首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of sustained high plasma levels of prolactin, induced by repeated 2-h i.v. injections of thyrotrophin-releasing hormone (TRH; 20 micrograms), on ovarian oestradiol secretion and plasma levels of LH and FSH was investigated during the preovulatory period in the ewe. Plasma levels of progesterone declined at the same rate after prostaglandin-induced luteal regression in control and TRH-treated ewes. However, TRH treatment resulted in a significant increase in plasma levels of LH and FSH compared to controls from 12 h after luteal regression until 5 to 6 h before the start of the preovulatory surge of LH. In spite of this, and a similar increase in pulse frequency of LH in control and TRH-treated ewes, ovarian oestradiol secretion was significantly suppressed in TRH-treated ewes compared to that in control ewes. The preovulatory surge of LH and FSH, the second FSH peak and subsequent luteal function in terms of plasma levels of progesterone were not significantly different between control and TRH-treated ewes. These results show that TRH treatment, presumably by maintaining elevated plasma levels of prolactin, results in suppression of oestradiol secretion by a direct effect on the ovary in the ewe.  相似文献   

2.
Hormonal profiles during the estrous cycle of Finn, Suffolk and Targhee ewes were compared in six ewes of each breed. Blood samples were drawn by venipuncture at 8-h intervals from onset to onset of consecutive estrous periods. Number of corpora lutea (CL) and ovarian follicles >/=3 mm in diameter on Day 10 (estrus = Day 0) were observed using endoscopy. Estrous cycle length was 14.9, 15.6 and 16.4 d (P<0.01) in Finn, Suffolk and Targhee ewes, respectively. Finns had more (P<0.001) CL (3.5) than Suffolks (2.0) and Targhees (1.8), but luteal phase progesterone concentrations were similar among breeds in peak level and area under the curve. In Finn ewes, the amplitude of the preovulatory LH surge was lower (P<0.01) and tended to occur later in estrus; otherwise LH levels and patterns were similar among breeds. A coincident follicle stimulating hormone (FSH) preovulatory surge occurred in most ewes, the amplitude of which was related to that of luteinizing hormone (LH); r = 0.67, P<0.01. Plasma FSH levels and patterns were similar in Finn, Suffolk and Targhee ewes and most ewes had three to four secretory episodes. Follicles >/=3 mm averaged 1.8, 1.0 and 1.2 (P>0.1) in Finn, Suffolk and Targhee ewes, respectively. Results indicate that the higher ovulation rate of the Finn ewe is not elicited by increased FSH levels at any stage of the estrous cycle.  相似文献   

3.
The effects of monensin and progesterone priming on reproductive performance (estrous response, lambing rate and prolificacy) of grazing Boutsiko mountain breed adult and 18-mo.-old ewes at the end of seasonal anestrus were investigated. In Experiment 1 the feed supplement with or without monensin was offered for 21 d after introduction of vasectomized rams (Day 0). Progesterone was administered to the ewes in the respective groups as a single injection at Day -3. Ewes of both age groups were assigned randomly to 1 of 4 treatments: C, C+P, C+M and C+M+P. In Experiment 2 the supplement C or M was offered from Day -26 to Day 21. The treatments consisted of C, C+P and C+M+P. Blood samples were taken 50 h after ram introduction for determination of plasma concentrations of P and insulin-like growth factor-I (IGF-I). There was a greater increase in estrous response at Days 17 to 19 and at Days 0 to 19 when supplementation was offered before rather than after ram introduction in both age groups. In the adult group ewes synchronization of estrus at Days 17 to 19 was significantly increased by administration of monensin (P<0.05) and progesterone (P<0.01) compared with the control group in the first but not the second experiment. The incidence of estrus at Days 17 to 19 or at Days 0 to 19 was highest in the adult groups treated with monensin and progesterone in both experiments. In 18-mo.-old ewes progesterone was effective in synchronizing estrus only in Experiment 2. Mean plasma IGF-I concentrations were increased by monensin treatment (P<0.05) in adult ewes that were at the periovulatory stage at blood sampling time. Correlation coefficients between IGF-I and progesterone concentrations in monensin plus progesterone group adults were -0.715 (P<0.02) and -0.516 (P<0.01), respectively across all treatments. The results suggest that monensin and progesterone priming improved reproductive performance, and the monensin-induced increase in plasma IGF-I levels at the periovulatory stage may be causally related to the ability of ovulatory follicles to develop into functional corpora lutea (CL).  相似文献   

4.
Gonadotrophin releasing hormone (GnRH)-induced ovulation in seasonally anestrous ewes is associated with a high incidence of defective corpora lutea (CL), which can be completely eliminated by priming ewes with progesterone before GnRH treatment, but the physiological basis of this has remained elusive. This study tested the hypothesis that progesterone priming eliminates defective luteal function by altering the expression of Vascular Endothelial Growth Factor (VEGF), its receptor VEGFR-2, and angiopoietin (ANG)-1, ANG-2 and their receptorTIE-2 in the early CL. Fifteen seasonally anestrous ewes were treated by i.m. injection with 20 mg of progesterone 3 days before the start of GnRH treatment, while another 15 animals served as controls. Intravenous injections of 500 ng GnRH were given to all the ewes every 2 h for 28 h, followed by a 300 μg GnRH bolus injection to synchronize the preovulatory luteinizing hormone (LH) surge. Corpora lutea were collected 1, 2 and 4 days after ovulation and analyzed for protein and mRNA expression of VEGF, VEGFR-2, ANG-1, ANG-2 and Tie-2 using Western Immunoblotting and in situ hybridization. VEGF, VEGFR-2 and ANG-1 expression was significantly higher (P ≤ 0.05) in the CL of progesterone-primed animals compared to non-primed ones. However, no differences were observed in the ANG-2 or Tie-2 expression levels between the two treatment groups. These data suggest that progesterone priming of the preovulatory follicle alters the expression of some angiogenic growth factors in the early CL, leading to greater vascular stability and thereby normal luteal function.  相似文献   

5.
The ability of sheep luteal cells from the first corpus luteum formed after parturition (Group F) to secrete progesterone in the presence or absence of LH was compared with that of luteal cells obtained from normal cyclic ewes (Group C). Luteal concentrations of receptors for LH and prostaglandins (PG) F-2 alpha (PGF-2 alpha) and the cellular composition of corpora lutea from Groups F and C were also compared. Luteal cells from Group F secreted less progesterone in either the presence or absence of LH (P less than 0.01). There was no difference in the number of receptors for LH or PGF-2 alpha per luteal cell between Groups F and C (P greater than 0.1), nor was there a difference in the number of large or small steroidogenic luteal cells (P greater than 0.1). It was concluded that, if short-lived corpora lutea are insensitive to gonadotrophins, this response is not mediated by decreased numbers of receptors for LH. In addition, if the first corpus luteum formed post partum in ewes is more sensitive to the luteolytic effects of PGF-2 alpha, this effect is not mediated by an increased number of receptors for PGF-2 alpha or an increased proportion of PGF-2 alpha-sensitive large luteal cells.  相似文献   

6.
Pituitary and ovarian responses to subcutaneous infusion of GnRH were investigated in acyclic, lactating Mule ewes during the breeding season. Thirty postpartum ewes were split into 3 equal groups; Group G received GnRH (250 ng/h) for 96 h; Group P + G was primed with progestagen for 10 d then received GnRH (250 ng/h) for 96 h; and Group P received progestagen priming and saline vehicle only. The infusions were delivered via osmotic minipumps inserted 26.6 +/- 0.45 d post partum (Day 0 of the study). Blood samples were collected for LH analysis every 15 min from 12 h before until 8 h after minipump insertion, then every 2 h for a further 112 h. Daily blood samples were collected for progesterone analysis on Days 1 to 10 following minipump insertion, then every third day for a further 25 d. In addition, the reproductive tract was examined by laparoscopy on Day -5 and Day +7 and estrous behavior was monitored between Day -4 and Day +7. Progestagen priming suppressed (P < 0.05) plasma LH levels (0.27 +/- 0.03 vs 0.46 +/- 0.06 ng/ml) during the preinfusion period, but the GnRH-induced LH release was similar for Group G and Group P + G. The LH surge began significantly (P < 0.05) earlier (32.0 +/- 3.0 vs 56.3 +/- 4.1 h) and was of greater magnitude (32.15 +/- 3.56 vs 18.84 +/- 4.13 ng/ml) in the unprimed than the primed ewes. None of the ewes infused with saline produced a preovulatory LH surge. The GnRH infusion induced ovulation in 10/10 unprimed and 7/9 progestagen-primed ewes, with no significant difference in ovulation rate (1.78 +/- 0.15 and 1.33 +/- 0.21, respectively). Ovulation was followed by normal luteal function in 4/10 Group-G ewes, while the remaining 6 ewes had short luteal phases. In contrast, each of the 7 Group-P + G ewes that ovulated secreted progesterone for at least 10 d, although elevated plasma progesterone levels were maintained in 3/7 unmated ewes for >35 d. Throughout the study only 2 ewes (both from Group P + G) displayed estrus. These data demonstrate that although a low dose, continuous infusion of GnRH can increase tonic LH concentrations sufficient to promote a preovulatory LH surge and induce ovulation, behavioral estrus and normal luteal function do not consistently follow ovulation in the progestagen-primed, postpartum ewe.  相似文献   

7.
In two experiments carried out during seasonal anoestrus, Romney Marsh ewes were treated with small-dose (250 ng) multiple injections of GnRH at 2-h intervals with and without progesterone pretreatment. In Exp. 1, 8/8 progesterone-primed ewes ovulated and produced functionally normal corpora lutea compared with 2/9 non-primed ewes. Follicles were recovered from similarly treated animals 18 or 28 h after the start of GnRH treatment (at least 14 h before the estimated time of the LH peak) and assessed in terms of diameter, granulosa cell number, oestradiol, testosterone and progesterone concentrations in the follicular fluid, oestradiol production in vitro and binding of 125I-labelled hCG to granulosa and theca. There were no significant differences in any of these measures in 'ovulatory' follicles recovered from the progesterone-pretreated compared to non-pretreated animals. In Exp. 2, follicles were removed from similar treatment groups just before and 2 h after the start of the LH surge. Unlike 'ovulatory' follicles recovered from the non-pretreated ewes, those recovered from progesterone-pretreated ewes responded to the LH surge by significantly increasing oestradiol secretion (P less than 0.01) and binding of 125I-labelled hCG (P less than 0.05) to granulosa cells. Overall there was also more (P less than 0.05) hCG binding to granulosa and theca cells from progesterone-pretreated animals. Non-ovulatory follicles recovered from progesterone-primed ewes had more (P less than 0.05) binding of 125I-labelled hCG to theca and a higher testosterone concentration in follicular fluid (P less than 0.05) than did those from non-primed ewes. These results suggest that inadequate luteal function after repeated injections of GnRH may be due to a poor response to the LH surge indicative of a deficiency in the final maturational stages of the follicle.  相似文献   

8.
The microsphere technique was used to obtain estimates of ovarian capillary blood flow near ovulation, in 8 seasonally anoestrous ewes, which were induced to ovulate by GnRH therapy. Plasma progesterone concentrations were monitored in jugular blood sampled between Days 4 and 7 after the onset of the preovulatory LH surge. The ewes were then slaughtered. Three of the ewes were treated with a single injection of 20 mg progesterone before GnRH therapy. In these ewes and 1 other, plasma progesterone values increased after ovulation and reached 1.0 ng/ml on Day 7 following the preovulatory LH surge (normal, functional CL), whilst in the other 4 ewes progesterone concentrations increased initially then declined to 0.5 ng/ml by Day 7 (abnormal CL). In the ewes exhibiting normal luteal function, the mean ovarian capillary blood flow was significantly greater (P less than 0.01) than that for ewes having abnormal luteal function. Irrespective of the type of CL produced, capillary blood flow was significantly greater (P less than 0.05) in ovulatory ovaries than in non-ovulatory ovaries. These findings indicate that the rate of capillary blood flow in ovaries near ovulation may be a critical factor in normal development and maturation of preovulatory follicles and function of subsequently formed CL.  相似文献   

9.
Twenty seasonally anoestrous ewes were pretreated with progesterone for 4 days and divided into four equal groups. Ewes in Group 1 received no GnRH treatment and were slaughtered immediately after progesterone removal. Ewes in Groups 2, 3 and 4 received i.v. injections of 250 ng GnRH every 2 h for 36 h starting at the time of progesterone removal. Ewes in Group 2 were slaughtered immediately after the 36 h GnRH pulsing, while ewes in Groups 3 and 4 were given a bolus injection of 125 micrograms GnRH at this time and were slaughtered 2 and 10 h after the bolus injection, respectively. Blood samples were collected every 30 min from ewes in Group 4 only, from 4 h before the start of GnRH treatment until 10 h after the bolus injection. Pulsing with GnRH resulted in episodic release of LH, and the bolus injection of GnRH was immediately followed by a preovulatory type LH surge in those ewes in which an endogenous surge had no already begun. The pituitary GnRH receptor numbers were significantly higher for the ewes in Group 2 than for any of the other treatment groups, while there was no significant difference in the receptor numbers between Groups 1, 3 and 4. The results suggest an up-regulation of GnRH receptors resulting from pulsatile GnRH therapy.  相似文献   

10.
11.
Two experiments were conducted to investigate endocrine mechanisms by which the immune/inflammatory stimulus endotoxin disrupts the follicular phase of the estrous cycle of the ewe. In both studies, endotoxin was infused i.v. (300 ng/kg per hour) for 26 h beginning 12 h after withdrawal of progesterone to initiate the follicular phase. Experiment 1 sought to pinpoint which endocrine step or steps in the preovulatory sequence are compromised by endotoxin. In sham-infused controls, estradiol rose progressively from the time of progesterone withdrawal until the LH/FSH surges and estrous behavior, which began approximately 48 h after progesterone withdrawal. Endotoxin interrupted the preovulatory estradiol rise and delayed or blocked the LH/FSH surges and estrus. Experiment 2 tested the hypothesis that endotoxin suppresses the high-frequency LH pulses necessary to stimulate the preovulatory estradiol rise. All 6 controls exhibited high-frequency LH pulses typically associated with the preovulatory estradiol rise. As in the first experiment, endotoxin interrupted the estradiol rise and delayed or blocked the LH/FSH surges and estrus. LH pulse patterns, however, differed among the six endotoxin-treated ewes. Three showed markedly disrupted LH pulses compared to those of controls. The three remaining experimental ewes expressed LH pulses similar to those of controls; yet the estradiol rise and preovulatory LH surge were still disrupted. Our results demonstrate that endotoxin invariably interrupts the preovulatory estradiol rise and delays or blocks the subsequent LH and FSH surges in the ewe. Mechanistically, endotoxin can interfere with the preovulatory sequence of endocrine events via suppression of LH pulsatility, although other processes such as ovarian responsiveness to gonadotropin stimulation appear to be disrupted as well.  相似文献   

12.
The objective of this study was to characterize follicular development, onset of oestrus and preovulatory LH surge, and in vivo embryo yields of sheep superovulated after treatment with a single dose of 1.5mg of GnRH antagonist (GnRHa). At first FSH dose, ewes treated with GnRH antagonist (n=12) showed a higher number of gonadotrophin-responsive follicles, 2-3mm, than control ewes (n=9, 13.5+/-3.8 versus 5.3+/-0.3, P<0.05). Administration of FSH increased the number of >or=4mm follicles at sponge removal in both groups (19.3+/-3.8, P<0.0005 for treated ewes and 12.7+/-5.4, P<0.01 for controls). Thereafter, a 25% of the GnRHa-treated sheep did not show oestrous behaviour whilst none control sheep failed (P=0.06). The preovulatory LH surge was detected in an 88.9% of control ewes and 66.7% of GnRHa-treated sheep. A 77.8% of control females showed ovulation with a mean of 9.6+/-0.9 CL and 3.3+/-0.7 viable embryos, while ewes treated with GnRHa and showing an LH surge exhibited a bimodal distribution of response; 50% showed no ovulatory response and 50% superovulated with a mean of 12.2+/-1.1 CL and 7.3+/-1.1 viable embryos. In conclusion, a single dose of GnRHa enhances the number of gonadotrophin-dependent follicles able to grow to preovulatory sizes in response to an FSH supply. However, LH secretion may be altered in some females, which can affect the preovulatory LH surge and/or can weak the terminal maturation of ovulatory follicles.  相似文献   

13.
During the nonbreeding season the pituitary and ovarian responses to a subcutaneous GnRH infusion were investigated in acyclic, lactating Mule ewes which exhibit a deep seasonal anestrus and in Finn x Dorset ewes in which seasonal anestrus is ill-defined. Each breed received 10 d of progestagen priming before being subdivided into 3 groups. In Group L + G, 5 lactating ewes received GnRH (250 ng/h sc) for 96 h; in Group D + G, 5 dry ewes received GnRH (250 ng/h sc) for 96 h; in Group L, 5 lactating ewes received saline vehicle for 96 h. The infusions began when lactating and dry ewes were approximately 28 d and 120 d post partum, respectively. Blood samples were collected for LH, progesterone and estradiol analysis. Estrous behavior was monitored between Day -4 and Day +7. On Day +7 the reproductive tract was also examined. In the Mule ewes the mean plasma LH concentration increased (P < 0.05) following minipump insertion in each treatment group, although mean LH levels were greater (P < 0.05) in Group D + G, than in either Group L + G or Group L. Following the GnRH infusion, mean plasma estradiol levels increased (P < 0.05) in Group D + G but not in Group L + G. A preovulatory LH surge and subsequent ovulation occurred in 5 5 , 2 5 and 0 5 ewes from Group D + G, L + G and L, respectively, and estrus was recorded in 5 5 , 1 5 and 0 5 of these ewes, respectively. The LH surges began earlier (P < 0.05) (43.2 +/- 6.8 h vs 77.0 +/- 1.0 h) and the ovulation rate was greater (2.2 +/- 0.37 vs 1.00 +/- 0.00) in Group D + G than Group L + G. In the Finn x Dorset ewes mean LH concentrations increased (P < 0.05), to a similar level following minipump insertion in Groups D + G and L + G, but not Group L. The elevated LH levels were accompanied by increased (P < 0.05) plasma estradiol levels in Group D + G, but not in Group L + G. The GnRH infusion culminated in an LH surge and estrous behavior in 5 5 , 1 5 and 0 5 ewes from Groups D + G, L + D and L, respectively. The interval to the LH surge was similar between Group D + G (48.4 +/- 6.6 h) and Group L + G (46.0 h). Ovulation was evident in those ewes which exhibited an LH surge plus one additional ewe from Group L + G. The mean ovulation rate was greater in Group D + G (4.00 +/- 1.05) than in Group L + G (1.5 +/- 0.50). These data show that continuous GnRH infusion can consistently induce out of season breeding in the nonlactating Mule and Finn x Dorset ewe but can not break combined seasonal and lactational anestrous in these breeds. Further, between-breed differences are evident in the site along the hypothalamic-pituitary-ovarian axis at which reproduction is compromised in ewes at the same chronological stage post partum.  相似文献   

14.
The responsiveness of the hypothalamo-pituitary axis to steroid treatments for ovarian synchronization and the ovarian superstimulatory response to exogenous FSH was compared in 13-14 year old cows and their 1-4 year old young daughters. We tested the hypotheses that aging in cattle is associated with: (1) decreased follicular wave synchrony after estradiol and progesterone treatment; (2) delayed LH surge and ovulation in response to exogenous preovulatory estradiol treatment; (3) reduced superstimulatory response to exogenous FSH. Higher plasma FSH concentrations (P<0.01), and a tendency (P=0.07) for fewer 4-5 mm follicles at wave emergence were observed in old cows (n=10) than in young cows (n=9). The suppressive effect of estradiol/progesterone treatment on FSH was similar between old and young cows. Although the preovulatory LH surge in response to estradiol treatment was delayed in old than young cows (P=0.01), detected ovulation times were not different. No difference in ovarian superstimulatory response was detected between age groups, but old cows (n=8) tended (P=0.10) to have fewer large follicles (>or=9 mm) 12 h after last FSH treatment than in young cows (n=7). We concluded that pituitary and ovarian responsiveness to estradiol/progesterone synchronization treatment was similar between old and young cows, but aging was associated with a delayed preovulatory LH surge subsequent to estradiol treatment. Old cows tended to have fewer large follicles after superstimulatory treatment than young cows.  相似文献   

15.
Gonadotrophins, fecundity genes and ovarian follicular function   总被引:3,自引:0,他引:3  
The Booroola Merino is a sheep breed having a major gene(s) (F) influencing its ovulation-rate. Homozygous (FF), heterozygous (F+) and non-carriers (++) of the gene have ovulation-rates of greater than or equal to 5, 3 or 4 and 1 or 2 respectively with the durations of each oestrous cycle and oestrous behaviour being similar in all genotypes. Although the principal site(s) of gene expression are obscure, FF genotypes have mean plasma concentrations of FSH and LH which are higher than in the F+ ewes, which in turn are higher than in the ++ animals. Thus, the FF and F+ animals provide a unique system in which to examine ovarian function under continual exposure to elevated gonadotrophin concentrations. At the ovarian level, F gene-specific differences in follicular development and function were noted. In small follicles (0.1-1.0 mm dia.), the basal levels of cAMP and the in vitro synthesis of cAMP, progesterone, androstenedione and oestradiol-17 beta in response to LH and FSH were significantly influenced by genotype (FF greater than F+ greater than ++; P less than 0.05). In larger follicles (1-4.5 mm dia.) the granulosa cells from FF and F+ ewes were more responsive to FSH and/or LH than in ++ ewes with respect to cAMP synthesis and they also had higher levels of aromatase activity. In vivo, the ovarian secretion-rates of oestradiol from greater than or equal to 5 ("oestrogenic") follicles in FF ewes, 3-4 such follicles in F+ ewes, and 1-2 such follicles in ++ animals during the follicular phase were similar. In FF and F+ ewes, the preovulatory follicles ovulated at a smaller diameter (i.e. 3-5 mm) than in ++ ewes (greater than 5 mm diam.) and also produced smaller corpora lutea. Thus, after continual exposure to elevated levels of gonadotrophins, follicles may synthesize steroid and mature at smaller diameters compared to those exposed to normal levels of FSH and LH.  相似文献   

16.
The effects of active immunization against progesterone on reproductive activity were studied in Merino ewes. Immunization against progesterone caused a shortening (P less than 0.01) of the interval between ovulations from 17-18 days (controls) to between 6 and 10 days (immunized group); this was associated with a corresponding reduction in the interval between LH surges. The immunized ewes also had higher (P less than 0.05) ovulation rates (1.72) than controls (1.25) and exhibited a reduced (P less than 0.01) incidence of oestrus (26% v. 95%). Many immunized ewes continued to ovulate despite the persistence of corpora lutea from earlier ovulations which led to an accumulation on the ovaries of many corpora lutea of different ages. The frequency of LH pulses in ewes immunized against progesterone (1.8 +/- 0.2 pulses/4 h) was significantly (P less than 0.001) higher than that of control ewes (0.3 +/- 0.1 pulses/4 h). This study highlights the importance of progesterone in the control of oestrus, ovulation, ovulation rate, luteal regression and the secretion of LH in the ewe.  相似文献   

17.
To examine the effect of purified LH on development and function of luteal cells, 27 ewes were assigned to: (1) hypophysectomy plus 2 micrograms ovine LH given i.v. at 4-h intervals from Days 5 to 12 of the oestrous cycle (oestrus = Day 0; Group H + LH; N = 7); (2) hypophysectomy with no LH replacement (Group N-LH; N = 6); (3) control (no hypophysectomy) plus LH replacement as in Group H + LH (Group S + LH; N = 7); (4) control with no LH treatment (Group S-LH; N = 7). Blood samples were collected at 4-h intervals throughout the experiment to monitor circulating concentrations of LH, cortisol and progesterone. On Day 12 of the oestrous cycle corpora lutea were collected and luteal progesterone concentrations, unoccupied receptors for LH and number and sizes of steroidogenic and non-steroidogenic luteal cell types were determined. Corpora lutea from ewes in Group H-LH were significantly smaller (P less than 0.05), had lower concentrations of progesterone, fewer LH receptors, fewer small luteal cells and fewer non-steroidogenic cells than did corpora lutea from ewes in Group S-LH. The number of large luteal cells was unaffected by hypophysectomy, but the sizes of large luteal cells, small luteal cells and fibroblasts were reduced. LH replacement in hypophysectomized ewes maintained luteal weight and the numbers of small steroidogenic and non-steroidogenic luteal cells at levels intermediate between those observed in ewes in Groups L-LH and S-LH. In Group H + LH ewes, luteal and serum concentrations of progesterone, numbers of luteal receptors for LH, and the sizes of all types of luteal cells were maintained. Numbers of small steroidogenic and non-steroidogenic cells were also increased by LH in hypophysectomized ewes. In Exp. II, 14 ewes were assigned to: (1) sham hypophysectomy with no LH replacement therapy (Group S-LH; N = 5); (2) sham hypophysectomy with 40 micrograms ovine LH given i.v. at 4-h intervals from Day 5 to Day 12 of the oestrous cycle (Group S + LH; N = 5); and (3) hypophysectomy plus LH replacement therapy (Group H + LH; N = 4). Experimental procedures were similar to those described for Exp. I. Treatment of hypophysectomized ewes with a larger dose of LH maintained luteal weight, serum and luteal progesterone concentrations and the numbers of steroidogenic and non-steroidogenic luteal cells at control levels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Romney ewes were infused with ovine FSH (NIADDK-oFSH-16) for 48 h from the initiation of luteolysis with cloprostenol. Doses of 2.5 or 5 micrograms/h which partly or completely prevented the normal preovulatory decline in plasma FSH concentrations caused a significant increase in mean ovulation rates. Ovulation rates were not increased significantly if the FSH (5 micrograms/h) was infused for only 20 h starting from the initiation of luteolysis or 24 h later. Infusion of a less potent and relatively impure preparation of FSH (i.e. FSH-P) at 0.5 mg/h for 48 h after cloprostenol treatment also increased the mean ovulation rate significantly. However, if the FSH-P was given for only the first 24 h, or if the start of the infusion was delayed for more than 12 h, mean ovulation rates were not increased significantly. Infusion of LH (NIADDK-oLH-25, 5 micrograms/h) for 48 h from the initiation of luteolysis decreased the mean ovulation rate significantly. Administration of bovine follicular fluid to suppress plasma FSH concentrations below normal during the first 24 h after cloprostenol injection did not delay oestrus. However, oestrus was delayed by approximately 2 days if plasma FSH concentrations were reduced by bovine follicular fluid 24 h after the initiation of luteolysis. As ovulation rate increased, the mean weight of individual corpora lutea of each ewe decreased. In ewes with a single ovulation, most corpora lutea weighed greater than 600 mg, but as the ovulation rate increased the proportion of corpora lutea present weighing less than 400 mg rose steadily.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Two experiments involving crossbred ewes which lambed during the breeding season were performed to determine whether: (a) the interval to first postpartum ovulation could be reduced by weaning or mastectomy; (b) there are differences in luteal structure and luteinizing hormone (LH) receptor concentration between first postpartum corpora lutea induced with GnRH and normal cycling corpora lutea and (c) pretreatment of postpartum ewes with progesterone would affect luteal LH receptor concentration and luteal phase serum progesterone concentration.In experiment I, the mean interval (±SEM) to the first postpartum ovulation was 22.3 ± 1.1 days and was not significantly altered by weaning or mastectomy. More than half of the ewes had small, short-lived peaks of serum progesterone associated with short-lived corpora lutea prior to the normal luteal phase rise of serum progesterone. In experiment II, 2 h after GnRH injection on day 18 postpartum, serum LH concentrations were higher in ewes which received progesterone treatment on days 13 and 14 than in control ewes. Progesterone treatment did not affect mean corpus luteum weight (157 mg) or concentration of LH receptors (0.95 fmol/mg) in first postpartum corpora lutea, but progesterone-treated ewes had significantly higher endogenous serum progesterone concentrations on days 21–24. GnRH-induced corpora lutea from postpartum ewes were lighter in weight, paler in color, had lower LH receptor concentrations and had a more regressed histological appearance than corpora lutea of a similar age from normal, cycling ewes.  相似文献   

20.
Ovarian function in ewes at the onset of the breeding season   总被引:2,自引:0,他引:2  
Transrectal ultrasonography of ovaries was performed each day, during the expected transition from anoestrus to the breeding season (mid-August to early October), in six Western white-faced cross-bred ewes, to record ovarian antral follicles > or = 3 mm in size and luteal structures. Jugular blood samples were collected daily for radioimmunoassay (RIA) of follicle-stimulating hormone (FSH), oestradiol and progesterone. The first ovulation of the breeding season was followed by the full-length oestrous cycle in all ewes studied. Prior to the ovulation, all ewes exhibited a distinct increase in circulating concentrations of progesterone, yet no corpora lutea (CL) were detected and luteinized unovulated follicles were detected in only three ewes. Secretion of FSH was not affected by the cessation of anoestrus and peaks of episodic FSH fluctuations were associated with the emergence of ovarian follicular waves (follicles growing from 3 to > or = 5 mm). During the 17 days prior to the first ovulation of the breeding season, there were no apparent changes in the pattern of emergence of follicular waves. Mean daily numbers of small antral follicles (not growing beyond 3 mm in diameter) declined (P < 0.05) after the first ovulation. The ovulation rate, maximal total and mean luteal volumes and maximal serum progesterone concentrations, but not mean diameters of ovulatory follicles, were ostensibly lower during the first oestrous cycle of the breeding season compared with the mid-breeding season of Western white-faced ewes. Oestradiol secretion by ovarian follicles appeared to be fully restored, compared with anoestrous ewes, but it was not synchronized with the growth of the largest antral follicles of waves until after the beginning of the first oestrous cycle. An increase in progesterone secretion preceding the first ovulation of the breeding season does not result, as previously suggested, from the ovulation of immature ovarian follicles and short-lived CL, but progesterone may be produced by luteinized unovulated follicles and/or interstitial tissue of unknown origin. This increase in serum concentrations of progesterone does not alter the pattern of follicular wave development, hence it seems to be important mainly for inducing oestrous behaviour, synchronizing it with the preovulatory surge of luteinizing hormone (LH), and preventing premature luteolysis during the ensuing luteal phase. Progesterone may also enhance ovarian follicular responsiveness to circulating gonadotropins through a local mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号