首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tsang  D.  Tsang  Y. S.  Ho  W. K. K.  Wong  R. N. S. 《Neurochemical research》1997,22(7):811-819
The zinc-binding proteins (ZnBPs) in porcine brain were characterized by the radioactive zinc-blot technique. Three ZnBPs of molecular weights about 53 kDa, 42 kDa, and 21 kDa were identified. The 53 kDa and 42 kDa ZnBPs were found in all subcellular fractions while the 21 kDa ZnBP was mainly associated with particulate fractions. This 21 kDa ZnBP was identified by internal protein sequence data as the myelin basic protein. Further characterization of its electrophoretic properties and cyanogen bromide cleavage pattern with the authentic protein confirmed its identity. The zinc binding properties of myelin basic protein are metal specific, concentration dependent and pH dependent. The zinc binding property is conferred by the histidine residues since modification of these residues by diethyl-pyrocarbonate would abolish this activity. Furthermore, zinc ion was found to potentiate myelin basic protein-induced phospholipid vesicle aggregation. It is likely that zinc plays an important role in myelin compaction by interacting with myelin basic protein.  相似文献   

2.
Myelin basic protein (MBP) from shark (Chondricthyes) consists of a simpler mixture of charge isomers than human MBP. About two-thirds of the total amount applied to a CM-52 cellulose cation-exchange column was recovered in the unbound fraction of the column; the remaining one-third bound to column and was eluted as a single OD280 peak. This bound material did not sow the usual pattern of charge microheterogeneity found with human or bovine MBP. The unbound fraction was composed of a high molecular weight protein (55-60 kDa), which constituted most of this protein fraction and a low molecular weight protein (approximately 18 kDa). The amino acid composition of our unbound fraction was similar to that reported earlier. The Glx (glutamic acid + glutamine) was increased about threefold whereas the Arg content was only about 25% of that of the 18.5 kDa variant of bovine or human origin. The presence of hydroxyproline (1.2 residues/100) in this protein was noteworthy, identification of which was achieved by amino acid analysis in two different systems and by mass spectrometry. In the precolumn derivatization method, hydroxyproline eluted at 2.7 min; in the postcolumn derivatization method it eluted at 12.2 min. Identification of hydroxyproline was completed by fast atom bombardment-mass spectral analysis. The effect of hydroxyproline on the secondary structure of this protein is being studied. Verification that this high molecular weight protein contained MBP sequences within its primary structure was confirmed by immunological methods.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Myelin Basic Protein, one of the major membrane protein component of the central nervous system, was used to probe the molecular mechanism of cellular activation by phytohaemagglutinin.Pre-treatment of human lymphocytes with myelin basic protein results in a lower rising of cytosolic concentration of free calcium after stimulation with phytohaemagglutinin.This effect is dependent on myelin basic protein concentration and on the preincubation time of the protein with the cells. It is not due to a interaction between myelin basic protein and phytohaemagglutinin, but appears to be a consequence of the binding of the protein to the cell surface.The reduction of the rise of cytosolic calcium induced by phytohaemagglutinin is specific for the myelin basic protein because other proteins like albumin and protamine have no effect.  相似文献   

4.
BALB/c mice and Lewis rats were immunized with human myelin basic protein and its N- and C-terminal fragments. Mouse X mouse fusions produced seven monoclonal antibodies, all of the IgG class and directed against the N-terminal fragment. Five of the antibodies seemed to be against the same epitope, between amino acid residues 92 and 118. One antibody bound between residues 45 and 91, and the remaining antibody reacted with both peptides 1-44 and 45-91. Three monoclonal antibodies, all of the IgM class, were obtained by rat X rat hybridization. Two monoclonal antibodies, raised against whole myelin basic protein and the C-terminal fragment, respectively, each bound to peptide 118-178. The remaining antibody, raised against the N-terminal fragment, bound to peptide 45-91. These monoclonal antibodies are of interest for use in clinical radioimmunoassays and for immunohistochemical investigation of the structural relationships of the myelin sheath.  相似文献   

5.
Racemization of Individual Aspartate Residues in Human Myelin Basic Protein   总被引:1,自引:0,他引:1  
Human myelin basic protein (MBP), a long-lived brain protein, undergoes gradual racemization of its amino acids, primarily aspartic acid and serine. Purified protein was treated at neutral pH with trypsin to yield peptides that were separated by HPLC using a C18 column. Twenty-nine peptides were isolated and analyzed for amino acid composition and aspartate racemization. Each aspartate and asparagine in the protein was racemized to a different extent, ranging from 2.2 to 17.1% D isomer. When the racemization was examined in terms of the beta-structure model of MBP, a correlation was observed in which six aspartate/asparagine residues assumed to be associated with myelin membrane lipids showed little racemization (2.2-4.9% D isomer), whereas five other aspartate residues were more highly racemized (9.9-17.1% D isomer). Although the observed aspartate racemization may be related to steric hindrance by neighboring residues and/or the protein secondary structure, interaction of aspartates with membrane lipids may also be a major factor. The data are compatible with a model in which each MBP molecule interacts with adjacent cytoplasmic layers of myelin membrane through a beta-sheet on one surface and loops and helices on the other surface, thereby stabilizing the myelin multilamellar structure.  相似文献   

6.
A New Form of Myelin Basic Protein Found in Human Brain   总被引:2,自引:0,他引:2  
Human myelin basic protein was subjected to ion-exchange chromatography at high pH to separate the differently charged components. Polyacrylamide gel electrophoretic patterns of the fractions showed that the less basic fractions 3, 4, and 5 contained significant amounts of a protein somewhat smaller than the more common 18.5-kDa form. Fraction 3 consisted of approximately equal amounts of this smaller polypeptide and component 3, the 18.5-kDa form found in other mammalian myelin basic protein preparations. The two proteins in fraction 3 were separated by fast protein liquid chromatography. Both have blocked N termini and identical C termini (-Met-Ala-Arg-Arg). When the tryptic digests of the two proteins were fractionated by HPLC, the elution profiles were similar, except that four peaks found in the chromatogram of the larger protein were missing from the chromatogram of the smaller one. In addition, an extra peak was found in the elution pattern of the latter chromatogram. Amino acid analysis of the individual tryptic peptides indicated that the smaller protein lacked residues 106-116 (-Gly-Arg-Gly-Leu-Ser-Leu-Ser-Arg-Phe-Ser-Trp-). The deleted portion corresponds exactly to the amino acid sequence encoded by exon 5 of the mouse basic protein gene. This new form of myelin basic protein has a molecular weight of 17,200, calculated from its amino acid composition.  相似文献   

7.
The myelin basic protein (BP) of pig brain was cleaved into its constituent tryptic peptides and the amino acid composition of each was determined. Those tryptic peptides that had not been sequenced previously were cleaved with dipeptidyl peptidases and the resulting dipeptides were trimethylsilated, separated by gas chromatography, and identified by mass spectrometry. Carboxypeptidases B and Y were used to establish the COOH-terminal sequences of some of the tryptic peptides; one tryptic peptide (sequence 76-92) was cleaved with thermolysin and the thermolytic peptides were analyzed. From the results of the present study together with those reported previously, it has been possible to determine the complete amino acid sequence of the protein. The protein consists of 172 residues and has a theoretical molecular weight of 18,604. Its amino acid sequence is identical with that reported for the homologous bovine protein with the following exceptions: Ser replaces (bovine) Ala2; His-Gly is inserted between Arg9 and Ser10; Ala replaces Ser45; His and Gly replace Gly76 and His77, respectively; Pro replaces Ser131 and Ser135; Ala is inserted between Gly142 and His143; and Gln replaces His143.  相似文献   

8.
Experiments were performed with isolated human myelin membrane preparations to analyse factors that may modulate association of myelin basic protein (MBP) with the membranes and could contribute to demyelinating processes. Transfer of membranes (5 mg protein ml-1) at 37 degrees C and pH 7.4 from a hypotonic medium, in which they were relatively stable, to one of physiological ionic strength produced three major effects: (1) initial dissociation of MBP from the membranes by a nonenzymatic process that was doubled in the presence of millimolar Ca2+/Mg2+; (2) within 10 min, the appearance in the medium of three major MBP fragments (14.4, 10.3, and 8.4 kilodaltons); and (3) progressive acidification of dissociated MBP and its fragments, probably due to deamidation. Between 1 and 6 h a steady state was apparent in which protein equivalent to 15% of the MBP originally bound to the membranes was found in the medium. The three major MBP fragments formed two-thirds of this solubilised material and appeared metabolically stable for 24 h. The kinetics of peptide formation suggested that dissociated, rather than membrane-bound, MBP was cleaved by myelin-associated neutral proteases. Two-dimensional electrophoresis and immunoblotting using two monoclonal antibodies indicated that proteolysis occurred in the vicinity of residues 35 and 75. Evidence was also obtained for removal of C-terminal arginines and relatively rapid deamidation in the C-terminal half of MBP. These modifications of MBP might also occur if extracellular fluid gained access to the compacted cytoplasmic space of the myelin sheath.  相似文献   

9.
Oligodendroglial Myelin Basic Protein (MBP) synthesis is essential for myelin formation in the central nervous system. During oligodendrocyte differentiation, MBP mRNA is kept in a translationally silenced state while intracellularly transported, until neuron-derived signals initiate localized MBP translation. Here we identify the small non-coding RNA 715 (sncRNA715) as an inhibitor of MBP translation. SncRNA715 localizes to cytoplasmic granular structures and associates with MBP mRNA transport granule components. We also detect increased levels of sncRNA715 in demyelinated chronic human multiple sclerosis lesions, which contain MBP mRNA but lack MBP protein.  相似文献   

10.
We have correlated membrane structure and interactions in shiverer sciatic nerve myelin with its biochemical composition. Analysis of x-ray diffraction data from shiverer myelin swollen in water substantiates our previous localization of an electron density deficit in the cytoplasmic half of the membrane. The density loss correlates with the absence of the major myelin basic proteins and indicates that in normal myelin, the basic protein is localized to the cytoplasmic apposition. As in normal peripheral myelin, hypotonic swelling in the shiverer membrane arrays occurs in the extracellular space between membranes; the cytoplasmic surfaces remain closely apposed notwithstanding the absence of basic protein from this region. Surprisingly, we found that the interaction at the extracellular apposition of shiverer membranes is altered. The extracellular space swells to a greater extent than normal when nerves are incubated in distilled water, treated at a reduced ionic strength of 0.06 in the range of pH 4-9, or treated at constant pH (4 or 7) in the range of ionic strengths 0.02-0.20. To examine the biochemical basis of this difference in swelling, we compared the lipid composition of shiverer and normal myelin. We find that sulfatides, hydroxycerebroside, and phosphatidylcholine are 20-30% higher than normal; nonhydroxycerebroside and sphingomyelin are 15-20% lower than normal; and ethanolamine phosphatides, phosphatidylserine, and cholesterol show little or no change. A higher concentration of negatively charged sulfatides at the extracellular surface likely contributes to an increased electrostatic repulsion and greater swelling in shiverer. The cytoplasmic surfaces of the apposed membranes of normal and shiverer myelins did not swell apart appreciably in the pH and ionic strength ranges expected to produce electrostatic repulsion. This stability, then, clearly does not depend on basic protein. We propose that P0 glycoprotein molecules form the stable link between apposed cytoplasmic membrane surfaces in peripheral myelin.  相似文献   

11.
ADP-Ribosylation of Human Myelin Basic Protein   总被引:2,自引:0,他引:2  
Abstract: When isolated myelin membranes were ADP-ribosylated by [32P]NAD+ either in the absence of toxin (by the membrane ADP-ribosyltransferase) or in the presence of cholera toxin, the same proteins were ADP-ribosylated in both cases and myelin basic protein (MBP) was the major radioactive product. Therefore, cholera toxin was considered a good model for ADP-ribosylation of myelin proteins. Although purified human MBP migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular mass of 20 kDa, the microheterogeneity that is masked under these conditions can be clearly demonstrated on alkaline-urea gels at pH 10.6. At this pH, MBP is resolved into several components that differ one from the other by a single charge (charge isomers). These charge isomers can be resolved on CM52 columns at pH 10.6, and several can be ADP-ribosylated. Component 1 (C-1), the most cationic charge isomer, incorporated 1.79 mol of ADP-ribose/mol of protein. C-2 and C-3 (which differ from C-1 by the loss of one and two positive charges, respectively) incorporated slightly less at 1.67 and 1.63 mol of ADP-ribose/mol of protein, respectively, whereas C-8, the least cationic, incorporated less than 0.11 mol/mol of protein. In the presence of neutral hydroxylamine, the ADP-ribosyl bond was shown to have a half-life of about 80 min, suggesting an N-glycosidic linkage between ADP-ribose and an arginyl residue of the protein. As MBP contains several components that are ADP-ribosylated to different specific activities, the use of MBP, ADP-ribosylated in the natural membrane, to identify the sites involved would yield a mixture of peptides difficult to resolve. Therefore, to identify the sites ADP-ribosylated, an endoproteinase Lys-C digest of C-1 ADP-ribosylated by cholera toxin was prepared. Two radioactive peptides were isolated by reversed-phase HPLC. Amino acid and sequence analyses identified the radioactive peptides as residues 5–13 and 54–58 of the human sequence (sp. act., 0.89 and 0.62 nmol of ADP-ribose/nmol of peptide, respectively). The ADP-ribosylated residues were identified as Arg9 and Arg54 by automated and manual Edman sequencing. Taken together with our previous observation that MBP binds GTP at a single site, these data suggest that MBP functions as part of a signal transduction system in myelin.  相似文献   

12.
Direct treatment of brain myelin with freezing/thawing in 0.2 M 2-mercaptoethanol stimulated the endogenous myelin phosphatase activity manyfold when 32P-labeled phosphorylase a was used as a substrate, a result indicating that an endogenous myelin phosphatase is a latent protein phosphatase. When myelin was treated with Triton X-100, this endogenous latent phosphatase activity was further stimulated 2.5-fold. Diethylaminoethyl-cellulose and Sephadex G-200 chromatography of solubilized myelin revealed a pronounced peak of protein phosphatase activity stimulated by freezing/thawing in 0.2 M 2-mercaptoethanol and with a molecular weight of 350,000, which is characteristic of latent phosphatase 2, as previously reported. Moreover, endogenous phosphorylation of myelin basic protein (MBP) in brain myelin was completely reversed by a homogeneous preparation of exogenous latent phosphatase 2. By contrast, under the same conditions, endogenous phosphorylation of brain myelin was entirely unaffected by ATP X Mg-dependent phosphatase and latent phosphatase 1, although both enzymes are potent MBP phosphatases. Together, these findings clearly indicate that a high-molecular-weight latent phosphatase, termed latent phosphatase 2, is the most predominant phosphatase responsible for dephosphorylation of brain myelin.  相似文献   

13.
Myelin basic protein (MBP) consists of several components or charge isomers (C-1 through C-8) generated by one or a combination of posttranslational modifications. One of these, C-8, has been shown to contain citrulline (Cit) at defined sites formed by deimination of six arginyl residues. This unusual modification has allowed us to raise antibodies specific for this charge isomer only. To do this, a synthetic peptide, Gly-Cit-Cit-Cit-Cit, was coupled to keyhole limpet hemocyanin and injected into rabbits. The antibodies so generated reacted only with C-8 and not with any of the other charge isomers. A second antibody fraction was raised against the synthetic peptide ACitHGFLPCitHR naturally occurring between residues 24 and 33 of C-8 (all other charge isomers contain R instead of Cit at positions 25 and 31). These antibodies preferred C-8 but reacted with the other charge isomers, to the extent of approximately 25-30% of the reactivity shown with C-8. In studies with C-8 from multiple sclerosis (MS) MBP, much greater reactivity was obtained with these antibodies when compared with their reactivity with C-8 from normal MBP. Because the total number of Cit residues in C-8 from MS and normal MBP is the same, the difference in reactivity may be related to structural factors. The antibodies raised with the tetra-Cit peptide were reacted with three pairs of synthetic peptides: 24ARHGFLPRHR33 and ACitHGFLPCitHR; 120GQRPGFGYGGRAS132 and GQCitPGFGYGGCitAS; and 157GGRDSRSGSPMARR170 and GGCitDSRSGSPMACitR. They reacted only with the Cit-containing peptides in the order 157-170 greater than 120-130 greater than 24-33.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Abstract: An enzyme immunoassay using a double-antibody solid-phase technique for myelin basic protein (MBP) has been developed. Antisera were prepared by immunizing rabbits with the purified MBP from chick brain. The conjugation of MBP with horseradish peroxidase was performed by the periodate oxidation method in triethanolamine-acetate buffer (pH 8.5). The sample, antiserum, and conjugate were incubated at 4°C for 16 h, after which the insoluble second antibody was added and the reaction mixture was incubated at 4°C for 3 h. The peroxidase activity of the insoluble conjugate was assayed fluorometrically with hydrogen peroxide and 3-( p -hydroxyphenyl)propionic acid as substrates. The method had an analytical range from 50 pg to 1 ng (from 2.3 × 10−15 to 4.5 × 10−14 mol). The within-assay coefficient of variation (CV) was between 4 and 11% and the between-assay CV for 200 and 400 pg of MBP was 5.5 and 7.1%, respectively. A weak cross-reactivity was observed between chick MBP and bovine MBP, while no reactivity was shown with calf thymus histone. The MBP content of the brain during development increased markedly from the 3rd embryonic week to the 3rd post-hatch week (from 0.01 to 2.4 mg/g of fresh tissue), and the adult level was 3.2 mg/g of fresh tissue.  相似文献   

15.
Myelin basic protein (MBP) and two peptides derived from MBP (MBP1–44 and MBP152–167) stimulated Schwann cell (SC) proliferation in a cAMP-mediated process. The two mitogenic regions of MBP did not compete with one another for binding to SC suggesting a distinctive SC receptor for each mitogenic peptide. Neutralizing antibodies to the fibroblast growth factor receptor blocked the mitogenic effect of the myelin-related SC mitogen found in the supernatant of myelin-fed macrophages. The binding of 125I-MBP to Schwann cells was specifically inhibited by basic fibroblast growth factor (bFGF) and conversely the binding of 125I-bFGF was competitively inhibited by MBP. These data suggested that the mitogenic effect of one MBP peptide was mediated by a bFGF receptor. The binding of MBP to ganglioside GM1 and the ability of MBP peptides containing homology to the B subunit of cholera toxin (which binds ganglioside GM1) to compete for the binding of a mitogenic peptide (MBP1–44) to SC, identified ganglioside GM1 as a second SC receptor. Based on these results, we conclude that MBP1–44 and MBP152–167 associate with ganglioside GM1 and the bFGF receptor respectively to stimulate SC mitosis.  相似文献   

16.
Myelin isolated from goldfish brain shows a multilamellar structure with a major dense line and two intraperiod lines. Sodium dodecyl sulfate gel electrophoresis revealed that the protein profile of goldfish brain myelin is distinctly different from that of rat brain myelin. No protein migrating to the position of proteolipid protein or DM-20 was seen in goldfish myelin. Goldfish acclimated to 5 degrees, 15 degrees, and 30 degrees C showed no qualitative differences in myelin proteins. The 13.5 kD protein in goldfish brain myelin and brain homogenate was intensely immunostained with the antiserum to human basic protein by the immunoblot technique. In contrast, none of the proteins of goldfish myelin were immunostained with antiproteolipid protein serum; however, both proteolipid protein and DM-20 of rat brain myelin were immunostained. The significance of the synthesis of myelin proteins by astrocytes in the goldfish brain is discussed.  相似文献   

17.
Rabbit myelin basic protein (BP) was subjected to partial cleavage with plasmin, and 15 cleavage products were isolated by a combination of gel filtration and ion-exchange chromatography. Their identification was achieved by amino acid analysis and tryptic peptide mapping, supplemented in some instances by carboxy-terminal analyses with carboxypeptidases A, B, and Y and amino-terminal analyses with dipeptidyl aminopeptidase I. The results showed that major plasmic cleavage sites included the Lys89-Asn90, Lys133-Ser134, and Lys153-Leu154 bonds. Cleavages also occurred at the Arg31-His32, Lys53-Arg54, and Arg25-His26 bonds, but these appeared to be less extensive. A large number of additional peptides were produced in relatively low yield. The smaller of these were isolated from heterogeneous fractions by high-voltage electrophoresis-TLC. Amino acid analysis of these peptides showed that minor cleavage sites included the Arg9-His10, Lys13-Tyr14, Lys103-Gly104, Lys137-Gly138, Lys140-Gly141, and Arg160-Ser161 bonds. In spite of a lower selectivity toward peptide bonds in BP as compared with pepsin, cathepsin D, and thrombin, plasmin has the advantage over the former proteinases in that it does not cleave at or near the Phe44-Phe45 bond. Instead it cleaves at the Arg31-His32 and Lys53-Arg54 bonds, thus preserving the entire hydrophobic sequence Ile-Leu-Asp-Ser-Ile-Gly-Arg-Phe-Phe as well as short sequences to either side.  相似文献   

18.
Abstract: Although the specificity of multiple sclerosis (MS) brain immunoglobulins (lgs) remains unknown, the incubation of these lgs with human myelin can lead to myelin basic protein (MBP) degradation mediated by neutral proteases. In this study, we demonstrate that monoclonal antibodies (mAbs) specific to myelin components such as the CNS-specific myelin oligodendrocyte glycoprotein (MOG) and galactocerebroside (GalC) are found to induce a significant loss of MBP mediated by neutral proteases in myelin. By contrast, antibodies to periaxonal and structural components of myelin, such as MBP and myelin-associated glycoprotein, are ineffective in inducing such MBP degradation. Among the 11 different anti-MOG mAbs directed to externally located epitopes of MOG, only two were found to induce a significant degradation of MBP, suggesting that antibody-induced MBP degradation is not only antigen specific but also epitope specific. Based on the inhibition of MBP degradation in the presence of EGTA and the analysis of the degradation products obtained following incubation of myelin with mAbs to GalC and MOG (8-18C5), the neutral protease involved in this antibody-induced degradation of MBP could be calcium-activated neutral protease. Taken together, these results suggest that antibodies to GalC and MOG can play a major role in destabilizing myelin through MBP breakdown mediated by neutral proteases and thus have an important role to play in the pathogenesis of MS.  相似文献   

19.
GABA-modulin, a basic protein that allosterically inhibits the high-affinity binding of GABA to its recognition sites, has been extracted and purified from the synaptosomal fraction of rat brain where it represents approximately 0.5% of the total synaptosomal proteins. GABA-modulin has characteristics in common to the class of highly basic proteins isolated from myelin, in particular to the rat small myelin basic protein (SMBP). However, GABA-modulin is located selectively in synaptosomes, whereas the SMBP is located in myelin. Moreover, synaptosomal GABA-modulin is different from SMBP in amino acid composition (it contains more Glx and Lys and fewer Arg residues) and in apparent molecular weight (17,000 and 15,000 for GABA-modulin and SMBP, respectively). Synaptosomal GABA-modulin fails to bind [3H]muscimol per se but noncompetitively inhibits (IC30 approximately 0.5 microM) the binding of [3H]muscimol to purified synaptic membranes. Cyanogen bromide treatment generated a 13,000 MW major fragment from both SMBP and GABA-modulin. These two fragments were compared and showed differences in amino acid composition and sequence. Moreover, the peptide maps generated from GABA-modulin and SMBP by trypsin and staphylococcal V8 protease digestion are different. The high concentration of GABA-modulin in synaptosomal membranes, its high potency in the inhibition of GABA binding, and its neuronal specificity suggest that GABA-modulin plays an important role in neuronal membrane function linked to the modulation of GABA and perhaps other neurotransmitter receptors.  相似文献   

20.
A rapid procedure for purification of myelin basic protein has been developed. White matter is delipidated with 2-butanol, and the residue is extracted at pH 7.5 and 8.5. Myelin basic protein is solubilized by extraction in acetate buffer, pH 4.5. The entire procedure requires less than 4 h, and gives homogeneous protein essentially free of protease activity. This procedure can be scaled down to process milligram amounts of white matter; thus it can be very useful for purification of myelin basic protein from very limited amounts of human white matter obtained during surgery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号