首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromium(VI) (Cr(VI)) is widely used in industry and is a potent inducer of tumors in animals. The present study demonstrates that Cr(VI) induces hypoxia-inducible factor 1 (HIF-1) activity through the specific expression of HIF-1alpha but not HIF-1beta subunit and increases the level of vascular endothelial growth factor (VEGF) expression in DU145 human prostate carcinoma cells. To dissect the signaling pathways involved in Cr(VI)-induced HIF-1 expression, we found that p38 mitogen-activated protein kinase signaling was required for HIF-1alpha expression induced by Cr(VI). Neither phosphatidylinositol 3-kinase nor extracellular signal-regulated kinase activity was required for Cr(VI)-induced HIF-1 expression. Cr(VI) induced expression of HIF-1 and VEGF through the production of reactive oxygen species in DU145 cells. The major species of reactive oxygen species responsible for the induction of HIF-1 and VEGF expression is H(2)O(2). These results suggest that the expression of HIF-1 and VEGF induced by Cr(VI) may be an important signaling pathway in the Cr(VI)-induced carcinogenesis.  相似文献   

2.
3.
Vascular endothelial growth factor (VEGF) released by osteoblasts plays an important role in angiogenesis and endochondral ossification during bone formation. In animal studies, we have reported that shock waves (SW) can promote osteogenic differentiation of mesenchymal stem cells through superoxide-mediated signal transduction (Wang, F. S., Wang, C. J., Sheen-Chen, S. M., Kuo, Y. R., Chen, R. F., and Yang, K. D. (2002) J. Biol. Chem. 277, 10931-10937) and vascularization of the bone-tendon junction. Here, we found that SW elevation of VEGF-A expression in human osteoblasts to be mediated by Ras-induced superoxide and ERK-dependent HIF-1alpha activation. SW treatment (0.16 mJ/mm(2), 1 Hz, 500 impulses) rapidly activated Ras protein (15 min) and Rac1 protein (30 min) and increased superoxide production in 30 min and VEGF mRNA expression in 6 h. Early scavenging of superoxide, but not nitric oxide, peroxide hydrogen, or prostaglandin E(2), reduced SW-augmented VEGF-A levels. Inhibition of superoxide production by diphenyliodonium, an NADPH oxidase inhibitor, was found to suppress VEGF-A expression. Transfection of osteoblasts with a dominant negative (S17N) Ras mutant abrogated the SW enhancement of Rac1 activation, superoxide synthesis, and VEGF expression. Further studies demonstrated that SW significantly promoted ERK activation in 1 h and HIF-1alpha phosphorylation and HIF-1alpha binding to VEGF promoter in 3 h. In support of the observation that superoxide mediated the SW-induced ERK activation and HIF-1alpha transactivation, we further demonstrated that scavenging of superoxide by superoxide dismutase and inhibition of ERK activity by PD98059 decreased HIF-1alpha activation and VEGF-A levels. Moreover, culture medium harvested from SW-treated osteoblasts increased vessel number of chick chorioallantoic membrane. Superoxide dismutase pretreatment and anti-VEGF-A antibody neutralization reduced the promoting effect of conditioned medium on angiogenesis. Thus, modulation of redox reaction by SW may have some positive effect on angiogenesis during bone regeneration.  相似文献   

4.
5.
6.
Recent evidence suggests that vascular endothelial growth factor (VEGF) expression is up-regulated by oxidative stressors through activation of hypoxia-inducible Factor 1 (HIF-1). To investigate whether this is a general phenomenon, we studied the effects of the sulfhydryl reagent arsenite on VEGF expression in human ovarian cancer cells. Arsenite potently induces the production of reactive oxygen species (ROS) in several cell systems and directly interacts with sulfhydryl groups of cellular thiols. We report that arsenite induces VEGF mRNA and protein levels in normoxic H134 and OVCAR-3 cells. Arsenite also increases HIF-1alpha protein levels, suggesting a role for HIF-1 in the induction of VEGF expression. Pretreatment with the ROS inhibitors catalase and mannitol attenuated arsenite-induced ROS production, but did not affect induction of VEGF mRNA and HIF-1alpha protein. In contrast, pretreatment with the thiol antioxidants glutathione or N-acetylcysteine completely abrogated both effects, whereas a potentiation was observed by depletion of intracellular glutathione. These results demonstrate that arsenite-induced VEGF mRNA and HIF-1alpha protein expression is independent of increased ROS production but critically regulated by the cellular reduced glutathione content. In addition, these data suggest the involvement of a thiol-sensitive mechanism in the regulation of VEGF mRNA expression and HIF-1alpha protein in human ovarian cancer cells.  相似文献   

7.
8.
9.
10.
11.
Stimulation of human colon cancer cells with insulin-like growth factor 1 (IGF-1) induces expression of the VEGF gene, encoding vascular endothelial growth factor. In this article we demonstrate that exposure of HCT116 human colon carcinoma cells to IGF-1 induces the expression of HIF-1 alpha, the regulated subunit of hypoxia-inducible factor 1, a known transactivator of the VEGF gene. In contrast to hypoxia, which induces HIF-1 alpha expression by inhibiting its ubiquitination and degradation, IGF-1 did not inhibit these processes, indicating an effect on HIF-1 alpha protein synthesis. IGF-1 stimulation of HIF-1 alpha protein and VEGF mRNA expression was inhibited by treating cells with inhibitors of phosphatidylinositol 3-kinase and MAP kinase signaling pathways. These inhibitors also blocked the IGF-1-induced phosphorylation of the translational regulatory proteins 4E-BP1, p70 S6 kinase, and eIF-4E, thus providing a mechanism for the modulation of HIF-1 alpha protein synthesis. Forced expression of a constitutively active form of the MAP kinase kinase, MEK2, was sufficient to induce HIF-1 alpha protein and VEGF mRNA expression. Involvement of the MAP kinase pathway represents a novel mechanism for the induction of HIF-1 alpha protein expression in human cancer cells.  相似文献   

12.
Many stimuli that activate the vascular NADPH oxidase generate reactive oxygen species and increase intracellular Ca(2+), but whether NADPH oxidase activation directly affects Ca(2+) signaling is unknown. NADPH stimulated the production of superoxide anion and H(2)O(2) in human aortic endothelial cells that was inhibited by the NADPH oxidase inhibitor diphenyleneiodonium and was significantly attenuated in cells transiently expressing a dominant negative allele of the small GTP-binding protein Rac1, which is required for oxidase activity. In permeabilized Mag-indo 1-loaded cells, NADPH and H(2)O(2) each decreased the threshold concentration of inositol 1,4,5-trisphosphate (InsP(3)) required to release intracellularly stored Ca(2+) and shifted the InsP(3)-Ca(2+) release dose-response curve to the left. Concentrations of H(2)O(2) as low as 3 microm increased the sensitivity of intracellular Ca(2+) stores to InsP(3) and decreased the InsP(3) EC(50) from 423.2 +/- 54.9 to 276.9 +/- 14. 4 nm. The effect of NADPH on InsP(3)-stimulated Ca(2+) release was blocked by catalase and by diphenyleneiodonium and was not observed in cells lacking functional Rac1 protein. Thus, NADPH oxidase-derived H(2)O(2) increases the sensitivity of intracellular Ca(2+) stores to InsP(3) in human endothelial cells. Since Ca(2+)-dependent signaling pathways are critical to normal endothelial function, this effect may be of great importance in endothelial signal transduction.  相似文献   

13.
14.
15.
16.
17.
Microvascular endothelial cell dysfunction plays a key role in myocardial ischemia/reperfusion (I/R) injury, wherein reactive oxygen species (ROS)-dependent signaling is intensively involved. However, the roles of the various ROS sources remain unclear. This study sought to investigate the role of NADPH oxidase 4 (Nox4) in the cardiac microvascular endothelium in response to I/R injury. Adult rat cardiac microvascular endothelial cells (CMECs) were isolated and subjected to hypoxia/reoxygenation (H/R). Our results showed that Nox4 was highly expressed in CMECs, was significantly increased at both mRNA and protein levels after H/R injury, and contributed to H/R-stimulated increase in Nox activity and ROS generation. Downregulation of Nox4 by small interfering RNA transfection did not affect cell viability or ROS production under normoxia, but exacerbated H/R injury as evidenced by increased apoptosis and inhibited cell survival, migration, and angiogenesis after H/R. Nox4 inhibition also increased prolyl hydroxylase 2 (PHD2) expression and blocked H/R-induced increases in HIF-1α and VEGF expression. Pretreatment with DMOG, a specific competitive PHD inhibitor, upregulated HIF-1α and VEGF expression and significantly reversed Nox4 knockdown-induced injury. However, Nox2 was scarcely expressed and played a minimal role in CMEC survival and angiogenesis after H/R, though a modest upregulation of Nox2 was observed. In conclusion, this study demonstrated a previously unrecognized protective role of Nox4, a ROS-generating enzyme and the major Nox isoform in CMECs, against H/R injury by inhibiting apoptosis and promoting migration and angiogenesis via a PHD2-dependent upregulation of HIF-1/VEGF proangiogenic signaling.  相似文献   

18.
19.
Leptin modulates the angiogenic properties of hepatic stellate cells (HSC), but the molecular mechanisms involved are poorly understood. We investigated the pathways regulating hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) in leptin-stimulated myofibroblastic HSC. Exposure to leptin enhanced the phosphorylation of TSC2 on T1462 residues and of p70 S6 kinase and the translational inhibitor 4E-binding protein-1, indicating the ability of leptin to activate the mammalian target of rapamycin (mTOR) pathway. Similar findings were observed when HSC were exposed to PDGF. Both leptin and PDGF increased the expression of HIF-1α and VEGF in HSC. In the presence of rapamycin, a specific mTOR inhibitor, leptin and PDGF were no longer able to activate mTOR, and expression of VEGF was reduced, whereas HIF-1α abundance was not affected. Moreover, knockdown of Raptor, a component of the mTORC1 complex, reduced the ability of leptin to increase VEGF. mTOR was also necessary for leptin- and PDGF-dependent increase in HSC migration. Leptin increased the generation of reactive oxygen species in HSC, which was reduced by NADP(H) oxidase inhibitors. Both N-acetyl cysteine and diphenylene iodonium, a NADP(H) inhibitor, inhibited the expression of HIF-1α and VEGF stimulated by leptin or PDGF. Finally, conditioned media from HSC treated with leptin or PDGF induced tube formation in cultured human umbilical vein endothelial cells. In conclusion, in HSC exposed to leptin or PDGF, increased expression of VEGF requires both activation of mTOR and generation of reactive oxygen species via NADPH-oxidase. Induction of HIF-1α requires NADP(H) oxidase but not mTOR activation.  相似文献   

20.
Hypoxia sensing and related signaling events, including activation of hypoxia-inducible factor 1 (HIF-1), represent key features in cell physiology and lung function. Using cultured A549 cells, we investigated the role of NAD(P)H oxidase 1 (Nox1), suggested to be a subunit of a low-output NAD(P)H oxidase complex, in hypoxia signaling. Nox1 expression was detected on both the mRNA and protein levels. Upregulation of Nox1 mRNA and protein occurred during hypoxia, accompanied by enhanced reactive oxygen species (ROS) generation. A549 cells, which were transfected with a Nox1 expression vector, revealed an increase in ROS generation accompanied by activation of HIF-1-dependent target gene expression (heme oxygenase 1 mRNA, hypoxia-responsive-element reporter gene activity). In A549 cells stably overexpressing Nox1, accumulation of HIF-1alpha in normoxia and an additional increase in hypoxia were noted. Interference with ROS metabolism by the flavoprotein inhibitor diphenylene iodonium (DPI) and catalase inhibited HIF-1 induction. This suggests that H2O2 links Nox1 and HIF-1 activation. We conclude that hypoxic upregulation of Nox1 and subsequently augmented ROS generation may activate HIF-1-dependent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号