首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tonic activity in rabbit superior cervical ganglion neurons was investigated using intracellular recording techniques as well as changes produced when the animal breathed a gaseous mix with a raised CO2 level. The test neurons were divided into three groups depending on the pattern of their tonic activity and reflex change. Action potentials were produced by the activity of dominant and accessory preganglionic inputs in the firing pattern of all neuronal groups, implying the existence of other types of inputs into the neurons innervating different organs. Having analyzed changes in action potential rate and EPSP in the tonic activity of neurons from different groups, it was presumed that preganglionic fibers with a similar activity pattern converge on the majority of neurons in each group.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 5, pp. 665–672, September–October, 1987.  相似文献   

2.
3.
Individual nerves of the superior cervical sympathetic ganglion were stimulated in acute experiments on cats, and action potentials (AP) were recorded from other nerves of the ganglion in order to clarify whether or not there is transmission of excitation through the ganglion from one nerve to another and to establish whether this transmission is continuous or synaptic. The method of intracellular recording from neurons of the ganglion was also used. It is established that stimulation of the cervical sympathetic nerve evokes AP in all of the peripheral nerves of the ganglion, a circumstance that is the result of synaptic transmission of excitation. There is no transmission of excitation in the reverse direction or between any of the 12 peripheral nerves of the ganglion (including the four branches of the internal carotid nerve). Orthodromic excitation is recorded intracellularly from neurons of the ganglion during stimulation of the cervical sympathetic nerve, and antidromic excitation is recorded during stimulation of a peripheral nerve (the internal carotid nerve). It follows that the pathways through the ganglion which conduct excitation from the cervical sympathetic nerve into all of the remaining nerves of the ganglion are synaptic. Analysis of EPSP latent periods indicated that preganglionic fibers that differ sharply with respect to threshold and conduction rate (groups S2 and S4) converge on one and the same neurons of the ganglion.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 216–224, March–April, 1970.  相似文献   

4.
Superior cervical ganglia isolated from immature cats accumulated 0.9 ng atoms of 45Ca per mg wet weight during 10-min incubations at 37°C; when expressed as an equivalent volume of medium the accumulation was four times the uptake of 3H-inulin. Orthodromic stimulation of the ganglia doubled 45Ca accumulation, whereas excitation with 50 mM KCl, 5 mM glutamate, or antidromic stimulation increased accumulation by one-half. Hexamethonium reduced the increment in 45Ca accumulation due to orthodromic stimulation only, but another ganglionic blocking agent, tetraethylammonium, did not reduce accumulation in any case. Both agents blocked ganglionic transmission monitored electrophysiologically. To resolve this discrepancy, and to approach the localization of 45Ca within the ganglia, the efflux of previously accumulated 45Ca was examined. The data could be fitted by an equation incorporating the sum of three exponentials, representing a rapidly exchanging compartment plus two more slowly exchanging ones. The latter two appeared to reflect the pre- and postganglionic elements in the ganglia: 45Ca content of the “preganglionic” compartment was increased by orthodromic but not by antidromic stimulation, and was not decreased by either blocking agent; conversely, 45Ca content of the “postganglionic” compartment was increased by both orthodromic and antidromic stimulation, and was decreased by both blocking agents after orthodromic stimulation. The lack of effect of tetraethylammonium on the whole ganglion resulted from an increase in “preganglionic” accumulation that offset the “postganglionic” decrease. After preganglionic denervation, the 45Ca content of the “preganglionic” compartment was reduced by two-thirds, while the 45Ca content of the “postganglionic” compartment was unchanged. Chemical stimulation increased 45Ca accumulation in both compartments. Diphenylhydantoin, 0.1 mM, decreased the increment in 45Ca accumulation due to electrical stimulation and to 50 mM KCl; this inhibition occurred in the “preganglionic” compartment (and perhaps also in the “postganglionic”), and was accompanied by an increased efflux of 45Ca.  相似文献   

5.
The sucrose gap technique was used to study the long positive potential (P-potential) in a curarized cat superior cervical ganglion. The frequency of stimulating the preganglionic trunk optimal for P-potential production was 30–40 impulses/sec at a stimulus series duration of 1 sec. Proserine in low concentrations (1–5 µg/ml) increased amplitude and especially duration of the P-potential. Atropine (0.5–2 µg/ml) blocked it completely. Adrenaline and noradrenaline (10–50 µg/ml inhibited both the negative potential (corresponding to the fast EPSP of neurons) and the P-potential in equal measure. The nature of dependence of P-potential amplitude on value of the membrane potential was also studied. It was found that the P-potential is inhibited in solutions with low potassium ion content, and that amplitude of the P-potential rises with an increase of intracellular sodium concentration. The rate of its increase rises with an increase of temperature. Under the influence of strophathin, the P-potential is inhibited. The data obtained support the hypothesis that the P-potential is determined by synaptic activation of the electrogenic sodium pump.A. A. Bogomol'ets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 1, pp. 76–83, January–February, 1971.  相似文献   

6.
7.
The origins of the afferent fibers to the cat's superior cervical ganglion (SCG) were demonstrated by using the retrograde horseradish peroxidase tracing method. We found that the preganglionic neurons were located in the spinal segments C8-T5, particularly in T1-T3. These neurons were situated mainly in the intermediolateral column. The extra-SCG neurons along with the cervical sympathetic trunk originated ipsilaterally from the middle cervical and stellate ganglia, and contralaterally from the caudal part of the SCG. Labeled neurons also originated from the mandibular division of the trigeminal ganglion. Our results demonstrated that many fiber sources projected to the SCG, which plays a complicated synaptic role in controlling the visceral organs of the head and neck region.  相似文献   

8.
The action of hexamethonium, D-tubocurarine, phentolamine, and atropine on synaptic transmission in the superior cervical ganglion was studied in the early stage of postnatal development (1–8 days after birth) and in the adult period in cats, rabbits, and rats. Hexamethonium and D-tubocurarine, if injected intravenously or added to the Krebs' solution surrounding the ganglion, were shown to inhibit the conduction of excitation through the ganglion effectively in both newborn and adult animals. No significant difference in the action of phentolamine and atropine on synaptic transmission in the ganglia could be found in these groups of animals. It is concluded that synaptic transmission in sympathetic ganglia is cholinergic in the early stage of postnatal development of animals blind at birth.  相似文献   

9.
The extent of the deactivation of the mitochondrial succinate dehydrogenase by oxaloacetate is a function of the redox state of the enzyme. Oxidized enzyme is deactivated by much lower concentrations of oxaloacetate than those needed to deactivate reduced enzyme. An accurate method for measuring this relationship is the redox titration of the enzymic activity of succinate dehydrogenase, carried out in the presence of oxaloacetate. For each concentration of oxaloacetate a different redox titration curve was reported with the apparent mid-potential decreasing with increasing oxaloacetate. These results are compatible with a model which proposes that both oxidized and reduced enzymes can form the catalytically non-active complex with oxaloacetate, but that the complex formed the the oxidized enzyme is more stable than that formed by the reduced enzyme. When the oxaloacetate concentration is low, reduction of the enzyme will lower the fraction of the succinate dehydrogenase-oxaloacetate complex, a reaction which we observe as reductive activation of the enzyme. If this experiment is repeated in the presence of high concentration of oxaloacetate, no activation of the enzyme takes place, but the low stability of the reduced enzyme oxaloacetate complex is revealed by the rapid exchange of the enzyme-bound oxaloacetate with the free ligand. The rate of this exchange is extremely slow at high positive potential and becomes faster upon lowering of the poise potential. The reductive activation of the succinate dehydrogenase is regarded as a two step reaction. In the first step the reduced non-active complex releases the oxaloacetate and in the second step the active form of the enzyme is evolved. These two steps can be observed experimentally; Reductive activation at a redox potential higher than the mid-potential of the oxaloacetate-malate couple (minus 166 mV) is characterized by Ea = 18 Kca/mole, the final equilibrium level of activation decreases upon lowering of the temperature. Reduction activation of the enzyme at minus 240 mV is a very rapid reaction which goes to completion at all temperatures tested and has an activation energy of 12.5 Kcal/mole. The mechanism of the reductive activation and its possible role in the regulation of succinate dehydrogenase in the mitochondria is discussed.  相似文献   

10.
11.
12.
Investigation of spontaneous activity (mean amplitude of spikes 200–300 µV, frequency from 0.07 to 2.9 Hz) in the rabbit superior cervical sympathetic ganglion by the sucrose gap method showed that this activity was completely blocked by D-tubocurarine and hexamethonium; its frequency was increased in hypertonic solution, by an increase in the external potassium concentration, and by the addition of theophylline and ethanol. These observations suggest that the activity observed is due to spontaneous liberation of acetylcholine mediator from preganglionic nerve endings. However, addition of tetrodotoxin and an increase in the external calcium concentration to 10 mM block spontaneous activity in the ganglion. This suggests that the observed spontaneous activity consists of action potentials.  相似文献   

13.
14.
15.
The distributions of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the superior cervical ganglion (SCG) of the cat were determined by electron microscopy (EM) with the bis- (thioacetoxy)aurate (I), or Au(TA)2, method. Before the infusion of fixative, one of the enzymes was selectively, irreversibly inactivated in vivo, as confirmed by light microscope (LM) examination of sections of the stellate ganglion stained by the more specific copper thiocholine method. Physostigmine-treated controls, for inhibition of AChE or BuChE, were stained concomitantly with tissue for enzyme localization by the Au(TA)2 method for EM examination in each experiment. It was concluded that most of the AChE of the cat SCG is present in the plasma membranes of the preganglionic axons and their terminals, and in the dendritic and perikaryonal plasma membranes of the postsynaptic ganglion cells. BuChE is confined largely to the postsynaptic neuronal plasma membranes. Reasons for the discrepancies between the localizations found by the present direct EM observations and those deduced earlier from LM comparisons of normal and denervated SCG are discussed. It is proposed that a trophic factor released by the preganglionic terminals is probably required for the synthesis of postsynaptic neuronal AChE, and that BuChE may serve as a precursor of AChE at that site.  相似文献   

16.
It has previously been reported that in the isolated cat superior cervical ganglion (SCG) labeled with tritiated norepinephrine (3H-NE), the stimulation of the preganglionic trunk at 10 Hz as well as the exposure to 100 microM exogenous acetylcholine (ACh), produced a Ca++-dependent release of 3H-NE. The present results show that a Ca++-dependent release of 3H-NE was produced also by exposure to either 50 microM veratridine or 60 mM KCl. Tetrodotoxin (0.5 microM) abolished the release of 3H-NE induced by preganglionic stimulation, ACh and veratridine but did not modify the release evoked by KCl. The metabolic distribution of the radioactivity released by the different depolarizing stimuli showed that the 3H-NE was collected mainly unmetabolized. In the cat SCG neither the release of 3H-NE evoked by KCl nor the endogenous content of NE was modified by pretreatment with 6-OH-dopamine (6-OH-DA). On the other hand, this chemical sympathectomy depleted the endogenous content of NE in the cat nictitating membrane, whose nerve terminals arise from the SCG. The data presented suggest that the depolarization-coupled release of NE from the cat SCG involves structures that are different to nerve terminals and that contain Na+ channels as well as Ca++ channels.  相似文献   

17.
The superior cervical ganglion (SCG) was reinnervated by vagal afferent fibers by cross anastomosis between the cranial end of nodose ganglion and the caudal end of SCG in cats. Formation of functional synapses was evidenced by unilateral mydriasis and contraction of the nictitating membrane in response to inflation of the stomach with a balloon or to electrical stimulation of the afferent vagus. The acetylcholine (ACh) content in the cross-anastomosed SCG (reinnervated by vagal afferent fibers) was measured. In anastomosed SCG, the ACh content was about half of normal SCG, but significantly higher than chronically decentralized SCG. Also the ACh content in nodose ganglion (NDG) was investigated in situations in which there was anastomosis, chronic supra, infra, or supra-/infranodose vagotomy. The ACh content of anastomosed NDG was near that of supranosdose vagotomized ganglion. The ACh content of supra-/infranodose vagotomized NDG, which can be considered the NDG itself, was as much as that of normal intact NDG. It was found that the ACh content of infranodose vagotomized NDG was increased, possibly the result of vagal efferent axonal flow or transport. The ACh content of vagal trunk with or without infranodose vagotomy was also measured. The ACh content of vagal trunk with infranodose vagotomy was smaller than that of the normal trunk, but there was still a considerable quantity of ACh. There was no significant change in wet weight of the SCG and NDG before or after the operations. From these results we have concluded that the transmission of the cross-anastomosed SCG (reinnervated with vagal afferent nerve) was cholinergic; and that the vagal afferent nerve have afferent cell bodies not only in NDG but also in peripheral vagal trunks (infranodose portion). These results strongly suggest that vagal afferent fibers are in part cholinergic.  相似文献   

18.
The prosthetic groups in succinate dehydrogenase. Number and stoichiometry   总被引:1,自引:0,他引:1  
I. Succinate:Q oxidoreductase (EC 1.3.99.1) as present in beef-heart submitochondrial particles contains equal amounts of FAD, a [2Fe-2S] cluster and a [4Fe-4S] cluster. Both Fe-S clusters are reducible by succinate. 2. A second type of [2Fe-2S] cluster, called center S-2, that has been proposed to be present in purified preparations of succinate dehydrogenase and isolated Complex II (Ohnishi, T., Winter, D.B., Lim, J. and King, T.E. (1973) Biochem. Biophys. Res. Commun. 53, 231--237) is an artifact introduced by the purification procedure. 3. It is suggested that the 70 000 dalton subunit which is known to bind the flavin, accomodates also the [4Fe-4S] cluster whereas the 28 000 dalton subunit contains the [2Fe-2S] cluster.  相似文献   

19.
20.
Cat superior cervical ganglia (SCG), denervated preganglionically 6-8 d previously, were stained for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) by the bis-(thioacetoxy)aurate (I), or Au(TA)2, method and compared by electron microscopy with normal SCG described previously (Davis, R., and G. B. Koelle. 1978. J. Cell Biol. 78:785-809). In confirmation of earlier light microscopic findings by the highly specific copper thiocholine method, there was nearly a total disappearance of AChE from the ganglion; no myelinated or unmyelinated axons with AChE-stained axolemmas were found, and only occasional traces of AChE staining were noted at dendritic and perikaryonal plasma membranes. Considerable staining for BuChE persisted at the latter sites, however. As in the normal SCG, physostigmine-resistant staining, caused by noncholinesterase enzymes plus the possible presence of very low concentrations of AChE or BuChE, was noted at external mitochondrial membranes, elements of the endoplasmic reticulum of neurites and Schwann cells, and also in lysosomes. These findings confirm the previous identification of AChE-stained myelinated fibers in the normal SCG as preganglionic and of the unstained myelinated fibers as postganglionic. It is proposed that the maintenance of AChE at postsynaptic sites in normal ganglia is caused by the release of a trophic factor(s) from presynaptic terminals. The source of the postsynaptic BuChE, which is apparently completely absent from the endoplasmic reticulum of the ganglion cells, remains unexplained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号