首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The binding of Ca2+ to troponin C (TnC) regulates skeletal muscle contraction. We have isolated a full-length cDNA clone for fast skeletal muscle TnC from a neonatal rabbit skeletal muscle library and determined its nucleic acid sequence. The amino acid sequence deduced from this clone matches the previously reported amino acid sequence (Collins, J. H., Greaser, M. L., Potter, J. D., and Horn, M. J. (1977) J. Biol. Chem. 252, 6356-6362) except at the amino terminus. According to the nucleotide sequence, the first 2 residues of TnC are threonine-aspartic acid, which is the reverse of the order reported previously. The isolation of the adult form of TnC from a neonatal library suggests that there may be no developmental isoforms of fast TnC. The protein coding region of the fast TnC clone has 67% homology with the reported nucleotide sequence for chicken slow TnC (Putkey, J. A., Carroll, S. L., and Means, A. R. (1987) Mol. Cell. Biol. 7, 549-1553). The homologies between the nucleotide sequences of TnC, calmodulin, and parvalbumin provide evidence that all three proteins were derived from a common precursor molecule which had four Ca2+-binding sites.  相似文献   

2.
We have characterized the structure and expression of rodent mRNAs encoding the fast and slow skeletal muscle isoforms of the contractile regulatory protein, troponin I (TnIfast and TnIslow). TnIfast and TnIslow cDNA clones were isolated from mouse and rat muscle cDNA clone libraries and were used as isoform-specific probes in Northern blot and in situ hybridization studies. These studies showed that the TnIfast and TnIslow mRNAs are expressed in skeletal muscle, but not cardiac muscle or other tissues, and that they are differentially expressed in individual muscle fibers. Fiber typing on the basis of in situ hybridization analysis of TnI isoform mRNA content showed an excellent correlation with fiber type as assessed by myosin ATPase histochemistry. These results directly demonstrate that the differential expression of skeletal muscle TnI isoforms in the various classes of vertebrate striated muscle cells is based on gene regulatory mechanisms which control the abundances of specific TnI mRNAs in individual muscle cells. Both TnIfast and TnIslow mRNAs are expressed, at comparable levels, in differentiated cultures of rat L6 and mouse C2 muscle cell lines. Thus, although neuronal input has been shown to be an important factor in determining fast versus slow isoform-specific expression in skeletal muscle, both TnIfast and TnIslow genes can be expressed in muscle cells in the absence of nerve. Comparison of the deduced rodent TnI amino acid sequences with previously determined rabbit protein sequences showed that residues with potential fast/slow isoform-specific function are present in several discrete clusters, two of which are located near previously identified actin and troponin C binding sites.  相似文献   

3.
1. A series of defined peptides which span the complete sequence were produced from troponin I isolated from white skeletal muscle of the rabbit. 2. Two peptides, CF1 (residues 64-133) and CN4 (residues 96-117) inhibited the Mg2+-stimulated adenosine triphosphatase of desensitized actomyosin. This inhibition was potentiated by tropomyosin and the Mg2+-stimulated adenosine triphosphatase of desensitized actomyosin. This inhibition, unlike that of troponin I and peptides derived from it, was not potentiated by tropomyosin. 4. The most active inhibitor, peptide CN4, was 45-75% as effective as troponin I when compared on a molar basis. The inhibitory peptide, CN4, and also whole troponin I were shown by affinity chromatography to interact specifically with actin. 5. A strong interaction with troponin C was demonstrated with peptide CF2 (residues 1-47), from the N-terminal region of troponin I. Somewhat weaker interactions were shown with peptides CN5 (residues 1-21) and with the inhibitory peptide CN4. 6. The significance of these interactions for the mechanisms of action of troponin I is discussed.  相似文献   

4.
The complete amino acid sequence of rabbit skeletal muscle troponin I was determined by the isolation of the cyanogen bromide fragments and the tryptic methionine-containing peptides. Troponin I contains 179 amino acid residues and has a molecular weight of 20864. Its N-terminus is acetylated. Detailed evidence on which the sequence is based has been deposited as Supplementary Publication SUP 50055 (23 pages) at the British Library (Lending Division), Boston Spa, Wetherby, West Yorkshire LS23 7QB, U.K., from whom copies may be obtained on the terms given in Biochem. J. (1975) 145, 5.  相似文献   

5.
6.
Interactions between troponin C (TnC) and troponin I (TnI) play an important role in the Ca2(+)-dependent regulation of vertebrate striated muscle contraction. Previous attempts to elucidate the molecular details of TnC-TnI interactions, mainly involving chemically modified proteins or fragments thereof, have led to the widely accepted idea that the "inhibitory region" (residues 96-116) of TnI binds to an alpha-helical segment of TnC comprising residues 89-100 in the nonregulatory, COOH-terminal domain. In an attempt to identify other possible physiologically important interactions between these proteins, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) was used to produce zero-length cross-links in the complex of rabbit skeletal muscle TnC and TnI. TnC was activated with EDC and N-hydroxysuccinimide (NHS) and then mixed with an equimolar amount of TnI [Grabarek, Z., & Gergely, J. (1988) Biophys. J. 53, 392a]. The resulting cross-linked TnCXI was cleaved with cyanogen bromide, trypsin, and Staphylococcus aureus V8 protease (SAP). Cross-linked peptides were purified by reverse-phase HPLC and characterized by sequence analysis. The results indicated that residues from the regulatory Ca2(+)-binding site II in the NH2-terminal domain of TnC (residues 46-78) formed cross-links with TnI segments spanning residues 92-167. The most highly cross-linked residues in TnI were Lys-105 and Lys-107, located in the inhibitory region. These results yield the first evidence for an interaction between the N-terminal domain of TnC and the inhibitory region of TnI.  相似文献   

7.
The binding of the chymotryptic troponin T subfragments to tropomyosin, troponin I, and troponin C was semiquantitatively examined by using affinity chromatography, and also by co-sedimentation with F-actin and polyacrylamide gel electrophoresis in 14 mM Tris/90 mM glycine. Circular dichroism spectra of the subfragments were measured to confirm that the subfragments retained their conformational structures. Based on these results, the binding sites of tropomyosin, troponin I, and troponin C on the troponin T sequence were elucidated. Tropomyosin bound mainly to the region of troponin T1 (residues 1-158) with the same binding strength as to the original troponin T. The C-terminal region of troponin T (residues 243-259) was the second binding site to tropomyosin under physiological conditions. The binding site of troponin I was concluded to be the region including residues 223-227. The binding of troponin C was dependent on Ca2+ ion concentration. The C-terminal region of troponin T2 (residues 159-259) was indicated to be the Ca2+-independent troponin C-binding site and the N-terminal side of troponin T2 to be the Ca2+-dependent site.  相似文献   

8.
9.
The three components of troponin were prepared from chicken breast and leg muscle. The troponin I and T components were separated by chromatography on DEAE-cellulose after citraconylation and without the use of urea-containing buffers. The troponin I and C components were similar to their counterparts from rabbit fast skeletal muscle, and a comparison of the troponin I components from breast and leg muscle by amino acid analysis, gel electrophoresis and peptide 'mapping' provides strong evidence for the identity of these proteins. The molecular weights of the troponin T components from breast and leg muscle were 33 500 and 30 500 respectively, determined by gel filtration. A comparison of these two proteins by methods similar to those used for the troponin I components suggested that they differed only in the N-terminal region of the sequence, the breast-muscle troponin T having an extra length of polypeptide chain of approx. 24 residues that is rich in histidine and alanine. The N-terminal hexapeptide sequence, however, is the same in both proteins and is (Ser,Asx,Glx)Thr-Glu-Glu. The genetic implications of these findings are considered.  相似文献   

10.
11.
A method for isolation of troponin T kinase (ATP-protein phosphotransferase, EC 2.7.1.37) from rabbit skeletal muscles in proposed. The method gives a 7000-10 000-fold purification and results in an enzyme with specific activity of 400-800-nmol x min-1 x mg-1 of protein. The molecular weight of tropin T kinase as determined by gel filtration exceeds 500 000. Electrophoresis in polyacrylamide gel in the presence of sodium dodecyl sulphate revealed that isolated preparations of the enzyme consisted of at least three distinct proteins with apparent mol.wt. of 50 000, 46 000 and 31 000. The enzyme phosphorylates isolated troponin T at a rate which exceeds the phosphorylation rates of casein, phosvitin, histones, phosphorylase b and protamine 5-30-fold. Within the whole troponin complex, only troponin T is phosphorylated by the enzyme. The enzyme phosphorylates only the N-terminal serine residue of troponin T, i.e. the site that is normally phosphorylated in the whole troponin complex isolated from rabbit skeletal muscles.  相似文献   

12.
R Wade  R Eddy  T B Shows  L Kedes 《Genomics》1990,7(3):346-357
Troponin I (TnI) is a myofibrillar protein involved in the calcium-mediated regulation of striated muscle contraction. Three isoforms of TnI are known and each is expressed in a muscle fiber-type-specific manner. TnI-fast and TnI-slow are expressed exclusively in fast-twitch and slow-twitch skeletal muscle myofibers, respectively, while a third isoform, TnI-card, is expressed in both the atrium and the ventricle of the heart. An explanation of the myofiber-type-restricted expression of the troponin I multigene family will further aid in understanding how various types of striated muscle fibers are established. To initiate the study of TnI isoform gene expression, we have isolated a full-length cDNA representing the human slow-twitch skeletal muscle isoform of troponin I. Sequence comparisons demonstrate that the TnI-slow protein is highly conserved between species. Therefore, the cDNA was used as a probe to investigate the tissue-specific and developmental regulation of the TnI-slow gene in both rodent and human myogenic cells. TnI-slow message appears to be restricted to muscle tissue containing slow-twitch skeletal muscle myofibers. TnI-slow gene expression is induced in differentiated cultures of primary human muscle cells and several (but not all) myogenic cell lines. In addition, a human-specific probe prepared from the 3' untranslated region of the cDNA has been used to probe a panel of human/mouse somatic cell hybrid lines, resulting in the assignment of the human TnI-slow gene to the q12----qter region of chromosome 1. The locus is designated TNNI1.  相似文献   

13.
We determined the free energy of interaction between rabbit skeletal troponin I (TNI) and troponin C (TNC) at 10 degrees and 20 degrees C with fluorescently labeled proteins. The sulfhydryl probe 5-iodoacetamidoeosin (IAE) was attached to cysteine (Cys)-98 of TNC and to Cys-133 of TNI, and each of the labeled proteins was titrated with the other unlabeled protein. The association constant for formation of the complex between labeled TNC (TNC*) and TNI was 6.67 X 10(5) M-1 in 0.3 M KCl, and pH 7.5 at 20 degrees C. In the presence of bound Mg2+, the binding constant increased to 4.58 X 10(7) M-1 and in the presence of excess of Ca2+, the association constant was 5.58 X 10(9) M-1. Very similar association constants were obtained when labeled TNI was titrated with unlabeled TNC. The energetics of Ca2+ binding to TNC* and the complex TNI X TNC* were also determined at 20 degrees C. The two sets of results were used to separately determine the coupling free energy for binding TNI and Mg2+, or Ca2+ to TNC. The results yielded a total coupling free energy of -5.4 kcal. This free energy appeared evenly partitioned into the two species: TNI X TNC(Mg)2 or TNI X TNC(Ca)2, and TNI X TNC(Ca)4. The first two species were each stabilized by -2.6 kcal, with respect to the Ca2+ free TNI X TNC complex, and TNI X TNC(Ca)4 was stabilized by -2.8 kcal, respect to TNI X TNC(Ca)2 or TNI X TNC(Mg)2. The coupling free energy was shown to produce cooperatively complexes formed between TNI and TNC in which the high affinity sites were initially saturated as a function of free Ca2+ to yield TNI X TNC(Ca)4. This saturation occurred in the free Ca2+ concentration range 10(-7) to 10(-5) M. The cooperative strengthening of the linkage between TNI and TNC induced by Ca2+ binding to the Ca2+-specific sites of TNC may have a direct relationship to activation of actomyosin ATPase. The nature of the forces involved in the Ca2+-induced strengthening of the complex is discussed.  相似文献   

14.
Mullen AJ  Barton PJ 《Gene》2000,242(1-2):313-320
Three troponin I genes have been identified in vertebrates that encode the isoforms expressed in adult cardiac muscle (TNNI3), slow skeletal muscle (TNNI1) and fast skeletal muscle (TNNI2), respectively. While the organization and regulation of human cardiac and slow skeletal muscle genes have been investigated in detail, the fast skeletal troponin I gene has to date only been examined in birds. Here, we describe the structure and complete sequence of the human fast skeletal muscle troponin I gene (TNNI2) and identify putative regulatory elements within both the 5' flanking region and the first intron. In particular, a region containing MEF-2, E-box, CCAC and CAGG elements was identified in intron 1 that closely resembles the fast internal regulatory element (FIRE) of the quail intronic enhancer. We have previously shown that the fast skeletal muscle troponin I gene is located at 11p15.5 and noted potential close linkage with the fast skeletal muscle troponin T gene (TNNT3). Here, we have isolated two independent human PAC genomic clones that contain either TNNI2 or TNNT3 and demonstrate by interphase FISH mapping that they are less than 100 kb apart in the genome. The results demonstrate that the human TNNI2 gene is closely related to its avian counterparts with conserved elements within both the putative promoter and first intron. Our data further confirm close physical linkage of TNNI2 and TNNI3 on 11p15.5.  相似文献   

15.
The role of the inhibitory region of troponin (Tn) I in the regulation of skeletal muscle contraction was studied with three deletion mutants of its inhibitory region: 1) complete (TnI-(Delta96-116)), 2) the COOH-terminal domain (TnI-(Delta105-115)), and 3) the NH(2)-terminal domain (TnI-(Delta95-106)). Measurements of Ca(2+)-regulated force and relaxation were performed in skinned skeletal muscle fibers whose endogenous TnI (along with TnT and TnC) was displaced with high concentrations of added troponin T. Reconstitution of the Tn-displaced fibers with a TnI.TnC complex restored the Ca(2+) sensitivity of force; however, the levels of relaxation and force development varied. Relaxation of the fibers (pCa 8) was drastically impaired with two of the inhibitory region deletion mutants, TnI-(Delta96-116).TnC and TnI-(Delta105-115).TnC. The TnI-(Delta95-106).TnC mutant retained approximately 55% relaxation when reconstituted in the Tn-displaced fibers. Activation in skinned skeletal muscle fibers was enhanced with all TnI mutants compared with wild-type TnI. Interestingly, all three mutants of TnI increased the Ca(2+) sensitivity of contraction. None of the TnI deletion mutants, when reconstituted into Tn, could inhibit actin-tropomyosin-activated myosin ATPase in the absence of Ca(2+), and two of them (TnI-(Delta96-116) and TnI-(Delta105-115)) gave significant activation in the absence of Ca(2+). These results suggest that the COOH terminus of the inhibitory region of TnI (residues 105-115) is much more critical for the biological activity of TnI than the NH(2)-terminal region, consisting of residues 95-106. Presumably, the COOH-terminal domain of the inhibitory region of TnI is a part of the Ca(2+)-sensitive molecular switch during muscle contraction.  相似文献   

16.
Twelve peptide analogs of the actomyosin ATPase inhibitory region of rabbit skeletal troponin I (Tn-I) have been synthesized by the solid phase method and tested for biological activity in both actomyosin and acto-S1(A1) systems. Acto-S1(A1) is a cleaner and more facile system and we found no important discrepancies in the results for the two systems. These studies indicate that the sequence 105 to 114 is necessary for inhibition and that the inhibition is on the order of that reported for the 21-residue cyanogen bromide fragment of Tn-I (residues 96 to 116). We have shown the importance of lysine 105 and that of a bulky side chain at position 114 to this inhibition. Both the high activity of peptides containing the sequence 105 to 114 compared to Tn-I (45% on a molar basis) and the previously demonstrated tropomyosin specificity of this activity indicate that the relative inhibitory activity of these peptides is applicable to the discussion of the inhibitory activity of Tn-I. We have proven that actin concentration is a significant factor determining the extent of inhibition of both Tn-I and the peptides. We have also established that the charges on alpha-amino and alpha-carboxyl groups of a peptide, which do not appear in the parent protein, can modify the activity of the peptides. This must be taken into account when extrapolating from the activity of a peptide to the activity of the protein.  相似文献   

17.
18.
19.
Myosin-heavy-chain-specific cDNA clones have been isolated from a cDNA library prepared from hind leg muscle of a 14-day-old rabbit. According to restriction enzyme analysis these can be grouped into at least two, probably three different classes. RNA dot-blot hybridization shows that all of these clones correspond to mRNAs expressed in fast skeletal muscle. The clones of the most abundant form, class I, can be aligned to cover the complete light meromyosin portion of myosin heavy chain. The sequence of the coding and the 3'-untranslated region, together comprising 2143 base pairs, has been determined. The class I clone detects a multigene family of 8-12 members on a Southern blot of rabbit genomic DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号