首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In most cases, apoptotic cell death culminates in the activation of the caspase family of cysteine proteases, leading to the orderly dismantling and elimination of the cell. The IAPs (inhibitors of apoptosis) comprise a family of proteins that oppose caspases and thus act to raise the apoptotic threshold. Disruption of IAP-mediated caspase inhibition has been shown to be an important activity for pro-apoptotic proteins in Drosophila (Reaper, HID, and Grim) and in mammalian cells (Smac/DIABLO and Omi/HtrA2). In addition, in the case of the fly, these proteins are able to stimulate the ubiquitination and degradation of IAPs by a mechanism involving the ubiquitin ligase activity of the IAP itself. In this report, we show that the Drosophila RHG proteins (Reaper, HID, and Grim) are themselves substrates for IAP-mediated ubiquitination. This ubiquitination of Reaper requires IAP ubiquitin-ligase activity and a stable interaction between Reaper and the IAP. Additionally, degradation of Reaper can be blocked by mutating its potential ubiquitination sites. Most importantly, we also show that regulation of Reaper by ubiquitination is a significant factor in determining its biological activity. These data demonstrate a novel function for IAPs and suggest that IAPs and Reaper-like proteins mutually control each other's abundance.  相似文献   

2.
3.
SUMOylation and ubiquitination are two essential post translational modifications (PTMs) involved in the regulation of important biological processes in eukaryotic cells. Identification of ubiquitin (Ub) and small ubiquitin-related modifier (SUMO)-conjugated lysine residues in proteins is critical for understanding the role of ubiquitination and SUMOylation, but remains experimentally challenging. We have developed a powerful in vitro Ub/SUMO assay using a novel high density peptide array incorporated within a microfluidic device that allows rapid identification of ubiquitination and SUMOylation sites on target proteins. We performed the assay with a panel of human proteins and a microbial effector with known target sites for Ub or SUMO modifications, and determined that 80% of these proteins were modified by Ub or specific SUMO isoforms at the sites previously determined using conventional methods. Our results confirm the specificity for both SUMO isoform and individual target proteins at the peptide level. In summary, this microfluidic high density peptide array approach is a rapid screening assay to determine sites of Ub and SUMO modification of target substrates, which will provide new insights into the composition, selectivity and specificity of these PTM target sites.  相似文献   

4.
Three classes of E3 ubiquitin ligases, members of the Cbl, Hakai, and SOCS-Cul5-RING ligase families, stimulate the ubiquitination of phosphotyrosine-containing proteins, including receptor and nonreceptor tyrosine kinases and their phosphorylated substrates. Because ubiquitination frequently routes proteins for degradation by the lysosome or proteasome, these E3 ligases are able to potently inhibit tyrosine kinase signaling. Their loss or mutational inactivation can contribute to cancer, autoimmunity, or endocrine disorders, such as diabetes. However, these ligases also have biological functions that are independent of their ubiquitination activity. Here we review relevant literature and then focus on more-recent developments in understanding the structures, substrates, and pathways through which the phosphotyrosine-specific ubiquitin ligases regulate diverse aspects of cell biology.  相似文献   

5.
Xu L  Qu Z 《PloS one》2012,7(4):e34616
Protein ubiquitination and degradation play important roles in many biological functions and are associated with many human diseases. It is well known that for biochemical oscillations to occur, proper degradation rates of the participating proteins are needed. In most mathematical models of biochemical reactions, linear degradation kinetics has been used. However, the degradation kinetics in real systems may be nonlinear, and how nonlinear degradation kinetics affects biological oscillations are not well understood. In this study, we first develop a biochemical reaction model of protein ubiquitination and degradation and calculate the degradation rate against the concentration of the free substrate. We show that the protein degradation kinetics mainly follows the Michaelis-Menten formulation with a time delay caused by ubiquitination and deubiquitination. We then study analytically how the Michaelis-Menten degradation kinetics affects the instabilities that lead to oscillations using three generic oscillation models: 1) a positive feedback mediated oscillator; 2) a positive-plus-negative feedback mediated oscillator; and 3) a negative feedback mediated oscillator. In all three cases, nonlinear degradation kinetics promotes oscillations, especially for the negative feedback mediated oscillator, resulting in much larger oscillation amplitudes and slower frequencies than those observed with linear kinetics. However, the time delay due to protein ubiquitination and deubiquitination generally suppresses oscillations, reducing the amplitude and increasing the frequency of the oscillations. These theoretical analyses provide mechanistic insights into the effects of specific proteins in the ubiquitination-proteasome system on biological oscillations.  相似文献   

6.
IkappaB proteins are known as the regulators of NF-kappaB activity. They bind tightly to NF-kappaB dimers, until stimulus-responsive N-terminal phosphorylation by IKK triggers their ubiquitination and proteasomal degradation. It is known that IkappaBalpha is an unstable protein whose rapid degradation is slowed upon binding to NF-kappaB, but it is not known what dynamic mechanisms control the steady-state level of total IkappaBalpha. Here, we show clearly that two degradation pathways control the level of IkappaBalpha. Free IkappaBalpha degradation is not controlled by IKK or ubiquitination but intrinsically, by the C-terminal sequence known as the PEST domain. NF-kappaB binding to IkappaBalpha masks the PEST domain from proteasomal recognition, precluding ubiquitin-independent degradation; bound IkappaBalpha then requires IKK phosphorylation and ubiquitination for slow basal degradation. We show the biological requirement for the fast degradation of the free IkappaBalpha protein; alteration of free IkappaBalpha degradation dampens NF-kappaB activation. In addition, we find that both free and bound IkappaBalpha are similar substrates for IKK, and the preferential phosphorylation of NF-kappaB-bound IkappaBalpha is due to stabilization of IkappaBalpha by NF-kappaB.  相似文献   

7.
8.
Recent investigations have highlighted a key role of the proteins of the KCTD (K-potassium channel tetramerization domain containing proteins) family in several fundamental biological processes. Despite the growing importance of KCTDs, our current understanding of their biophysical and structural properties is very limited. Biochemical characterizations of these proteins have shown that most of them act as substrate adaptor in E3 ligases during protein ubiquitination. Here we present a characterization of the KCTD5-Cullin3 interactions which are mediated by the KCTD5 BTB domain. Isothermal titration calorimetry experiments reveal that KCTD5 avidly binds the Cullin3 (Cul3). The complex presents a 5:5 stoichiometry and a dissociation constant of 59 nM. Molecular modeling and molecular dynamics simulations clearly indicate that the two proteins form a stable (KCTD5–Cul3)5 pinwheel-shaped heterodecamer in which two distinct KCTD5 subunits cooperate in the binding of each cullin chain. Molecular dynamics simulations indicate that different types of interactions contribute to the stability of the assembly. Interestingly, residues involved in Cul3 recognitions are conserved in the KCTD5 orthologs and paralogs implicated in important biological processes. These residues are also rather well preserved in most of the other KCTD proteins. By using molecular modeling techniques, the entire ubiquitination system including the E3 ligase, the E2 conjugating enzyme and ubiquitin was generated. The analysis of the molecular architecture of this complex machinery provides insights into the ubiquitination processes which involve E3 ligases with a high structural complexity.  相似文献   

9.
Fatty acids are common components of biological membranes that are known to play important roles in intracellular signaling. We report here a novel mechanism by which fatty acids regulate the degradation of tyrosinase, a critical enzyme associated with melanin biosynthesis in melanocytes and melanoma cells. Linoleic acid (unsaturated fatty acid, C18:2) accelerated the spontaneous degradation of tyrosinase, whereas palmitic acid (saturated fatty acid, C16:0) retarded the proteolysis. The linoleic acid-induced acceleration of tyrosinase degradation could be abrogated by inhibitors of proteasomes, the multicatalytic proteinase complexes that selectively degrade intracellular ubiquitinated proteins. Linoleic acid increased the ubiquitination of many cellular proteins, whereas palmitic acid decreased such ubiquitination, as compared with untreated controls, when a proteasome inhibitor was used to stabilize ubiquitinated proteins. Immunoprecipitation analysis also revealed that treatment with fatty acids modulated the ubiquitination of tyrosinase, i.e. linoleic acid increased the amount of ubiquitinated tyrosinase whereas, in contrast, palmitic acid decreased it. Furthermore, confocal immunomicroscopy showed that the colocalization of ubiquitin and tyrosinase was facilitated by linoleic acid and diminished by palmitic acid. Taken together, these data support the view that fatty acids regulate the ubiquitination of tyrosinase and are responsible for modulating the proteasomal degradation of tyrosinase. In broader terms, the function of the ubiquitin-proteasome pathway might be regulated physiologically, at least in part, by fatty acids within cellular membranes.  相似文献   

10.
Ubiquitination of proteins is now recognized to target proteins for degradation by the proteasome and for internalization into the lysosomal system, as well as to modify functions of some target proteins. Although much progress has been made in characterizing enzymes that link ubiquitin to proteins, our understanding of deubiquitinating enzymes is less developed. These enzymes are involved in processing the products of ubiquitin genes which all encode fusion proteins, in negatively regulating the functions of ubiquitination (editing), in regenerating free ubiquitin after proteins have been targeted to the proteasome or lysosome (recycling) and in salvaging ubiquitin from possible adducts formed with small molecule nucleophiles in the cell. A large number of genes encode deubiquitinating enzymes suggesting that many have highly specific and regulated functions. Indeed, recent findings provide strong support for the concept that ubiquitination is regulated by both specific pathways of ubiquitination and deubiquitination. Interestingly, many of these enzymes are localized to subcellular structures or to molecular complexes. These localizations play important roles in determining specificity of function and can have major influences on their catalytic activities. Future studies, particularly aimed at characterizing the interacting partners and potential substrates in these complexes as well as at determining the effects of loss of function of specific deubiquitinating enzymes will rapidly advance our understanding of the important roles of these enzymes as biological regulators.  相似文献   

11.
Arrestins regulate the activity and subcellular localization of G protein-coupled receptors and other signaling molecules. Here, we demonstrate that arrestins bind microtubules (MTs) in vitro and in vivo. The MT-binding site on arrestins overlaps significantly with the receptor-binding site, but the conformations of MT-bound and receptor-bound arrestin are different. Arrestins recruit ERK1/2 and the E3 ubiquitin ligase Mdm2 to MTs in cells, similar to the arrestin-dependent mobilization of these proteins to the receptor. Arrestin-mediated sequestration of ERK to MTs reduces the level of ERK activation. In contrast, recruitment of Mdm2 to MTs by arrestin channels Mdm2 activity toward cytoskeleton-associated proteins, increasing their ubiquitination dramatically. The mobilization of signaling molecules to MTs is a novel biological function of arrestin proteins.  相似文献   

12.
Ubiquitination, also known as ubiquitylation, is a vital post‐translational modification of proteins that play a crucial role in the multiple biological processes including cell growth, proliferation and apoptosis. K63‐linked ubiquitination is one of the vital post‐translational modifications of proteins that are involved in the activation of protein kinases and protein trafficking during cell survival and proliferation. It also contributes to the development of various disorders including cancer, neurodegeneration and cardiac hypertrophy. In this review, we summarize the role of K63‐linked ubiquitination signalling in protein kinase activation and its implications in cardiac hypertrophy. We have also provided our perspectives on therapeutically targeting K63‐linked ubiquitination in downstream effector molecules of growth factor receptors for the treatment of cardiac hypertrophy.  相似文献   

13.
嗜肺军团菌是一种胞内寄生菌,其通过特有的Dot/Icm Type-IVB分泌系统向胞浆内分泌大量效应因子,其中已知参与宿主泛素化调控的效应因子有十多种。这些效应因子通过对宿主泛素化途径进行调控来达到逃避宿主免疫系统"监视"并大量增殖的目的。参与调控宿主泛素化途径的效应因子包括AnkB、SidC、LubX、SidH、LegU1、GobX、RavD、DupA、DupB、SidJ、Ceg23、MvcA、MavC及SidE家族蛋白等。随着对嗜肺军团菌效应因子功能及结构研究的深入,它们的作用机制逐渐被揭示。本文对其中几种重要嗜肺军团菌效应因子的生物学结构和分子机制进行系统总结,有利于综合了解嗜肺军团菌参与调控宿主泛素化系统的复杂过程。  相似文献   

14.
RAD6 in the yeast Saccharomyces cerevisiae encodes a ubiquitin-conjugating enzyme essential for DNA repair as well as for a number of other biological processes. It is believed that the functions of Rad6p require the ubiquitination of target proteins, but its substrates as well as other interacting proteins are largely unknown. Rad6p homologues of higher eukaryotes have a number of amino acid residues in the C-terminal α-helix, which are conserved from yeast to man but are absent from most other yeast ubiquitin-conjugating enzymes (Ubcs). This specific conservation suggests that the C-terminal a-helix is important for the unique activities of the Rad6p family of Ubcs. We have investigated the effects of mutating this highly conserved region on the ubiquitination of model substrates in vitro and on error-free DNA repair in vivo. C-terminal point and deletion mutants of Rad6p differentially affected its in vitro activity on various substrates, raising the possibility that Rad6p interacts with its substrates in vivo by similar mechanisms. The distal part of the C-terminal u-helix is also essential for error-free DNA repair in vivo. Overexpression of Rad18p, a single-stranded DNA-binding protein that also interacts with Rad6p, alleviates the DNA repair defects of the C-terminal α-helix mutants to different degrees. This indicates that the C-terminal α-helix of Rad6p mediates its interaction with Rad18p, an essential step in DNA repair. Models of Rad6p action propose that its ubiquitination function is followed by proteolysis of unknown ubiquitinated targets. Mutants affecting several functions of the 26S proteasome retain wild-type capacity for error-free DNA repair. This raises the possibility that ubiquitination by Rad6p in DNA repair does not target proteins for proteasomal degradation.  相似文献   

15.
After oxidative stress, proteins that are oxidatively modified are degraded by the 20S proteasome. However, several studies have documented an enhanced ubiquitination of yet unknown proteins. Because ubiquitination is a prerequisite for degradation by the 26S proteasome in an ATP-dependent manner this raises the question whether these proteins are also oxidized and, if not, what proteins need to be ubiquitinated and degraded after oxidative conditions. By determination of oxidized and ubiquitinated proteins we demonstrate here that most oxidized proteins are not preferentially ubiquitinated. However, we were able to confirm an increase in ubiquitinated proteins 16 h after oxidative stress. Therefore, we isolated ubiquitinated proteins from hydrogen peroxide-treated cells, as well as from control cells and cells treated with lactacystin, an irreversible proteasome inhibitor, and identified some of these proteins by MALDI tandem mass spectrometry. As a result we obtained 24 different proteins that can be categorized into the following groups: chaperones, energy metabolism, cytoskeleton/intermediate filaments, and protein translation/ribosome biogenesis. The special set of identified, ubiquitinated proteins confirms the thesis that ubiquitination upon oxidative stress is not a random process to degrade the mass of oxidized proteins, but concerns a special group of functional proteins.  相似文献   

16.
Maintenance of cell junctions plays a crucial role in the regulation of cellular functions including cell proliferation, permeability, and cell death. Disruption of cell junctions is implicated in a variety of human disorders, such as inflammatory diseases and cancers. Understanding molecular regulation of cell junctions is important for development of therapeutic strategies for intervention of human diseases. Ubiquitination is an important type of post-translational modification that primarily regulates endogenous protein stability, receptor internalization, enzyme activity, and protein-protein interactions. Ubiquitination is tightly regulated by ubiquitin E3 ligases and can be reversed by deubiquitinating enzymes. Recent studies have been focusing on investigating the effect of protein stability in the regulation of cell-cell junctions. Ubiquitination and degradation of cadherins, claudins, and their interacting proteins are implicated in epithelial and endothelial barrier disruption. Recent studies have revealed that ubiquitination is involved in regulation of Rho GTPases’ biological activities. Taken together these studies, ubiquitination plays a critical role in modulating cell junctions and motility. In this review, we will discuss the effects of ubiquitination and deubiquitination on protein stability and expression of key proteins in the cell-cell junctions, including junction proteins, their interacting proteins, and small Rho GTPases. We provide an overview of protein stability in modulation of epithelial and endothelial barrier integrity and introduce potential future search directions to better understand the effects of ubiquitination on human disorders caused by dysfunction of cell junctions.  相似文献   

17.
黄酮类化合物具有多种生物活性,在食品、药品、化妆品等领域都有重要应用.柚皮素是多种重要黄酮类化合物生物合成的平台化合物.泛素化是蛋白质翻译后修饰的重要一环,参与调控细胞的生命活动.泛素化的蛋白质通过泛素-蛋白酶体系统降解,对维持细胞正常生理活动具有重要意义,对外源蛋白的表达和积累也可能具有显著影响.文中利用荧光双分子互...  相似文献   

18.

Background

Protein ubiquitination catalyzed by E3 ubiquitin ligases play important modulatory roles in various biological processes. With the emergence of high-throughput mass spectrometry technology, the proteomics research community embraced the development of numerous experimental methods for the determination of ubiquitination sites. The result is an accumulation of ubiquitinome data, coupled with a lack of available resources for investigating the regulatory networks among E3 ligases and ubiquitinated proteins. In this study, by integrating existing ubiquitinome data, experimentally validated E3 ligases and established protein-protein interactions, we have devised a strategy to construct a comprehensive map of protein ubiquitination networks.

Results

In total, 41,392 experimentally verified ubiquitination sites from 12,786 ubiquitinated proteins of humans have been obtained for this study. Additional 494 E3 ligases along with 1220 functional annotations and 28588 protein domains were manually curated. To characterize the regulatory networks among E3 ligases and ubiquitinated proteins, a well-established network viewer was utilized for the exploration of ubiquitination networks from 40892 protein-protein interactions. The effectiveness of the proposed approach was demonstrated in a case study examining E3 ligases involved in the ubiquitination of tumor suppressor p53. In addition to Mdm2, a known regulator of p53, the investigation also revealed other potential E3 ligases that may participate in the ubiquitination of p53.

Conclusion

Aside from the ability to facilitate comprehensive investigations of protein ubiquitination networks, by integrating information regarding protein-protein interactions and substrate specificities, the proposed method could discover potential E3 ligases for ubiquitinated proteins. Our strategy presents an efficient means for the preliminary screen of ubiquitination networks and overcomes the challenge as a result of limited knowledge about E3 ligase-regulated ubiquitination.
  相似文献   

19.
Su HL  Li SS 《Gene》2002,296(1-2):65-73
  相似文献   

20.
In mammals, sperm need to mature in the epididymis to gain fertilization competency. However, the molecular mechanism underlying buffalo sperm maturation remains elusive. Exploring sperm physiology at the posttranslational modification (PTM) level could help to develop our understanding of these mechanisms. Protein phosphorylation and ubiquitination are major PTMs in the regulation of many biological processes. In the present study, to our knowledge, we report the first phosphoproteome and ubiquitylome of sperm collected from the caput, corpus, and cauda segments of the epididymis using liquid chromatography–mass spectrometry combined with affinity purification. In total, 647 phosphorylation sites in 294 proteins and 1063 ubiquitination sites in 446 proteins were characterized. Some of these proteins were associated with cellular developmental processes and energy metabolic pathways. Interestingly, 84 proteins were both phosphorylated and ubiquitinated, simultaneously. Some of these proteins were involved in, for example, spermatogenesis, reproduction, and spermatid development. Taken together, these data provide a theoretical basis for further functional analysis of phosphorylation and ubiquitination in epididymal sperm of buffalo and other mammals, and serve as an important resource for exploring the physiological mechanism underlying sperm maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号