocholine headgroup in the lipid bilayer. The dynamics of nonfreezable water are also studied by 2H NMR T1 (spin-lattice relaxation time) and T2e (spin-spin relaxation time obtained by two pulse echo) measurements at 30.7 MHz and at temperatures down to -110 degrees C. The temperature dependence of the T1 relaxation time is characterized by a distinct minimum value of 2.1 +/- 0.1 ms at -30 degrees C. T2e is discontinuous at temperature around -70 degrees C, indicating another freezing-like event for the bound water at this temperature. Analysis of the relaxation data suggest that nonfreezable water undergoes both fast and slow motions at characteristic NMR time scales. The slow motions are affected when the lipid headgroup freezes.  相似文献   

14.
Equinatoxin II (EqtII) is a pore-forming protein from Actinia equina that lyses red blood cell and model membranes. Lysis is dependent on the presence of sphingomyelin (SM) and is greatest for vesicles composed of equimolar SM and phosphatidylcholine (PC). Since SM and cholesterol (Chol) interact strongly, forming domains or “rafts” in PC membranes, 31P and 2H solid-state NMR were used to investigate changes in the lipid order and bilayer morphology of multilamellar vesicles comprised of different ratios of dimyristoylphosphatidylcholine (DMPC), SM and Chol following addition of EqtII. The toxin affects the phase transition temperature of the lipid acyl chains, causes formation of small vesicle type structures with increasing temperature, and changes the T2 relaxation time of the phospholipid headgroup, with a tendency to order the liquid disordered phases and disorder the more ordered lipid phases. The solid-state NMR results indicate that Chol stabilizes the DMPC bilayer in the presence of EqtII but leads to greater disruption when SM is in the bilayer. This supports the proposal that EqtII is more lytic when both SM and Chol are present as a consequence of the formation of domain boundaries between liquid ordered and disordered phases in lipid bilayers leading to membrane disruption.  相似文献   

15.
The orientation of lipid headgroups may serve as a powerful sensor of electrostatic interactions in membranes. As shown previously by 2H NMR measurements, the headgroup of phosphatidylcholine (PC) behaves like an electrometer and varies its orientation according to the membrane surface charge. Here, we explored the use of solid-state 14N NMR as a relatively simple and label-free method to study the orientation of the PC headgroup in model membrane systems of varying composition. We found that 14N NMR is sufficiently sensitive to detect small changes in headgroup orientation upon introduction of positively and negatively charged lipids and we developed an approach to directly convert the 14N quadrupolar splittings into an average orientation of the PC polar headgroup. Our results show that inclusion of cholesterol or mixing of lipids with different length acyl chains does not significantly affect the orientation of the PC headgroup. In contrast, measurements with cationic (KALP), neutral (Ac-KALP), and pH-sensitive (HALP) transmembrane peptides show very systematic changes in headgroup orientation, depending on the amount of charge in the peptide side chains and on their precise localization at the interface, as modulated by varying the extent of hydrophobic peptide/lipid mismatch. Finally, our measurements suggest an unexpectedly strong preferential enrichment of the anionic lipid phosphatidylglycerol around the cationic KALP peptide in ternary mixtures with PC. We believe that these results are important for understanding protein/lipid interactions and that they may help parametrization of membrane properties in computational studies.  相似文献   

16.
Lysozyme, cytochrome c, poly(l-lysine), myelin basic protein and ribonuclease were used to form multilayer dispersions containing about 50% protein (by weight) with bovine brain diacyl phosphatidylserine (PS). 31P nuclear magnetic resonance shift anisotropies, spin-spin (T2) and spin-lattice (T1) relaxation times for the lipid headgroup phosphorus were measured at 36.44 MHz. At pH 7.5, lysozyme, cytochrome c, poly(l-lysine) and ribonuclease were shown to increase the chemical shift anisotropy of PS by between 12–20%. Myelin basic protein altered the shape of the phosphate resonance, suggesting the presence of two lipid components, one of which had a modified headgroup conformation. The presence of cytochrome c led to the formation of a narrow spike at the isotropic shift position of the spectrum. Of the various proteins or peptides we have studied, only poly(l-lysine) and cytochrome c had any effect on the T1 of PS (1050 ms). Both caused a 20–30% decrease in T1 of the lamellar-phase phosphate peak. The narrow peak in the presence of cytochrome c had a very short T1 of 156 ms. The possibility is considered that the cytochrome Fe3+ contributes to the phosphate relaxation in this case. The effect of all proteins on the T2 of the phosphorus resonance was to cause an increase from the value for pure PS (1.6 ms) to between 2 and 5 ms. The results obtained with proteins are compared with the effects of small ions and intrinsic membrane proteins on the order and motion of the headgroups of lipids in bilayers.  相似文献   

17.
DTSL, a sialic acid bearing glyceroglycolipid, has been deuteriated at the C3 position of the sialic acid headgroup and at the C3 position of the glycerol backbone. The glycolipid was studied as a neat dispersion and in multilamellar dispersions of DMPC (at a concentration of 5-10 mol % relative to phospholipid), using 2H and 31P NMR. The quadrupolar splittings, delta v Q, of the headgroup deuterons were found to differ in the neat and mixed dispersion, suggesting different headgroup orientations in the two systems. In DTSL-DMPC liposomes, two quadrupolar splittings were observed, indicating that the axial and equatorial deuterons make different angles with respect to the axis of motional averaging. The splittings originating from the equatorial and axial deuterons were found to increase and decrease with increasing temperature, respectively, indicating a temperature-dependent change in average headgroup orientation. Longitudinal relaxation times, T1Z, were found to be short (3-6 ms). The field dependence of T1Z suggests that more than one motion governs relaxation. At 30.7 MHz a T1Z minimum was observed at approximately 40 degrees C. At 46.1 MHz the T1Z values were longer and increased with temperature, demonstrating that the dominant rigid-body motions of the headgroup at this field are in the rapid motional regime (greater than 10(8) s-1). DTSL labeled at the glycerol C3 position was studied in DMPC multilamellar dispersions. Whereas two quadrupolar splittings have been observed for other glycolipids labeled at this position, only a single delta nu Q was observed. This shows that the orientation of the C2-C3 segment of DTSL relative to the bilayer normal differs from that of other glycolipids.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Magic-angle spinning 1H and 13C nuclear magnetic resonance (NMR) have been employed to study 50%-by-weight aqueous dispersions of 1-octadecanoyl-2-decanoyl-sn-glycero-3-phosphocholine (C[18]:C[10]PC) and 1-octadecanoyl-2-d19-decanoyl-PC (C[18]:C[10]PC-d19), mixed-chain phospholipids which can form interdigitated multibilayers. The 1H NMR linewidth for methyl protons of the choline headgroup has been used to monitor the liquid crystalline-to-gel (LC-to-G) phase transition and confirm variations between freezing and melting temperatures. Both 1H and 13C spin-lattice relaxation times indicate unusual restrictions on segmental reorientation at megahertz frequencies for C(18):C(10)PC as compared with symmetric-chain species in the LC state; nevertheless each chemical moiety of the mixed-chain phospholipid exhibits motional behavior that may be classified as liquidlike. Two-dimensional nuclear Overhauser spectroscopy (NOESY) on C(18):C(10)PC and C(18):C(10)PC-d19 reveals cross-peaks between the omega-methyl protons of the C18 chain and the N-methyl protons of the phosphocholine headgroup, and several experimental and theoretical considerations argue against an interpretation based on spin diffusion. Using NMR relaxation times and NOESY connectivities along with a computational formalism for four-spin systems (Keepers, J. W., and T. L. James. 1984. J. Magn. Reson. 57:404-426), an estimate of 3.5 A is obtained for the average distance between the omega-methyl protons of the C18 chain and the N-methyl protons of the phosphocholine headgroup. This finding is consistent with a degree of interdigitation similar to that proposed for organized assemblies of gel-state phosphatidylcholine molecules with widely disparate acyl-chain lengths (Hui, S. W., and C.-H. Huang. 1986. Biochemistry. 25:1330-1335); however, acyl-chain bendback or other intermolecular interactions may also contribute to the NOESY results. For multibilayers of C(18):C(10)PC in the gel phase, 13C chemical-shift measurements indicate that trans conformers predominate along both acyl chains. 13C Spin-lattice relaxation times confirm the unusual motional restrictions noted in the LC state; nevertheless, 13C and 1H rotating-frame relaxation times indicate that the interdigitated arrangement enhances chain or bilayer motions which occur at mid-kilohertz frequencies.  相似文献   

19.
Cholesterol, stigmastanol, and stigmastanyl-phosphorylcholine (ST-PC) were incorporated into model membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). POPC and ST-PC were deuterated at the lipid headgroup, DOPC at the cis-double bonds. The influence of the three sterols on the motion and conformation of the lipid headgroups and the hydrocarbon chains was monitored with 2H- and 31P-NMR. All three sterols were freely miscible with the lipid matrix in concentrations of up to 50 mol% without inducing phase separations or nonbilayer structures. However, the molecules exert quite different effects on the phospholipid bilayer. Cholesterol and stigmastanol are largely buried in the hydrocarbon part of the membrane, distinctly restricting the flexing motions of the fatty acyl chains whereas the conformation of the phospholipid headgroups is little affected. In contrast, ST-PC is anchored with its headgroup in the layer of phospholipid dipoles, preventing an extensive penetration of the sterol ring into the hydrocarbon layer. Hence ST-PC has almost no effect on the hydrocarbon chains but induces a characteristic conformational change of the phospholipid headgroups. The 2H- and 31P-NMR spectra of mixed phospholipid/ST-PC membranes further demonstrate that the PC headgroup of ST-PC has a similar orientation as the surrounding phosphatidylcholine headgroups. For both types of molecules the -P-N+ dipole is essentially parallel to the membrane surface. Addition of ST-PC induces a small rotation of the POPC headgroup towards the water phase.  相似文献   

20.
The effects of five diacylglycerols (DAGs), diolein, 1-stearoyl,2-arachidonoyl-sn-glycerol, dioctanoylglycerol, 1-oleoyl,2-sn-acetylglycerol, and dipalmitin (DP), on the structure of lipid bilayers composed of mixtures of phosphatidylcholine and phosphatidylserine (4:1 mol/mol) were examined by 2H nuclear magnetic resonance (NMR). Dipalmitoylphosphatidylcholine deuterated at the alpha- and beta-positions of the choline moiety was used to probe the surface region of the membranes. Addition of each DAG except DP caused a continuous decrease in the beta-deuteron quadrupole splittings and a concomitant increase in the alpha-deuteron splittings indicating that DAGs induce a conformational change in the phosphatidylcholine headgroup. Additional evidence of conformational change was found at high DAG concentrations (> or = 20 mol%) where the alpha-deuteron peaks became doublets indicating that the two alpha-deuterons were not equivalent. The changes induced by DP were consistent with the lateral phase separation of the bilayers into gel-like and fluid-like domains with the phosphatidylcholine headgroups in the latter phase being virtually unaffected by DP. The DAG-induced changes in alpha-deuteron splittings were found to correlate with DAG-enhanced protein kinase C (PK-C) activity, suggesting that the DAG-induced conformational changes of the phosphatidylcholine headgroups are either directly or indirectly related to a mechanism of PK-C activation. 2H NMR relaxation measurements showed significant increase of the spin-lattice relaxation times for the region of the phosphatidylcholine headgroups, induced by all DAGs except DP. However, this effect of DAGs did not correlate with the DAG-induced activation of PK-C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号