首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The pro-B to pre-B transition during B cell development is dependent upon surface expression of a signaling competent pre-B cell Ag receptor (pre-BCR). Although the mature form of the BCR requires ligand-induced aggregation to trigger responses, the requirement for ligand-induced pre-BCR aggregation in promoting B cell development remains a matter of significant debate. In this study, we used transmission electron microscopy on murine primary pro-B cells and pre-B cells to analyze the aggregation state of the pre-BCR. Although aggregation can be induced and visualized following cross-linking by Abs to the pre-BCR complex, our analyses indicate that the pre-BCR is expressed on the surface of resting cells primarily in a nonaggregated state. To evaluate the degree to which basal signals mediated through nonaggregated pre-BCR complexes can promote pre-BCR-dependent processes, we used a surrogate pre-BCR consisting of the cytoplasmic regions of Igalpha/Igbeta that is targeted to the inner leaflet of the plasma membrane of primary pro-B cells. We observed enhanced proliferation in the presence of low IL-7, suppression of V(H)(D)J(H) recombination, and induced kappa light (L) chain recombination and cytoplasmic kappa L chain protein expression. Interestingly, Igalpha/Igbeta-mediated allelic exclusion was restricted to the B cell lineage as we observed normal TCRalphabeta expression on CD8-expressing splenocytes. This study directly demonstrates that basal signaling initiated through Igalpha/Igbeta-containing complexes facilitates the coordinated control of differentiation events that are associated with the pre-BCR-dependent transition through the pro-B to pre-B checkpoint. Furthermore, these results argue that pre-BCR aggregation is not a requirement for pre-BCR function.  相似文献   

2.
The VpreB and λ5 proteins, together with Igμ-H chains, form precursor BCRs (preBCRs). We established λ5(-/-)/VpreB1(-/-)/VpreB2(-/-) Abelson virus-transformed cell lines and reconstituted these cells with λ5 and VpreB in wild-type form or with a deleted non-Ig part. Whenever preBCRs had the non-Ig part of λ5 deleted, surface deposition was increased, whereas deletion of VpreB non-Ig part decreased it. The levels of phosphorylation of Syk, SLP65, or PLC-γ2, and of Ca(2+) mobilization from intracellular stores, stimulated by μH chain crosslinking Ab were dependent on the levels of surface-bound preBCRs. It appears that VpreB probes the fitness of newly generated VH domains of IgH chains for later pairing with IgL chains, and its non-Ig part fixes the preBCRs on the surface. By contrast, the non-Ig part of λ5 crosslinks preBCRs for downregulation and stimulation.  相似文献   

3.
As B lineage cells develop, they interact with cells, proteins, and extracellular matrix components of the surrounding microenvironment. In vitro, one critical checkpoint for developing cells occurs as they lose responsiveness to IL-7. These cells require contact with either stromal cells or other B lineage cells to mature. Our results demonstrate that heparan sulfate and heparin are able to promote this transition when added exogenously to the culture system or when heparan sulfate-bearing cell lines are cocultured with primary B cell progenitors. Addition of heparan sulfate or heparin to LPS-stimulated cultures of primary B cell progenitors resulted in more IgM secreted compared with untreated cultures. Heparan sulfate has been reported to be a ligand for the pre-B cell receptor (preBCR). Extending this observation, we found that treatment of preBCR+ cells with heparan sulfate before anti-micro stimulation leads to increased phosphorylation of ERK1/2. Consequently, preBCR+ cells proliferate more in the presence of IL-7 and heparan sulfate, whereas preBCR- cells are unaffected, suggesting that in these experiments, heparan sulfate is not directly affecting IL-7 activity. Heparin treatment of cultures induces many of the same biological effects as treatment with heparan sulfate, including elevated pERK levels in preBCR+ cells. However, heparin reduces the proliferation of cells expressing only the preBCR (opposed to both the preBCR and BCR) possibly due to internalization of the preBCR. Heparan sulfates are present on stromal cells and B lineage cells present in hemopoietic tissues and may provide stimulation to preB cells testing the signaling capacity of the preBCR.  相似文献   

4.
5.
Proliferative expansion of pro-B cells is an IL-7-dependent process that allows for the rearrangement of H chain genes and the expression of the pre-B cell receptor (pre-BCR). Further B cell differentiation is dependent upon signals elicited through the pre-BCR, which are thought to be responsible for allelic exclusion, induced L chain gene rearrangement, and continued proliferation. CD19 promotes the proliferation and survival of mature B cells, but its role in early B cell development is less well understood. Here we identify and characterize impairments in early B cell development in CD19(-/-) mice. Following sublethal irradiation, we found decreased numbers of autoreconstituted early B cells, which was first evident in the large cycling pre-B cell fraction. Reduced cell progression due to a defect in proliferation was made evident from cell cycle analysis and bromodeoxyuridine labeling of bone marrow cells from CD19(-/-) and wild-type mice. Studies of IL-7-dependent pre-B cell cultures derived from wild-type and CD19(-/-) mouse bone marrow suggested that CD19 has little affect on IL-7 signaling. By contrast, signaling through the pre-BCR was impaired in the absence of CD19, as demonstrated by reduced activation of Bruton's tyrosine kinase and extracellular signal-regulated kinase/mitogen-activated protein kinase. Thus, in addition to promoting mature B cell homeostasis and Ag-induced responses, the early onset of CD19 expression acts to enhance B cell generation.  相似文献   

6.
Ig-alpha and Ig-beta mediate surface expression and signaling of diverse B cell receptor complexes on precursor, immature, and mature B cells. Their expression begins before that of the Ig chains in early progenitor B cells. In this study, we describe the generation of Ig-alpha-deficient mice and their comparative analysis to mice deficient for Ig-beta, the membrane-IgM, and recombination-activating gene 2 to determine the requirement of Ig-alpha and Ig-beta in survival and differentiation of pro-B cells. We find that in the absence of Ig-alpha, B cell development does not progress beyond the progenitor stage, similar to what is observed in humans lacking this molecule. However, neither in Ig-alpha- nor in Ig-beta-deficient mice are pro-B cells impaired in V(D)J recombination, in the expression of intracellular Ig micro-chains, or in surviving in the bone marrow microenvironment. Finally, Ig-alpha and Ig-beta are not redundant in their putative function, as pro-B cells from Ig-alpha and Ig-beta double-deficient mice are similar to those from single-deficient animals in every aspect analyzed.  相似文献   

7.
Mice with a targeted gene disruption of Fut8 (Fut8(-/-)) showed an abnormality in the transition from pro-B cell to pre-B cell, reduced peripheral B cells, and a decreased immunoglobulin production. Alpha 1,6-fucosyltransferase (FUT8) is responsible for the alpha 1,6 core fucosylation of N-glycans, which could modify the functions of glycoproteins. The loss of a core fucose in both very late antigen 4 (VLA-4, alpha4beta1 integrin) and vascular cell adhesion molecule 1 (VCAM-1) led to a decreased binding between pre-B cells and stromal cells, which impaired pre-B cells generation in Fut8(-/-) mice. Moreover, the B lineage genes, such as CD79a, CD79b, Ebf1, and Tcfe2a, were downregulated in Fut8(-/-) pre-B cells. Indeed, the frequency of preBCR(+)CD79b(low) cells in bone marrow pre-B cells in Fut8(-/-) was much lower than that in Fut8(+/+) cells. These results reveal a new role of core fucosylated N-glycans in mediating early B cell development and functions.  相似文献   

8.
Bruton's tyrosine kinase (Btk) is a cytoplasmic signaling molecule that is crucial for precursor (pre-B) cell differentiation in humans. In this study, we show that during the transition of large cycling to small resting pre-B cells in the mouse, Btk-deficient cells failed to efficiently modulate the expression of CD43, surrogate L chain, CD2, and CD25. In an analysis of the kinetics of pre-B cell differentiation in vivo, Btk-deficient cells manifested a specific developmental delay within the small pre-B cell compartment of about 3 h, when compared with wild-type cells. Likewise, in in vitro bone marrow cultures, Btk-deficient large cycling pre-B cells showed increased IL-7 mediated expansion and reduced developmental progression into noncycling CD2(+)CD25(+) surrogate L chain-negative small pre-B cells and subsequently into Ig-positive B cells. Furthermore, the absence of Btk resulted in increased proliferative responses to IL-7 in recombination-activating gene-1-deficient pro-B cells. These findings identify a novel role for Btk in the regulation of the differentiation stage-specific modulation of IL-7 responsiveness in pro-B and pre-B cells. Moreover, our results show that Btk is critical for an efficient transit through the small pre-B cell compartment, thereby regulating cell surface phenotype changes during the developmental progression of cytoplasmic mu H chain expressing pre-B cells into immature IgM(+) B cells.  相似文献   

9.
The requirement of human immunodeficiency virus (HIV)-induced CCR5 activation for infection by R5 HIV type 1 (HIV-1) strains remains controversial. Ectopic CCR5 expression in CD4(+)-transformed cells or pharmacological inhibition of G(alpha)i proteins coupled to CCR5 left unsolved whether CCR5-dependent cell activation is necessary for the HIV life cycle. In this study, we investigated the role played by HIV-induced CCR5-dependent cell signaling during infection of primary CD4-expressing leukocytes. Using lentiviral vectors, we restored CCR5 expression in T lymphocytes and macrophages from individuals carrying the homozygous 32-bp deletion of the CCR5 gene (ccr5 Delta32/Delta32). Expression of wild-type (wt) CCR5 in ccr5 Delta32/Delta32 cells permitted infection by R5 HIV isolates. We assessed the capacity of a CCR5 derivative carrying a mutated DRY motif (CCR5-R126N) in the second intracellular loop to work as an HIV-1 coreceptor. The R126N mutation is known to disable G protein coupling and agonist-induced signal transduction through CCR5 and other G protein-coupled receptors. Despite its inability to promote either intracellular calcium mobilization or cell chemotaxis, the inactive CCR5-R126N mutant provided full coreceptor function to several R5 HIV-1 isolates in primary cells as efficiently as wt CCR5. We conclude that in a primary, CCR5-reconstituted CD4(+) cell environment, G protein signaling is dispensable for R5 HIV-1 isolates to actively infect primary CD4(+) T lymphocytes or macrophages.  相似文献   

10.
《The Journal of cell biology》1996,135(6):1749-1762
The SDYQRL motif of the cytoplasmic domain of TGN38 is involved in targeting TGN38 from endosomes to the TGN. To create a system for studying this pathway, we replaced the native transferrin receptor (TR) internalization motif (YTRF) with the SDYQRL TGN-targeting motif. The advantages of using TR as a reporter molecule include the ability to monitor trafficking, in both biochemical and microscopy experiments, using the natural ligand transferrin. When expressed in CHO cells, the SDYQRL-TR construct accumulated in juxtanuclear tubules and vesicles that are in the vicinity of the TGN. The SDYQRL-TR-containing structures, however, do not colocalize with TGN markers (e.g., NBD ceramide), and therefore the SDYQRL motif is not sufficient to target the TR to the TGN. The morphology of the SDYQRL-TR-containing juxtanuclear structures is different from the recycling compartment found in cells expressing the wild-type TR. In addition, the SDYQRL-TR- containing juxtanuclear compartment is more acidic than the recycling compartment in cells expressing the wild-type TR. The juxtanuclear compartment, however, is a bona fide recycling compartment since SDYQRL- TR was recycled back to the cell surface at a rate comparable to the wild-type TR, and sphingomyelin and cellubrevin, both of which label all compartments of the endocytic recycling pathway, colocalize with SDYQRL-TR in the juxtanuclear structures. These findings demonstrate that expression of the SDYQRL-TR construct alters the morphology and pH of endocytic recycling compartments rather than selectively affecting the intracellular trafficking pathway of the SDYQRL-TR construct. Therefore, the SDYQRL trafficking motif is not simply a molecular address that targets proteins to the TGN, but it can play an active role in determining the physical characteristics of endosomal compartments.  相似文献   

11.
Final envelopment of the cytoplasmic herpes simplex virus type 1 (HSV-1) nucleocapsid is thought to occur by budding into trans-Golgi network (TGN)-derived membranes. The highly membrane-associated proteins UL20p and glycoprotein K (gK) are required for cytoplasmic envelopment at the TGN and virion transport from the TGN to extracellular spaces. Furthermore, the UL20 protein is required for intracellular transport and cell surface expression of gK. Independently expressed gK or UL20p via transient expression in Vero cells failed to be transported from the endoplasmic reticulum (ER). Similarly, infection of Vero cells with either gK-null or UL20-null viruses resulted in ER entrapment of UL20p or gK, respectively. In HSV-1 wild-type virus infections and to a lesser extent in transient gK and UL20p coexpression experiments, both gK and UL20p localized to the Golgi apparatus. In wild-type, but not UL20-null, viral infections, gK was readily detected on cell surfaces. In contrast, transiently coexpressed gK and UL20p predominantly localized to the TGN and were not readily detected on cell surfaces. However, TGN-localized gK and UL20p originated from endocytosed gK and UL20p expressed at cell surfaces. Retention of UL20p to the ER through the addition of an ER retention motif forced total ER retention of gK, indicating that transport of gK is absolutely dependent on UL20p transport. In all experiments, gK and UL20p colocalized at intracellular sites, including the ER, Golgi, and TGN. These results are consistent with the hypothesis that gK and UL20p directly interact and that this interaction facilitates their TGN localization, an important prerequisite for cytoplasmic virion envelopment and egress.  相似文献   

12.
《The Journal of cell biology》1993,123(6):1687-1694
The biosynthesis, intracellular transport, and surface expression of the beta cell glucose transporter GLUT2 was investigated in isolated islets and insulinoma cells. Using a trypsin sensitivity assay to measure cell surface expression, we determined that: (a) greater than 95% of GLUT2 was expressed on the plasma membrane; (b) GLUT2 did not recycle in intracellular vesicles; and (c) after trypsin treatment, reexpression of the intact transporter occurred with a t1/2 of approximately 7 h. Kinetics of intracellular transport of GLUT2 was investigated in pulse-labeling experiments combined with glycosidase treatment and the trypsin sensitivity assay. We determined that transport from the endoplasmic reticulum to the trans-Golgi network (TGN) occurred with a t1/2 of 15 min and that transport from the TGN to the plasma membrane required a similar half-time. When added at the start of a pulse-labeling experiment, brefeldin A prevented exit of GLUT2 from the endoplasmic reticulum. When the transporter was first accumulated in the TGN during a 15-min period of chase, but not following a low temperature (22 degrees C) incubation, addition of brefeldin A (BFA) prevented subsequent surface expression of the transporter. This indicated that brefeldin A prevented GLUT2 exit from the TGN by acting at a site proximal to the 22 degrees C block. Together, these data demonstrate that GLUT2 surface expression in beta cells is via the constitutive pathway, that transport can be blocked by BFA at two distinct steps and that once on the surface, GLUT2 does not recycle in intracellular vesicles.  相似文献   

13.
Phenotypic analysis of bone marrow cells from IL-7 knockout (KO) mice revealed that B cell development is blocked precisely at the transition between pro-B cells and pre-B cells. In contrast, the generation of pre-pro-B cells and pro-B cells appeared to be normal, as judged by total cell numbers, proliferative indexes, D-JH and V-DJH gene rearrangements, and mRNA for recombinase-activating gene-1 (RAG-1), RAG-2, TdT, Ig mu, lambda 5, and VpreB. However, upon closer inspection, several abnormalities in pro-B cell development were identified that could be corrected by injection of rIL-7 in vivo. These included the absence of the subset of late pro-B cells that initiates cmu expression for pre-B cell Ag receptor (BCR) formation, and the failure of pro-B cells to up-regulate TdT and the IL-7R alpha (but not the common gamma-chain) chain. Similar defects were present in common gamma-chain and Jak3 KO mice, but not in lambda 5 or (excluding cytoplasmic Ig mu heavy chain (c mu)) RAG-1 KO mice, all of which also arrest at the late pro-B cell stage. Consequently, up-regulation of TdT and IL-7R alpha expression requires signaling through the high affinity IL-7R, but does not require cmu expression or a functional pre-BCR. Taken together, these results suggest that IL-7 and its receptor complex are essential for 1) up-regulating the expression of TdT and IL-7R alpha, 2) initiating the production of cmu and 3) promoting the formation of a functional pre-BCR in/on pro-B cells. These key events, in turn, appear to be prerequisite both for differentiation of pro-B cells to pre-B cells and for proliferation of these cell subsets upon continued stimulation with IL-7.  相似文献   

14.
15.
Ab-mediated signaling in tumor cells and Ab-dependent cell-mediated cytotoxicity (ADCC) are both considered as relevant effector mechanisms for Abs in tumor therapy. To address potential interactions between these two mechanisms, we generated HER-2/neu- and CD19-derived chimeric target Ags, which were expressed in experimental tumor target cells. HER-2/neu-directed Abs were documented to mediate effective ADCC with both mononuclear cells (MNCs) and polymorphonuclear granulocytes (PMNs), whereas Abs against CD19 were effective only with MNCs and not with PMNs. We generated cDNA encoding HER-2/CD19 or CD19/HER-2 (extracellular/intracellular) chimeric fusion proteins by combining cDNA encoding extracellular domains of HER-2/neu or CD19 with intracellular domains of CD19 or HER-2/neu, respectively. After transfecting wild-type HER-2/neu or chimeric HER-2/CD19 into Raji Burkitt's lymphoma cells and wild-type CD19 or chimeric CD19/HER-2 into SK-BR-3 breast cancer cells, target cell lines were selected for high membrane expression of transfected Ags. We then investigated the efficacy of tumor cell lysis by PMNs or MNCs with CD19- or HER-2/neu-directed Ab constructs. MNCs triggered effective ADCC against target cells expressing wild-type or chimeric target Ag. As expected, PMNs killed wild-type HER-2/neu-transfected, but not wild-type CD19-transfected target cells. Interestingly, however, PMNs were also effective against chimeric CD19/HER-2-transfected, but not HER-2/CD19-transfected target cells. In conclusion, these results demonstrate that intracellular domains of target Ags contribute substantially to effective Ab-mediated tumor cell killing by PMNs.  相似文献   

16.
CD8(+) T cells are crucial for host defense against invading pathogens and malignancies. However, relatively little is known about intracellular signaling events that control the genetic program of their activation and differentiation. Using CD8(+) T cells from TCR-transgenic mice crossed to protein kinase C-theta (PKCtheta)-deficient mice, we report that PKCtheta is not required for Ag-induced CD8(+) T cell proliferation, but is important for T cell survival and differentiation into functional, cytokine-producing CTLs. Ag-stimulated PKCtheta(-/-) T cells underwent accelerated apoptosis associated with deregulated expression of Bcl-2 family proteins and displayed reduced activation of ERKs and JNKs. Some defects in the function of PKCtheta(-/-) T cells (poor survival and reduced Bcl-2 and Bcl-x(L) expression, CTL activity, and IFN-gamma expression) were partially or fully restored by coculture with wild-type T cells or by addition of exogenous IL-2, whereas others (increased Bim(EL) expression and TNF-alpha production) were not. These findings indicate that PKCtheta, although not essential for initial Ag-induced proliferation, nevertheless plays an important role in promoting and extending T cell survival, thereby enabling the complete genetic program of effector CD8(+) differentiation. The requirement for PKCtheta in different types of T cell-dependent responses may, therefore, depend on the overall strength of signaling by the TCR and costimulatory receptors and may reflect, in addition to its previously established role in activation, an important, hitherto unappreciated, role in T cell survival.  相似文献   

17.
BACKGROUND: Use of synthetic short interfering RNAs (siRNAs) to study gene function has been limited by an inability to selectively analyze subsets of cells in complex populations, low and variable transfection efficiencies, and semiquantitative assays for measuring protein down-regulation. Intracellular flow cytometry can overcome these limitations by analyzing populations at the single-cell level in a high-throughput and quantitative fashion. Individual cells displaying a knockdown phenotype can be selectively interrogated for functional responses using multiparameter analysis. METHODS: Lck-specific siRNA was delivered into Jurkat T cells or peripheral blood mononuclear cells (PBMCs) to suppress endogenous Lck expression. Transfected cells were fluorescently stained for intracellular Lck and analyzed using multiparameter flow cytometry. The Lck(lo) Jurkat subpopulation was selectively analyzed for CD69 up-regulation and phospho-states of signaling proteins following T-cell receptor (TCR) stimulation. Surface expression levels of CD4 and CD8 on transfected CD3+ gated PBMCs were correlated with intracellular Lck levels. RESULTS: A subpopulation of Jurkat cells with reduced levels of Lck was clearly resolved from cells with wildtype levels of Lck. Both CD69 up-regulation and ZAP70 phosphorylation were suppressed in Lck(lo) cells when compared with those in Lck(hi) cells upon TCR stimulation. Knockdown of intracellular Lck in primary T lymphocytes reduced surface expression of CD4 in a dose-dependent manner. CONCLUSIONS: Multiparameter flow cytometry is a powerful technique for the quantitative analysis of siRNA-mediated protein knockdown in complex hard-to-transfect cell populations.  相似文献   

18.
TCRbeta expression in CD4(-)CD8(-) double-negative (DN) thymocytes induces signaling pathways that promote survival and proliferation, as well as differentiation into CD4(+)CD8(+) double-positive thymocytes. The signaling pathways that regulate survival, proliferation, and differentiation remain unclear. We used Gads-deficient mice to investigate the signaling pathways that regulate these cell fates. During this investigation, we focused on TCRbeta(+) DN thymocytes and found that there are at least three functionally distinct subsets of TCRbeta(+) DN thymocytes: TCRbeta(+) DN3E, TCRbeta(+) DN3L, and TCRbeta(+) DN4. Survival and proliferation of TCRbeta(+) DN3E were independent of Gads, but survival and proliferation of TCRbeta(+) DN3L cells were Gads dependent. Likewise, expression of Bcl-2 in TCRbeta(+) DN3E cells was Gads independent, but Gads was necessary for Bcl-2 expression in TCRbeta(+) DN3L cells. Bcl-2 expression was not dependent on Gads in TCRbeta(+) DN4 cells, but proliferation of TCRbeta(+) DN4 cells was Gads dependent. Gads was not required for the differentiation of DN thymocytes into DP thymocytes. In fact, Gads(-/-) DN3E cells differentiated into DP thymocytes more readily than wild-type cells. We conclude that signaling pathways required to initiate TCRbeta-induced survival and proliferation are distinct from the pathways that maintain survival and proliferation. Furthermore, signaling pathways that promote survival and proliferation may slow differentiation.  相似文献   

19.
20.
CD43 (sialophorin, gpL115) is a sialoglycoprotein expressed on a wide variety of blood cells including lymphocytes, monocytes, neutrophils, and platelets. L10, an anti-CD43 mAb, has been shown to induce monocyte-dependent activation and proliferation of human T lymphocytes. We have studied the signaling mechanism involved in this activation process. Treatment of PBMC and purified populations of T cells and monocytes with L10 induced the hydrolysis of phosphoinositides with the resultant generation of the phosphoinositide-derived second messengers diacylglycerol and inositol phosphates. This was associated with the translocation of protein kinase C from cytosol to membrane fractions and an increase in free intracellular Ca2+ in treated cells. In human leukemic T cell lines, the magnitude of signaling via CD43 did not correlate with the density of the TCR/CD3 surface expression nor with the intensity of signaling via the TCR/CD3. Moreover, a mutant derived from the leukemic T cell line HPB-ALL that was severely defective in TCR/CD3 surface expression and signaling nevertheless had normal CD43 surface expression and signaling compared with the parent cell line. It is concluded that CD43 is functionally coupled to the phospholipase C/phosphoinositides signaling pathway. In human T cells, signaling via CD43 proceeds independently of TCR/CD3. The widespread expression of CD43 suggests a potentially important role for this molecule in orchestrating the activation of multiple cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号